用户名: 密码: 验证码:
黄土地区森林植被对坡面土壤侵蚀过程影响机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类不合理地利用自然资源,导致森林植被受到极大的破坏,引发了严重的土壤侵蚀。黄土高原就是是严重的水力侵蚀地区。森林作为陆地上最重要的生态系统,以其林冠层、林下茂密的灌草层和林地上富集的枯枝落叶层以及发育疏松而深厚的土壤层截持和蓄储大气降水,发挥着其特有的水文生态功能,在防治土壤侵蚀方面有其不可缺少的意义。
     本文在查阅了大量国内外文献资料,全面了解了坡面流水动力学特性及坡面侵蚀动力过程等方面的研究现状及最新进展的基础上,以揭示森林植被加入后对坡面薄层水流水动力学特性及坡面侵蚀的影响为目标,采用室内人工降雨模拟实验的方法,变换雨强和坡度,运用水动力学与侵蚀理论以及统计理论,对试验资料进行分析,研究了森林植被影响下,林冠降雨的雨滴动能、坡面薄层水流流态、坡面流阻力系数变化规律、坡面流泥沙运动规律;建立了坡面流阻力系数公式、泥沙起动临界剪切力公式,坡面流侵蚀数学模型,并采用实测资料进行了验证,取得了具有重要理论意义和应用价值的研究成果。
     主要研究内容与成果有以下几个方面:(1)实验得出油松、侧柏、元宝枫林冠丛冠滴雨有相当数量的大雨滴形成,其单位水体雨滴潜在动能分别为28.44 J·m-2mm-1,29.19 J·m-2mm-1和30.20 J·m-2mm-1,不同树种之间的差别很小,而林外降雨的雨滴动能为17.39 J·m-2mm-1,因此当所有林冠雨滴都达终速时,林冠对雨滴的动能增大63.5%、67.91%、74.4%,如果林冠足够高,那么对林地的击溅是非常严重的,将远远高于无林地的击溅侵蚀量。由于本实验用的是小树苗,因此计算得出林冠雨滴动能油松、侧柏、元宝枫冠层分别为e1=1.862 J·m-2mm-1,e2=1.345 J·m-2mm-1,e3=4.379 J·m-2mm-1。有效的降低了雨滴动能。(2)在同一坡度下各处理小区的雷诺数差别不大,说明雷诺数受坡度影响不大,而不同雨强雷诺数变化大,雨强从60mm/h——100mm/h变化时,雷诺数变化范围为从5—30。由于裸地和各树种的雷诺数坡面水深很小,一般在0.2mm左右,表征惯性力与粘性力之比的雷诺数Re也很小。在试验条件下,都在层流范畴。说明雨滴的扰动并没改变坡面流的流动型态,未改变水流质点沿着水流流线垂直方向即流线法线方向上的位置进而产生涡体引起水流质点混掺而形成紊流。
     (3)由水力学及流体力学理论结合试验结果,得出,降雨条件下,有森林植被覆盖的坡面流在地面没有枯落物等覆盖时,仍属层流范畴,因此阻力系数变化符合层流阻力规律,通过理论直接推求,可得:f=24/Re;有枯落物覆盖时,坡面流符合水流在多孔介质中的流动规律,需用用渗流理论研究,通过简化为多组规则圆管的层流运动,得出坡面流在枯落物中的流动规律。坡面流在枯落物中流动的数学模型,可用下述模型描述hf/L=f'(a(1-ε)_ε3)u2,其中包括一个未知的待定系数f',在流速较低时,可用欧根(Ergun)方程描述:f'=4.17/Re+0.29。
     (4)分析侵蚀泥沙的颗粒,可得,树种覆盖后,击溅作用变小,侵蚀量变少,侵蚀的泥沙中,粗颗粒变少,平均粒径变小,覆盖的坡面,加剧粘粒和量少的粉沙侵蚀量,坡面粗化不明显,裸地坡面溅蚀作用加剧的是粉沙颗粒和少部分较大颗粒的侵蚀量,而土壤中大颗粒还是留了下来,裸地坡面出现明显的粗化层。虽然林冠层能有效防止溅蚀的发生,但坡面流还是能带走粘粒部分,粘粒还是容易流失。去除林冠和表层土后,侵蚀量变得更少,但表层还是会被溅蚀,有水流后,溅蚀作用减弱,颗粒起动的比裸地的少,所以,去除表层扰动土后,侵蚀量更少,粉沙多,粘粒比裸地更少一些,但不稳定,雨滴击溅和水流作用用于克服泥沙分离起动损耗的能量较大,很难被起动输移,这说明森林植被根系的作用增加了林地植被的抗蚀力,使降雨一水流系统仅能溅起输出比裸地坡面更细小的泥沙颗粒。
     (5)借鉴前人的研究成果,从单颗粒泥沙起动受力分析入手,研究泥沙颗粒起动的临界状态,根据泥沙颗粒滚动受力力矩平衡,粗略推导出有降雨击溅情况下裸地坡面单颗粒泥沙起动临界剪切力公式:有植被覆盖的小区和有枯落物覆盖的小区,可视为无雨滴击溅作用,泥沙起动临界剪切力表达式可直接采用杨具瑞等建立的公式(杨具瑞,曹叔尤,2004):
     (6)通过坡面流侵蚀动力学模型数值拟合结果,得出,森林植被覆盖的坡面,减少了雨滴击溅侵蚀,抗侵蚀力增加。
Because of irrational utilization of natural resources human is destroying the forest vegetation and thus leading to serious erosion. the loess plateau is one of serious water erosion areas. As the most important ecological system on the earth terrain, forest plays its specific function in hydrological ecology via forest crown, dense shrubs and grasses under trees, litters and soils. Moreover forest has roles in protecting head waters, purifying water quality, conserving soils and water and reducing natural disasters through its interaction with soils, air and water.
