硅基GaN外延膜生长与LED性能提升研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以GaN基LED芯片为基础的固态照明器件具有发光效率高,寿命长,响应速度快,发光强度随电流和脉冲宽度近线性变化,能在剧烈振动和恶劣环境下工作,不含环境有害物质等优点,成为新一代通用照明灯具的首选。随着研究的深入和产业的发展,GaN基发光二极管的材料生长和器件制造技术已经取得了长足进步,器件效率和可靠性也有显著提升;特别是硅衬底GaN LED外延技术和芯片制造技术的成功实施,芯片成本进一步下降,加速了LED灯全面取代白炽灯和荧光灯进入通用照明领域的进程。
     在此背景下,本文开展了对硅衬底GaN基材料和器件生长的研究。论文首先对Al合金掩膜微图形化Si(111)衬底上GaN材料的侧向外延生长进行了研究;然后,研究了同温cap层和cap层厚度对绿光InGaN/GaN MQWs LEDs量子阱材料质量和芯片发光性能的影响,以及湿法表面粗化对蓝光LED芯片取光效率的提升作用;最后,对硅衬底GaN垂直结构大功率发光二极管的可靠性进行了研究分析。通过上述研究,本论文取得了以下主要结果:
     1.提出了用于硅衬底GaN材料选区外延生长的Al-Si合金掩膜技术。通过在Si(111)衬底表面蒸镀150金属Al,经光刻工艺制作Al金属图形,然后高温1200℃下进行合金扩散,获得了Al-Si合金掩膜的图形化硅衬底。实验表明,在Al-Si合金掩膜区不会生长GaN,因此,Al-Si合金技术是Si衬底上选区外延生长GaN材料的一种有效掩膜方法。
     2.通过优化Al-Si合金条形掩膜参数和GaN外延生长条件,成功地在Al-Si合金掩膜微图形化Si(111)衬底上的周期为1mm1mm方块区域内生长出无裂纹GaN连续外延膜,并通过在方块之间Al-Si掩膜区的硅衬底内产生裂纹,实现了应力释放,从而有效地解决了硅衬底GaN外延膜发生龟裂的难题。
     3.通过引入阱后同温GaN cap层,成功地实现了对InGaN/GaN多量子阱绿光LED低温生长的阱层InGaN材料的保护作用。研究表明,cap层厚度在一定范围内增加,InGaN阱层的In组分升高且分布更均匀,InGaN材料质量和量子阱界面特性变好。具有25cap层的绿光器件的外量子效率(EQE)及EQE最高值对应的电流密度分别是15cap层器件的1.39倍和10倍,文中对此给出了相应解释。
     4.经过工艺优化,研制的厚度为25cap层结构的硅衬底垂直结构绿光LED芯片,经封装在350mA直流驱动下(电流密度35A/cm2),主波长为519nm,内量子效率40.3%,工作电压2.99V,光功率达235mW,这是目前报道的硅衬底绿光发光二极管最好水平。
     5.通过引入500Torr高压条件下生长的p-GaN层,在具有大V型坑结构的InGaN/GaN蓝光LED外延结构中,成功地实现了对量子阱区V型坑的填平作用,芯片反向漏电下降,器件发光效率增大;通过工艺优化,研制的具有此结构外延片制造的垂直结构大功率蓝光LED芯片在350mA直流驱动下(电流密度35A/cm2),主波长为450nm,内量子效率达79.5%,硅胶封装器件的工作电压为3.05V,光功率达595mW,与蓝宝石衬底蓝光LED市场产品的先进水平持平,从而有力地表明硅衬底LED是一条行之有效的半导体照明新技术路线。
Solid State lighting lamps with GaN based LED chips are considered as thepreferred candidates for the next generation lighting, due to their high efficiency,long lifetime, fast modulation speed, good robustness to shocks and atmosphericagents, near linear behavior under continuous current and pulsed width, and free ofmercury. As the research and industrialization carry forward, the material growthand device manufacture technology has made great advancements over the years.Chip efficiency and reliability has also been greatly improved. Especially, thesuccessful growth of GaN and fabrication of high efficiency LED chips on siliconsubstrates has further cut the device cost, which speeds up the replacement ofincandescent lamps and fluorescent lamps as the generation lamps.
     Under this background, this dissertation focuses on the growth of GaN materialand LED device on silicon substrates. Firstly, lateral epitaxial overgrowth of GaNsubstrate was investigated on patterned Si (111) substrates with annealed Al-Si alloyfilm as mask and the epitaxial growth of GaN LED structure was studied on Si (111)substrates with different resistivity. Secondly, same temperature cap layer wasinduced after quantum well in green LED. The effect of cap layer thickness on thequality of QW InGaN materials and photoluminescence spectra of InGaN/GaNLEDs was researched. The efficiency improvement of blue GaN LED was alsostudied by n-GaN surface roughening with40%NaOH solution at80℃for10minutes. Lastly, the reliability of high-power vertical GaN LEDs on silicon wasstudied.