    On the base of consulting a large number of literatures domestic and aboard, the present situation and latest development of hydrodynamic characteristics of overland flow and slope erosion dynamic process were reviewed. Aiming at revealing the effect of rainfall splash intensity on hydrodynamic features of sheet flow and slope erosion, with a simulated rainfall experiment in condition of changeable intensities and changeable gradients.applying hydrodynamic,erosive theory and statistics theory this text studied the influence of forest vegetation on raindrop kinetic energy of leaf canopy precipitation, flow regime and resistance coefficient of overland flow and sediment motion law on hill-slop, established resistance coefficient formula of overland flow, critical shear formula of sediment incipient motion and mathematical model of overland flow erosion, and validated all of them with field data, obtained important achievements of having theortical significance and applied
    cost.
    By means of the study the main results are listed as follows: (1) Experiments showed that the forest canopy drip rain of Pinus tabulaeformis Carr, Acer
    truncatum Bunge and Platycladus orientalis were made up of a large number of big rain drops, their rain drop potential kinetic energies of unit water bodies were 28.44 J·m~(-2)mm~(-1), 29.19 J·m~(-2)mm~(-1) and 0.20 J·m~(-2)mm~(-1), differ trees had fine distinctions, while the rain drop kinetic energies outside of forests was 17.39 J·m~(-2)mm~(-1), so when all of forest canopy rain drips arrived at final speed, the forest canopy kinetic energies would increase 63.5%,7.91% and 4.4% respectively, if forest canopy was enough high, the splash of rain drop to woodland would be very serious, and its splash erosion quantities were well above non-forested. The forest canopy kinetic energies of l,2,and 3 using
    saplings were e_1 = 1.862 J·m~(-2)mm~(-1),= 1.345 J·m~(-2)mm~(-1), = 4.379 J·m~(-2)mm~(-1), they reduced kinetic
    energies effectively.
    (2)The Reynolds numbers of each disposal area in the same slope had fine distinction, it explained
    that the influence of slope on Reynolds number was little, while rainfall intensity on the contrary,
    Reynolds number changed from 5 to 30 with rainfall intensity varying from 60mm/h to 100mm/h,
    because the slope water depth of bare ground and forests were very small, commonly in the 0.2mm,
    so Reynolds number in token of the ratio of inertia force to viscous force was also very small, the
    test that belonging to laminar flow category explained that the disturbance of raindrop did not
    change overland flow form.
    (3)Combined hydraulics and hydromechanics theory with test results, we could get that in the
    condition of rainfall, the overland flow that forest land without litters belonged to flow category, so
    the changes of resistance coefficient followed the rules of flow resistance, through theory we could
    24 directly get that f =((24)/(Re)); the overland flow with litters followed the flow rules of porous medium,
    using filtration theory, overland flow was simplified into laminar flow with several regular tubules,
    
    and the flow laws of overland flow in litters could get out. The model (h_f)/L=f((a(1-ε))/(ε~3))u~2 could
    depict the overland flow in the litters, there f' was a undetermined coefficient, when the flow
    velocity was very low, the Ergun equation f'=(4.17)/(Re')+0.29 could depict the overland flow.