     The following innovative and meaningful research results were conluded:
     1、 Al-Si alloy mask was formed by evaporating150Al metal film on silicon(111)substrate, Al film patterning and annealing at1200℃. The results show thanAlN and GaN can’t be nucleated on Al-Si alloy mask. So, Al-Si alloytechnology is an effective mask for GaN selective-area growth on siliconsubstrates.
     2、 Epitaxial lateral growth GaN was studied on patterned Si (111) substrate with5μm period square Al-Si alloy layer as mask. When the square area is siliconsurface, only pyramid-shaped selective-area growth GaN crystal can be formedwith six GaN {1-100} planes exposed. When square area is covered by Al-Sialloy mask, GaN reticular films covered the silicon film and mask square can’tbe fully covered with forming a reversed pyramid voids on it
     3、 Epitaxial lateral growth GaN was studied on patterned Si (111) substrate with4μm period stripy Al-Si alloy layer as mask. When the mask stripes are parallelto GaN [11-20] directon, only Independent triangle GaN stripes can be grownon the Si substrate. When the mask stripe are Parallel to GaN[1-100] direction,the lateral epitaxy overgrowth was improved and crack-free GaN crystalcontinuous films were successfully grown on the Al-Si alloy masked Si (111)substrate by increasing growth temperature and decreasing growth pressure.
     4、 Same temperature (ST) GaN cap layer after QW was induced in InGaN/GaNMQWs green LED. Relative thicker cap layer is benefit to promote Incomponent, homogeneity of InGaN well, and the interaface abruptnessof theMQWs. The n-GaN roughened vertical green LED with25cap layer haslarger quantum conversion efficiency. Under35A/cm2direct current(DC)driven, the1140um1140μm silica pakeaged LED has28.1%EQE,235mWoutput power,519nm domain wavelength and2.99V operating voltage.
     5、 P-GaN layer under500Torr pressure was induced in the LED epitaxial layerhaving big V-pits in InGaN/GaN MQWs. The results show that thehigh-pressure P-GaN layer could effectively landfill the V-pits, reduce reverselakage current and improve lighting efficiency. Under35A/cm2DC driven, the11400um1140μm vertical blue LED chip with high-pressure layer has79.5%IQE. The silica pakeaged LED has595mW output power,450nm domainwavelength and3.05V operating voltage.
引文
[1] Schubert E F, Kim J K. Solid-State Light Sources Getting Smart[J]. Science,2005,308(5726):1274-1278.
    [2] Schubert E F. Light-emitting Diodes[M]. Cambridge University Press,2003.
    [3] Round H J. A note on carborundum[J]. Electrical world,1907,49(6):309.
    [4] Potter R M, Blank J M, Addamiano A. Silicon Carbide Light-Emitting Diodes[J]. Journalof Applied Physics,1969,40:2253-2257.
    [5] Edmond J A, Kong H, Carter Jr C H. Blue LEDs, UV photodiodes and high-temperaturerectifiers in6H-SiC[J]. Physica B: Condensed Matter,1993,185(1):453-460.
    [6] Destriau G. Scintillations of zinc sulfides with alpha-rays[J]. J. Chimie Physique,1936,33:587.
    [7] Welker H. On new semiconducting compounds[J]. Zeitschrift fur Naturforschung,1952,7:744-749.
    [8] Maruska H P, Tietjen J J. The Preparation and Properties of Vapor Deposited SingleCrystal Line GaN[J]. Applied Physics Letters,1969,15(10):327-329.
    [9] Pankove J I, Miller E A, Richman D, et al. Electroluminescence in GaN[J]. Journal ofLuminescence,1971,4(1):63-66.
    [10] Pankove J I, Miller E A, Berkeyheiser J E. GaN electroluminescent diodes: InternationalElectron Devices Meeting,1971[C]. IEEE.
    [11] Pankove J I, Miller E A, Berkeyheiser J E. GaN blue light-emitting diodes[J]. Journal ofLuminescence,1972,5(1):84-86.
    [12] Maruska H P, Rhines W C, Stevenson D A. Preparation of Mg-doped GaN diodesexhibiting violet electroluminescence[J]. Materials Research Bulletin,1972,7(8):777-781.
    [13] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a highquality GaN film using an AlN buffer layer[J]. Applied Physics Letters,1986,48(5):353-355.
    [14] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated withlow-energy electron beam irradiation (LEEBI)[J]. Jpn. J. Appl. Phys,1989,28(12):L2112-L2114.
    [15] Iwasa N, Nakamura S, Senoh M. Method of manufacturing p-type compoundsemiconductor U.S. Patent No.5,306,662.:
    [16] Nakamura S, Senoh M, Mukai T. High‐power InGaN/GaN double‐heterostructure violetlight emitting diodes[J]. Applied Physics Letters,1993,62(19):2390-2392.
    [17] Nakamura S, Senoh M, Mukai T. P-GaN/N-InGaN/N-GaN double-heterostructureblue-light-emitting diodes[J]. Japanese Journal of Applied Physics Part2Letters,1993,32:L8.
    [18] Nakamura S, Mukai T, Senoh M. Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes[J]. Applied Physics Letters,1994,64(13):1687-1689.
    [19] Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent propertiesof reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphiresubstrates[J]. Applied Physics Letters,1983,42(5):427-429.
    [20] Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of p-type GaNfilms[J]. Japanese journal of applied physics,1992,31(part1):1258-1266.
    [21] Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multi-quantum-well-structurelaser diodes[J]. Japanese Journal of Applied Physics Part2Letters,1996,35:L74-L76.
    [22] Guha S, Bojarczuk N A. Ultraviolet and violet GaN light emitting diodes on silicon[J].Applied Physics Letters,1998,72(4):415-417.
    [23] Tran C A, Osinski A, Karlicek Jr R F, et al. Growth of InGaN/GaN multiple-quantum-wellblue light-emitting diodes on silicon by metalorganic vapor phase epitaxy[J]. Appliedphysics letters,1999,75(11):1494-1496.
    [24] Wyckoff R W. Crystal Structures1-4[M]//Wiley,1963.
    [25] Dimitrov R, Murphy M, Smart J, et al. Two-dimensional electron gases in Ga-face andN-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxyand metalorganic chemical vapor deposition on sapphire[J]. Journal of Applied Physics,2000,87(7):3375-3380.
    [26] Angerer H, Brunner D, Freudenberg F, et al. Determination of the Al mole fraction and theband gap bowing of epitaxial AlxGa1-xN films[J]. Applied Physics Letters,1997,71(11):1504-1506.
    [27] Davydov V Y, Klochikhin A A, Seisyan R P, et al. Absorption and emission of hexagonalInN. Evidence of narrow fundamental band gap[J]. physica status solidi (b),2002,229(3):r1-r3.
    [28] Davydov V Y, Klochikhin A A, Emtsev V V, et al. Band Gap of InN and In‐RichInxGa1-xN alloys (0.36    [29] Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap ofInN[J]. Applied Physics Letters,2002,80(21):3967-3969.
    [30] Wu J, Walukiewicz W, Shan W, et al. Effects of the narrow band gap on the properties ofInN[J]. Physical Review B,2002,66(20):201403.
    [31]虞丽生.半导体异质结物理[M].科学出版社,1990.
    [32] Utsumi W, Saitoh H, Kaneko H, et al. Congruent melting of gallium nitride at6GPa andits application to single-crystal growth[J]. nature materials,2003,2(11):735-738.
    [33] Motoki K. Development of gallium nitride substrates[J]. SEI Tech. Rev,2010,70:28-35.
    [34]江风益.硅衬底氮化镓LED材料与器件研发进展:第11届全国发光学学术会议,中国吉林长春,2007.
    [35] Ambacher O. Growth and applications of group III-nitrides[J]. Journal of Physics D:Applied Physics,1998,31(20):2653.
    [36] Morimoto T, Yamada S, Yamada B, et al. Memoirs of the Faculty of Engineering[J].NASA,1997(19980218948).
    [37] Waltereit P, Brandt O, Ramsteiner M, et al. Growth of M‐Plane GaN (11‐00): A Way toEvade Electrical Polarization in Nitrides[J]. physica status solidi (a),2000,180(1):133-138.
    [38] Kong H, Ibbetson J, Edmond J. Status of GaN/SiC-based LEDs and their application insolid state lighting[J]. physica status solidi (c),2014,3-4(11):621-623.
    [39] Monemar B, Pozina G. Group III-nitride based hetero and quantum structures[J]. Progressin Quantum Electronics,2000,24(6):239-290.
    [40] Farell R M, Young E C, Wu F, et al. Development of high-performance nonpolar III-nitridelight-emitting devices:2013Saudi International of Electronics Communications andPhotonics Conference,2013[C].
    [41] Sato H, Tyagi A, Zhong H, et al. High power and high efficiency green light emitting diodeon free-standing semipolar11-22) bulk GaN substrate[J]. physica status solidi (RRL)–Rapid Research Letters,2007,1(4):162-164.