    (4)The particles in the erosion sediments showed that the splash function of forests lessened, the erosion amount, coarse granules in erosion sediments and average particle tailed off, the covered slope aggravated the erosion amount of clay and a little fine sediment, and the slope coarsening was not obvious; the slope splash function of bare land aggravated the erosion amount of fine sediment and a little part of coarse granules, while the coarse granule retained in the soil, the obvious rough bedding texture layer appeared in bare slope.Although forest canopy layer could prevent splash erosion effectively, clay was taken away by overland flow and run off easily, the erosion amount became less after removing the forest canopy and surface soil, while the splash erosion still produced in the surface layer; the splash function weakened after having water current, the starting particles were less than bareland, so removing the surface disturbed soil made the erosion amount and clay less, silty sand more than bareland, but unsteady, the wear and tear energy used by raindrop splash and current function for overcoming sediments separating and starting were comparatively large, sediments were very difficult to be started and transported, it explained that forest root systems could increase anti-erosion capability of forest vegetation, make rainfall-current system splash and export finer particles than bareland.
    (5) Using the achievements of predecessors, from the force that single particle sediment endured analyzed the critical state of sediment starting, according to the endure force moment balance of sediment rolling, the cursory single particle sediment starting critical shear formula of bareland slope in the condition of rainfall and splash as follows:
    
    The area with vegetation or litters could be regarded as having no raindrop splash function, the critical shear expression of sediment starting could adopt the formula;
引文
1.蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展.地理科学进展.2003,22(3):242-250.
    2.蔡强国.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,2:108-116.
    3.陈国祥,姚文艺.坡面流水力学.河海科技进展,1992,12(2):7-13.
    4.陈国祥,姚文艺.降雨对浅层水流阻力的影响.水科学进展,1996.Vol.7(1):42-46.
    5.陈力,刘青泉.坡面流运动方程和有支流入汇的一维明渠流方程形式.力学与实践,2001,23(4):21-14.
    6.陈奇伯,张洪江,谢明曙.森林枯落物及其苔藓层阻延径流速度研究.北京林业大学学报,1994(1):26-31.
    7.陈文亮,王占礼.人工模拟降雨特性的试验研究.水土保持通报.1991,11(2):55-62.
    8.成都科学技术大学水力学教研室,水力学,北京:人民教育出版社,1979.
    9.窦葆璋,周佩华.雨滴的观测和计算方法.水土保持通报,1982,2(1):44-47.
    10.范荣生,李占斌.坡地降雨溅蚀及输沙模型.水利学报,1993,(6):24-29.
    11.方红卫.不均匀沙组成及起动.水利学报,1994,(4),43-49.
    12.符素华,刘宝元.土壤侵蚀量预报模型研究进展.2002,17(1):78-84.
    13.顾震潮.云雾降水物理基础.北京:科学出版社,1980:180-184.
    14.郭小平,杨维西,王冬梅.晋西黄土区主要造林树种幼树适生性研究.河北林果研究.1998,13(4):309-314.
    15.郭耀文.雨滴侵蚀特征分析[J].中国水上保持,1997,4:15-17.
    16.韩冰,吴钦孝,刘向东.林地枯枝落叶层对溅蚀影响的研究[J]防护林科技,1994,(2):7-10.
    17.韩冰,吴钦孝,刘向东等.山杨林地枯落物层对溅蚀的影响.植物资源与环境,1994,3(4):5-9.
    18.韩冰,吴钦孝,刘向东等.油松林枯落物层防止溅蚀的研究.水土保持研究,1994,1(3):14-18.
    19.韩其为,何明民.论泥沙起动标准.中国水利水电科学研究院,1995.
    20.韩其为,何明民.泥沙起动规律及起动流速[M].北京:科学出版社,1999.
    21.韩其为,何明民.泥沙运动统计理论.北京:科学出版社,1984年.
    22.郝芳华,陈利群,刘昌明,戴东.土地利用变化对产流和产沙的影响分析.2004,18(3):5-8.
    23.胡世雄,靳长兴.坡面动力侵蚀过程的实验研究进展.地理科学进展,1999,18(2):103-111.
    24.黄兴法.坡面降雨径流的一种数值模拟方法.中国农业大学学报,1997,2(2):45-50.
    25.江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究.中国水土保持,1983(3):32-36.
    26.雷阿林,唐克丽.黄土坡面细沟侵蚀的动力学条件.土壤侵蚀与水土保持学报,1998(3).
    27.雷阿林,唐克丽.坡沟系统土壤侵蚀研究回顾与展望.水土保持通报,1997,17(3):37-43.
    28.雷阿林,张学栋,唐克丽.几种计算水滴降落速度方法的比较.水土保持通报,1995,15(4):43-47.