    [42] Chen C, Adivarahan V, Yang J, et al. Ultraviolet Light Emitting Diodes Using Non-Polara-Plane GaN-AlGaN Multiple Quantum Wells[J]. Japanese Journal of Applied Physics,2003,42(Part2, No.9A/B):L1039-L1040.
    [43] Iso K, Yamada H, Hirasawa H, et al. High Brightness Blue InGaN/GaN Light EmittingDiode on Nonpolar$m$-plane Bulk GaN Substrate[J]. Japanese Journal of Applied Physics,2007,46(40):L960-L962.
    [44] Yamada H, Iso K, Saito M, et al. Compositional Dependence of Nonpolar m-PlaneInxGa1-xN/GaN Light Emitting Diodes[J]. Applied Physics Express,2008,1(4):41101.
    [45] Sato H, Tyagi A, Zhong H, et al. High power and high efficiency green light emitting diodeon free-standing semipolar (11-22) bulk GaN substrate[Z]. WILEY-VCH Verlag,2007:1,162-164.
    [46] Waltereit P, Brandt O, Trampert A, et al. Nitride semiconductors free of electrostatic fieldsfor efficient white light-emitting diodes[J]. Nature,2000,406(6798):865-868.
    [47] Ng H M. Molecular-beam epitaxy of GaN/AlxGa1-xN multiple quantum wells on R-plane(1012) sapphire substrates[J]. Applied Physics Letters,2002,80(23):4369-4371.
    [48] Craven M D, Lim S H, Wu F, et al. Structural characterization of nonpolar (1120)a-planeGaN thin films grown on (1102)r-plane sapphire[J]. Applied Physics Letters,2002,81(3):469-471.
    [49] Craven M D, Lim S H, Wu F, et al. Threading dislocation reduction via laterally overgrownnonpolar (1120)a-plane GaN[J]. Applied Physics Letters,2002,81(7):1201-1203.
    [50] Chakraborty A, Baker T J, Mishra B A H W. Milliwatt Power Blue InGaN/GaNLight-Emitting Diodes on Semipolar GaN Templates[J]. Japanese Journal of AppliedPhysics,2005,44(30):L945-L947.
    [51] Chakraborty A, Haskell B A, Keller S, et al. Nonpolar InGaN∕GaN emitters onreduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independentelectroluminescence emission peak[J]. Applied Physics Letters,2004,85(22):5143-5145.
    [52] Chakraborty A, Haskell B A, Keller S, et al. Demonstration of Nonpolar$m$-PlaneInGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates[J]. JapaneseJournal of Applied Physics,2005,44(5):L173-L175.
    [53] Chakraborty A, Haskell B A, Masui H, et al. Nonpolar m-Plane Blue-Light-Emitting DiodeLamps with Output Power of23.5mW under Pulsed Operation[J]. Japanese Journal ofApplied Physics,2006,45(2A):739-741.
    [54] Fujito K, Kiyomi K, Mochizuki T, et al. High-quality nonpolar m-plane GaN substratesgrown by HVPE[J]. physica status solidi (a),2008,205(5):1056-1059.
    [55] Fujito K, Kubo S, Nagaoka H, et al. Bulk GaN crystals grown by HVPE[J]. Journal ofCrystal Growth,2009,311(10):3011-3014.
    [56] Okamoto K, Ohta H, Nakagawa D, et al. Dislocation-Free m-Plane InGaN/GaNLight-Emitting Diodes on m-Plane GaN Single Crystals[J]. Japanese Journal of AppliedPhysics,2006,45(45):L1197-L1199.
    [57] Schmidt M C, Kim K, Sato H, et al. High Power and High External Efficiency m-PlaneInGaN Light Emitting Diodes[J]. Japanese Journal of Applied Physics,2007,46(7):L126-L128.
    [58] Okamoto K, Ohta H, Chichibu S F, et al. Continuous-Wave Operation of m-Plane InGaNMultiple Quantum Well Laser Diodes[J]. Japanese Journal of Applied Physics,2007,46(9):L187-L189.
    [59] Schmidt M C, Kim K, Farrell R M, et al. Demonstration of Nonpolar m-Plane InGaN/GaNLaser Diodes[J]. Japanese Journal of Applied Physics,2007,46(9):L190-L191.
    [60] Kim K, Schmidt M C, Sato H, et al. Improved electroluminescence on nonpolar m-planeInGaN/GaN quantum wells LEDs[J]. physica status solidi (RRL)–Rapid ResearchLetters,2007,1(3):125-127.
    [61] Farrell R M, Hsu P S, Haeger D A, et al. Low-threshold-current-densityAlGaN-cladding-free m-plane InGaN/GaN laser diodes[J]. Applied Physics Letters,2010,96(23):231113.
    [62] Hirai A, Jia Z, Schmidt M C, et al. Formation and reduction of pyramidal hillocks onm-plane {11ˉ00} GaN[J]. Applied Physics Letters,2007,91(19):191906.