    29.雷瑞德.华山松林冠层对降雨动能的影响.水土保持学报,1988,2(2):31-39.
    30.雷孝章,杨玉坡,赵文谦.森林对坡面流的影响研究.四川水力发电,2001,20:51-53.
    31.刘震.中国的水土保持现状及今后发展方向[J].水土保持科技情报,2004,(1):1-4.
    32.刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究.水土保持学报,2003,17(3):34-37.
    33.刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].水土保持学报,1998(1):93~96.
    34.刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅱ)——土壤侵蚀力学进展,2004,34(4):493-506
    35.刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅰ)—坡面流.力学进展,2004,34(3):360-372.
    36.刘青泉,李家春,陈力,等.坡面流及土壤侵蚀动力学(Ⅱ)——土壤侵蚀.力学进展.2004,34(4):493-506.
    37.牟金泽.雨滴速度计算公式.中国水土保持,1983(3):40-41.
    38.潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响,水利学报.2005,36(3):371-377.
    39.钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    40.沙际德等.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报,1995 9(4):29-35.
    41.沈大勇,马蔼乃,毛善君,杨萍.坡面土壤水蚀建模历程.水土保持学报.2002,16(6):43-75
    42.孙志林.非均匀沙分级起动规律研究.水利学报,1997,10,25-31.
    43.汤立群,陈国祥.坡面土壤侵蚀公式的建立及其在流域产沙计算中的应用,水科学进展,1994,5(2):104-110.
    44.汤立群,坡面降雨溅蚀及其模拟.水科学进展,1995,6(4):304-310.
    45.唐存本.泥沙起动规律.水利学报,1963,4,1-11
    46.王贵平,曾伯庆,陆兆熊,等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究[J].中国水土保持,1992,(3):16-20.
    47.王库.植物根系对土壤抗侵蚀能力的影响.土壤与环境,2001,10(3):250-252.
    48.王礼先,解明曙主编.山地防护林水土保持水文生态效益及其信息系统.中国林业出版社,1997.
    49.王文龙,雷阿林,李占斌,唐克丽.黄土丘陵区坡面薄层水流侵蚀动力机制实验研究.水利学报,2003(9):66-70.
    50.王秀英,曹文洪.坡面土壤侵蚀产沙机理及数学模拟研究综述.土壤侵蚀与水土保持学报,1999,5(3):87-92
    51.王彦辉.几个树种的林冠降雨特征.林业科学,2001,37(4):2-9.
    52.王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报,2000,14(4):108-113.
    53.王占礼,孙全敏,郑粉莉,等.降雨流动能物理模型研究.水利学报,2005,36(11):1280-1284.
    54.文康,金管生,李琪,等.地表径流过程的数学模拟.北京:水利电力出版社,1990.137-151.
    55.吴长文,徐宁娟.摆喷式人工降雨机的试验特性研究.南昌大学学报,1995(1):58-66.
    56.吴长文等.林地坡面的水动力学特性及其阻延地表径流的研究.水土保持学报,1995,9(2):32-38.
    57.吴长文等.坡地土壤侵蚀机理研究进展与现状.中国水土保持,1996,11:21-24.
    58.吴长文等.水土保持林中枯落物的作用.中国水土保持,1993,(11):28-30.
    59.吴普特,周佩华.坡面薄层水流流动型态与侵蚀搬运方式的研究.水土保持学报,1992.6(1):16~24,39.
    60.吴普特,周佩华.雨滴击溅对薄层水流水力摩阻系数的影响[1].水土保持学报,1994,8(2):39-42.
    61.吴普特,周佩华.雨滴击溅在薄层水流侵蚀中的作用.水土保持通报,1992(4):19-26.
    62.吴普特.动力水蚀实验研究.陕西科学技术出版社.1997.
    63.吴钦孝,刘向东,苏宁虎.山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71~76.
    64.吴彦,刘世全.植物根系提高土壤水稳性团粒含量的研究[J].水土保持学报,1997(3):11-18.
    65.武汉水利电力学院.河流泥沙工程(上册).北京:水利出版社,1981.
    66.夏青,何丙辉.土壤物理特性对水力侵蚀的影响.水土保持应用技术.2006,(5):12-15.
    67.夏卫生,雷廷武,刘春平,等.坡面薄层水流流速测量的比较研究.农业工程学报,2004,20(2):23~26.
    68.夏卫生,雷廷武,吴金水等.电解质脉冲法测量薄层水流流速的实验研究.自然科学进展,2004,14(11):1277~1281.