    [63] Kelchner K M, Speck J S. Progress in Nonpolar and Semipolar GaN Materials andDevices[J]. ECS Transactions,2013,50(6):217-221.
    [64] Yamada H, Iso K, Masui H, et al. Effects of off-axis GaN substrates on optical propertiesof m-plane InGaN/GaN light-emitting diodes[J]. Journal of Crystal Growth,2008,310(23):4968-4971.
    [65] Yamada H, Iso K, Saito M, et al. Impact of Substrate Miscut on the Characteristic ofm-plane InGaN/GaN Light Emitting Diodes[J]. Japanese Journal of Applied Physics,2007,46(46):L1117-L1119.
    [66] Farrell R M, Haeger D A, Chen X, et al. Effect of carrier gas and substrate misorientationon the structural and optical properties of m-plane InGaN/GaN light-emitting diodes[J].Journal of Crystal Growth,2010,313(1):1-7.
    [67] Chua A L S, Pelucchi E, Rudra A, et al. Theory and experiment of step bunching onmisoriented GaAs(001) during metalorganic vapor-phase epitaxy[J]. Applied PhysicsLetters,2008,92(1):13117.
    [68] Wu F, Lin Y, Chakraborty A, et al. Stacking fault formation in the long wavelengthInGaN/GaN multiple quantum wells grown on m-plane GaN[J]. Applied Physics Letters,2010,96(23):231912.
    [69] Zhao H, Arif R A, Tansu N. Design Analysis of Staggered InGaN Quantum WellsLight-Emitting Diodes at500#x2013;540nm[J]. IEEE Journal of Selected Topics inQuantum Electronics,2009,15(4):1104-1114.
    [70] Zhao H, Arif R, Ee Y, et al. Optical gain analysis of strain-compensated InGaN–AlGaNquantum well active regions for lasers emitting at420–500nm[J]. Optical and QuantumElectronics,2008,40(5-6):301-306.
    [71] Kim M, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emittingdiodes[J]. Applied Physics Letters,2007,91(18):183507.
    [72] Chang J, Chen F, Kuo Y, et al. Numerical study of the suppressed efficiency droop in blueInGaN LEDs with polarization-matched configuration[J]. Opt. Lett.,2013,38(16):3158-3161.
    [73] Dadgar A, Groh L, Metzner S, et al. Green to blue polarization compensated c-axisoriented multi-quantum wells by AlGaInN barrier layers[J]. Applied Physics Letters,2013,102(6):62110.
    [74] Energy U S D O. Solid-State Lighting Research and Development: ManufacturingRoadmap[EB/OL].(2013-12-14)http://www1.eere.energy.gov/buildings/ssl/techroadmaps.html.
    [75] Schubert E F, Kim J K. Solid-State Light Sources Getting Smart[J]. Science,2005,308(5726):1274-1278.
    [76] Energy U S D O. Solid-State Lighting Research and Development: Multi-Year ProgramPlan[EB/OL].(2013-12-14)http://www1.eere.energy.gov/buildings/ssl/techroadmaps.html.
    [77] Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. physica status solidi (a),2010,207(10):2217-2225.
    [78] Rozhansky I V, Zakheim D A. Analysis of the causes of the decrease in theelectroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at highpumping density[J]. Semiconductors,2006,40(7):839-845.
    [79] Bulashevich K A, Mymrin V F, Karpov S Y, et al. Simulation of visible and ultra-violetgroup-III nitride light emitting diodes[J]. Journal of Computational Physics,2006,213(1):214-238.
    [80] Dai Q, Shan Q, Cho J, et al. On the symmetry of efficiency-versus-carrier-concentrationcurves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms[J].Applied Physics Letters,2011,98(3):33506.
    [81] Liu Z, Wei T, Guo E, et al. Efficiency droop in InGaN/GaN multiple-quantum-well bluelight-emitting diodes grown on free-standing GaN substrate[J]. Applied Physics Letters,2011,99(9):91104.
    [82] Akita K, Kyono T, Yoshizumi Y, et al. Improvements of external quantum efficiency ofInGaN-based blue light-emitting diodes at high current density using GaN substrates[J].Journal of Applied Physics,2007,101(3):33104.
    [83] Bochkareva N I, Voronenkov V V, Gorbunov R I, et al. Defect-related tunnelingmechanism of efficiency droop in III-nitride light-emitting diodes[J]. APPLIED PHYSICSLETTERS,2010,96(13):133502.
    [84] Ha T, Sonar P, Dodabalapur A. Charge carrier velocity distributions in high mobilitypolymer field-effect transistors[J]. Applied Physics Letters,2012,100(15):153302.
    [85] M Uller E, Gerthsen D, Br Uckner P, et al. Probing the electrostatic potential of chargeddislocations in nGaN and nZnO epilayers by transmission electron holography[J]. Phys.Rev. B,2006,73:245316.
    [86] Hsu J W P, Manfra M J, Chu S N G, et al. Effect of growth stoichiometry on the electricalactivity of screw dislocations in GaN films grown by molecular-beam epitaxy[J]. AppliedPhysics Letters,2001,78(25):3980-3982.
    [87] Monemar B, Sernelius B E. Defect related issues in the “current roll-off” in InGaN basedlight emitting diodes[J]. Applied Physics Letters,2007,91(18):181103.
    [88] Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured byphotoluminescence[J]. Applied Physics Letters,2007,91(14):141101.
    [89] Chichibu S, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaNsingle and multiquantum well structures[J]. Applied Physics Letters,1996,69(27):4188-4190.
    [90] Kim A Y, G tz W, Steigerwald D A, et al. Performance of High-Power AlInGaN LightEmitting Diodes[J]. physica status solidi (a),2001,188(1):15-21.
    [91] Hader J, Moloney J V, Koch S W. Density-activated defect recombination as a possibleexplanation for the efficiency droop in GaN-based diodes[J]. Applied Physics Letters,2010,96(22):221106.
    [92] Iveland J, Martinelli L, Peretti J, et al. Direct Measurement of Auger Electrons Emittedfrom a Semiconductor Light-Emitting Diode under Electrical Injection: Identification ofthe Dominant Mechanism for Efficiency Droop[J]. Phys. Rev. Lett.,2013,110:177406.
    [93] Comment on "Direct Measurement of Auger Electrons Emitted from a SemiconductorLight-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanismfor Efficiency Droop"[Phys. Rev. Lett.110,177406(2013)][J]. arXiv:1305.2512v3.
    [94] Vampola K J, Iza M, Keller S, et al. Measurement of electron overflow in450nm InGaNlight-emitting diode structures[J]. Applied Physics Letters,2009,94(6):61116.
    [95] Meyaard D S, Lin G, Cho J, et al. Identifying the cause of the efficiency droop in GaInNlight-emitting diodes by correlating the onset of high injection with the onset of theefficiency droop[J]. Applied Physics Letters,2013,102(25):251114.
    [96] Shioda T, Yoshida H, Tachibana K, et al. Enhanced light output power of green LEDsemploying AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001)substrate[Z]. WILEY-VCH Verlag,2012:209,473-476.
    [97] Sawaki N, Hikosaka T, Koide N, et al. Growth and properties of semi-polar GaN on apatterned silicon substrate[J]. Journal of Crystal Growth,2009,311(10):2867-2874.
    [98] Kai Cheng V M M L. Epitaxial lateral overgrowth of GaN on4inch Si(111) by MOVPE[J].physica status solidi (c),2008,5(6):1624-1626.
    [99] Park J, Grudowski P A, Eiting C J, et al. Selective-area and lateral epitaxial overgrowth ofIII-N materials by metal organic chemical vapor deposition[J]. APPLIED PHYSICSLETTERS,1998,73(3):333-335.
    [100] Dupuis R D, Park J, Grudowski P A, et al. Selective-area and lateral epitaxial overgrowthof III-N materials by metalorganic chemical vapor deposition[J]. JOURNAL OFCRYSTAL GROWTH,1998,195(1-4):340-345.
    [101] Hiramatsu K, Nishiyama K, Motogaito A, et al. Recent Progress in Selective Area Growthand Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPEGrowth[J]. physica status solidi (a),1999,176(1):535-543.
    [102] Takeuchi T, Amano H, Hiramatsu K, et al. Growth of single crystalline GaN film on Sisubstrate using3C-SiC as an intermediate layer[J]. Journal of Crystal Growth,1991,115(1-4):634-638.
    [103] Watanabe A, Takeuchi T, Hirosawa K, et al. The growth of single crystalline GaN on a Sisubstrate using AIN as an intermediate layer[J]. Journal of Crystal Growth,1993,128(1-4):391-396.
    [104] Amano H, Iwaya M, Kashima T, et al. Stress and defect control in GaN using lowtemperature interlayers[J]. Japanese Journal of Applied Physics, Part2: Letters,1998,37(12B):L1540-L1542.
    [105] Dadgar A, Blasing J, Diez A, et al. Metalorganic Chemical Vapor Phase Epitaxy ofCrack-Free GaN on Si (111) Exceeding1mu m in Thickness[J]. Japanese Journal ofApplied Physics, Part2: LettersJpn. J. Appl. Phys., Part2Japanese Journal of Applied Physics, Part2: Letters,2000,39(11B):L1183-L1185.
    [106] Lu Y, Cong G, Liu X, et al. Growth of crack-free GaN films on Si(111) substrate by usingAl-rich AlN buffer layer[J]. Journal of Applied PhysicsJ. Appl. Phys.Journal of Applied Physics,2004,96(9):4982-4988.
    [107] Mo C, Fang W, Pu Y, et al. Growth and characterization of InGaN blue LED structure onSi(111) by MOCVD[J]. Journal of Crystal Growth,2005,285(3):312-317.
    [108] Hsu Y P, Chang S J, Chen W S, et al. Crack-Free High-Brightness InGaN/GaN LEDs onSi(111) with Initial AlGaN Buffer and Two LT-Al Interlayers[J]. Journal of TheElectrochemical Society,2007,154(3):H191-H193.
    [109] Tran C A, Osinski A, Karlicek J R, et al. Growth of InGaN/GaN multiple-quantum-wellblue light-emitting diodes on silicon by metalorganic vapor phase epitaxy[J]. AppliedPhysics LettersAppl. Phys. Lett.Applied Physics Letters,1999,75(11):1494-1496.
    [110] A D A. Crack-Free InGaN/GaN Light Emitters on Si(111)[J]. physica status solidi (a),2001,188(1):155-158.
    [111] Egawa T, Moku T, Ishikawa H, et al. Improved Characteristics of Blue and GreenInGaN-Based Light-Emitting Diodes on Si Grown by Metalorganic Chemical VaporDeposition[J]. Japanese Journal of Applied Physics, Part2: LettersJpn. J. Appl. Phys., Part2Japanese Journal of Applied Physics, Part2: Letters,2002,41(6B):L663-L664.
    [112] Borbely A, Johnson S G. Prediction of light extraction efficiency of LEDs by ray tracesimulation: Third International Conference on Solid State Lighting, San Diego, CA, USA,2004[C].
    [113] Nakamura S, Chichibu S F. Introduction to nitride semiconductor blue lasers and lightemitting diodes[M]. CRC Press,2000.
    [114] Cao X. III–Nitride Light-Emitting Diodes on Novel Substrates[J]. Wide Bandgap LightEmitting Materials And Devices,2008:3.
    [115] Yang Y, Cao X A, Yan C H. Rapid efficiency roll-off in high-quality green light-emittingdiodes on freestanding GaN substrates[J]. APPLIED PHYSICS LETTERS,2009,94(4):-.
    [116] Razeghi M, Bayram C, McClintock R, et al. Novel Green Light Emitting Diodes:Exploring Droop-free Lighting Solutions for a Sustainable Earth[J]. Journal of LightEmitting Diodes Vol,2010,2(0):1.
    [117] Ryou J, Yoder P D, Liu J, et al. Control of Quantum-Confined Stark Effect inInGaN-Based Quantum Wells[J]. IEEE Journal of Selected Topics in Quantum Electronics,2009,15(4):1080-1091.
    [118] Liu L, Wang L, Li D, et al. Influence of indium composition in the prestrained InGaNinterlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diodestructures[J]. Journal of Applied Physics,2011,109(7):73105-73106.
    [119] Chang S J, Wei S C, Su Y K, et al. Nitride-based, LEDs with MQW active region's grownby different temperature profiles[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2005,17(9):1806-1808.
    [120] Lermer T, Pietzonka I, Avramescu A, et al. Interdependency of surface morphology andwavelength fluctuations of indium-rich InGaN/GaN quantum wells[Z]. WILEY-VCHVerlag,2011:208,1199-1202.
    [121] Lee J, Wu Y. Thermal effect of multi-quantum barriers within InGaN/GaN multi-quantumwell light-emitting diodes[J]. Thin Solid Films,2010,518(24):7437-7440.
    [122] Kumar M S, Park J Y, Lee Y S, et al. Effect of barrier growth temperature onmorphological evolution of green InGaN/GaN multi-quantum well heterostructures[J].JOURNAL OF PHYSICS D-APPLIED PHYSICS,2007,40(17):5050-5054.
    [123] Leem S J, Shin Y C, Kim E H, et al. Optimization of InGaN/GaN multiple quantum welllayers by a two-step varied-barrier-growth temperature method[J]. Semiconductor Scienceand Technology,2008,23(12):125039.
    [124] Langer T, Kruse A, Ketzer F A, et al. Origin of the "Green gap": Increasing nonradiativerecombination in indium-rich GaInN/GaN quantum well structures[J]. physica status solidi(c),2011,8(7-8):2170-2172.
    [125] Lee S, Paek H S, Son J K, et al. Surface modifications and optical properties of blue InGaNsingle quantum well by in-situ thermal treatments[J]. physica status solidi (c),2007,4(1):141-144.
    [126] Li Z L, Lai P T, Choi H W. A Reliability Study on Green InGaN-GaN Light-EmittingDiodes[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2009,21(19):1429-1431.
    [127] Kasarla K R, Chiang W, Rahimi R, et al. Optimization of GaN barriers during the growthof InGaN/GaN quantum wells at low temperature[J]. Materials Research SocietySymposium Proceedings,2009,1108:43-48.
    [128] Lee Y J, Chen Y C, Lee C J, et al. Stable Temperature Characteristics and Suppression ofEfficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn FlowTreatment[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2010,22(17):1279-1281.
    [129] Della Sala F, Di Carlo A, Lugli P, et al. Free-carrier screening of polarization fields inwurtzite GaN/InGaN laser structures[J]. Applied physics letters,1999,74(14):2002-2004.
    [130] Yamamoto S, Zhao Y, Pan C, et al. High-efficiency single-quantum-well green andyellow-green light-emitting diodes on semipolar (2021) GaN substrates[J]. Applied physicsexpress,2010,3(12):122102.
    [131] Chang S P, Wang C H, Chiu C H, et al. Characteristics of efficiency droop in GaN-basedlight emitting diodes with an insertion layer between the multiple quantum wells andn-GaN layer[J]. Applied Physics Letters,2010,97(25):251114.
    [132] Laubsch A, Sabathil M, Bergbauer W, et al. On the origin of IQE‐‘droop’in InGaNLEDs[J]. physica status solidi (c),2009,6(S2):S913-S916.
    [133] Kozodoy P, Smorchkova Y P, Hansen M, et al. Polarization-enhanced Mg doping ofAlGaN/GaN superlattices[J]. Applied Physics Letters,1999,75(16):2444-2446.
    [134] Shahedipour F, Wessels B W. Investigation of the formation of the2.8eV luminescenceband in p-type GaN:Mg[J]. Applied Physics Letters,2000,76(21):3011-3013.
    [135] Isamu A, Hiroshi A, Masahiro K, et al. Photoluminescence of Mg-doped p-type GaN andelectroluminescence of GaN p-n junction LED[J]. Journal of Luminescence,1991,48–49,Part2(0):666-670.
    [136] Huang H W, Kuo H C, Chu J T, et al. Nitride-based LEDs with nano-scale texturedsidewalls using natural lithography[J]. Nanotechnology,2006,17(12):2998.
    [137] kuo H C, Lu T C, Lee Y J, et al. Improvement in the Extraction Efficiency of AlGaInP andGaN Thin Film LEDs Via n-Side Surface Roughing[J]. ECS Meeting Abstracts,2006,602(32):1548.
    [138] Zhmakin A I. Enhancement of light extraction from light emitting diodes[J]. PhysicsReports,2011,498(4):189-241.
    [139] Schnitzer I, Yablonovitch E, Caneau C, et al.30%external quantum efficiency fromsurface textured, thin‐film light‐emitting diodes[J]. Applied Physics Letters,1993,63(16):2174-2176.
    [140] Fang H, Kang X N, Hu C Y, et al. Studies of improving light extraction efficiency of highpower blue light-emitting diode by photo-enhanced chemical etching[J]. Journal of CrystalGrowth,2007,298:703-705.
    [141] Huang H W, Kao C C, Chu J T, et al. Investigation of InGaN/GaN light emitting diodeswith nano-roughened surface by excimer laser etching method[J]. Materials Science andEngineering: B,2007,136(2-3):182-186.
    [142] Meneghini M, Trevisanello L, Meneghesso G, et al. A review on the reliability ofGaN-based LEDs[J]. Device and Materials Reliability, IEEE Transactions on,2008,8(2):323-331.
    [143] Chang M, Das D, Varde P V, et al. Light emitting diodes reliability review[J].Microelectronics Reliability,2012,52(5):762-782.
    [144] Meneghini M, Trivellin N, Meneghesso G, et al. Recent results on the physical origin of thedegradation of GaN-based LEDs and lasers[J]. Proc. SPIE,2011,7939({}):79390W.
    [145] Trevisanello L, Meneghini M, Mura G, et al. Accelerated Life Test of High BrightnessLight Emitting Diodes[J]. Device and Materials Reliability, IEEE Transactions on,2008,8(2):304-311.
    [146] Wang Y, Xiong C, Wang G, et al. Study on Aging Characterization of1W Epitaxy on SiSubstrate Blue LED Based on Different Substrates[J]. Acta Optica Sinica,2010,30(0253-2239(2010)30:6):1749-1754.
    [147] Xiao Y, Mo C, Qiu C, et al. The Aging Characteristics of GaN-based Blue LED on SiSubstrate[J]. Chinese Journal of Luminescence,2010,31(3):364-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700