    69.夏卫生,雷廷武,赵军,等.薄层水流速度测量系统的研究.水科学进展,2003,14(6):781-784.
    70.向华,刘青泉,李家春.地表条件对坡面产流的影响.水动力学研究与进展,2004,19(6):774~782.
    71.向华.复杂坡面的产流输沙规律研究:[硕士论文].北京:中国科学院力学研究所.2002,6.
    72.肖培青,郑粉莉.上方来水来沙对细沟侵蚀泥沙颗粒组成的影响.泥沙研究,2003(10):64-68.
    73.徐锐.关于天然降雨和人工降雨的动能计算方法.中国水土保持,1983,(3):37-39,21.
    74.徐向舟,张红武,朱明东.雨滴粒径的测量方法及其改进研究.中国水土保持,2004,22~25.
    75.杨具瑞,曹叔尤.坡面非均匀沙起动规律研究.水力发电学报,2004,23(3):102-106.
    76.姚文艺,陈国祥.雨滴降落速度及终速公式.河海大学学报,1993,21(3):21-27.
    77.姚文艺.坡面流阻力规律试验研究.泥沙研究,1996(1):74-82.
    78.姚文艺.坡面流流速计算的研究.中国水土保持,1993,3:21-25.
    79.余新晓,毕华兴,朱金兆.黄土地区森林植被水土保持作用研究.植物生态学报.1997.21(5):433-440.
    80.余新晓.森林植被减弱降雨侵蚀能量的数理分析(Ⅰ).水土保持学报,1987(2):24-30.
    81.余新晓.森林植被减弱降雨侵蚀能量的数理分析(Ⅱ).水土保持学报,1987(3):90-96.
    82.张光辉.坡面薄层流水动力学特性的实验研究.水科学进展,2002,13(2):158-165.
    83.张洪江主编.土壤侵蚀原理,面向21世纪课程教材.北京中国林业出版社,1999.10.
    84.张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究.土壤侵蚀与水土保持学报,1998(1).
    85.张科利,钟德钰.黄土坡面沟蚀发生机理的水动力学试验研究.泥沙研究.1998(3):74-80.
    86.张科利.黄土坡面细沟侵蚀中的水流阻力规律研究.人民黄河,1998,20(8):13-15.
    87.张瑞谨.河流泥沙动力学[M]北京:中国水利电力出版社,2005.9.
    88.张翼.黄土高原丘陵沟壑区土壤侵蚀研究[J].水土保持研究,2000,7(2).
    89.张志强,王礼先,余新晓.渗透坡面林地地表径流运动的有效糙率研究.林业科学,2000,36(5):22-27.
    90.赵鸿雁,刘向东,吴钦孝.枯枝落叶层阻延径流速度研究.中国科学院西北水土保持研究所集刊.14集,1991,64-70.
    91.赵人俊.流域水文模拟—新安江模型与陕北模型.水利出版社,1984.
    92.郑粉莉,刘峰,杨勤科等.土壤侵蚀预报模型研究进展.水土保持通报,2001,21(6):16-18.
    93.郑良勇,李占斌,李鹏.黄土区陡坡侵蚀过程试验研究.土壤与环境,2002,11(4):356-359.
    94.周国逸.几种常用造林树种冠层对降水动能及其生态效应分析.植物生态学报,1997,21(3)250-259.
    95.周佩华,窦葆璋,孙清芳,等.降雨能量的试验研究初报[J].水土保持通报,1981,1(3):51-60.
    96.周跃,李宏伟,徐强.云南松林的林冠对土壤侵蚀的影响.山地学报,1999,17(4):324~328.
    97.朱显谟.黄土高原脱贫致富之道——三论黄土高原的国土整治[J].水土保持学报,1998(4):1~5.
    98.张晴雯,雷廷武,潘英华,等.细沟侵蚀可蚀性参数及土壤临界抗剪应力的有理(实验)求解方法.中国科学院研究生院学报.2004,21(4):468-475.
    99. Abrahams A. D. Hillslope Processes. Allen and Unwin Inc., 1986,21,35-47.
    100. Abrahams.A D,Parson A J.Hydraulics of interrill overland flow on stone-covered desert surfaces[J].Catena, 1993, 21: 111-140
    101. Best A C.The size distribution of raindrops.Quarterly Journal of the Royal Meteorological Society, 1950,76:16
    102. Blackhum,W.E.Factors influencing infiltration and sediment production of semi-arid rangelands of Nevada.Water Resour.Res. 1975,11:929~937.
    103. Box, T.W. Relationships between plants and soils of 4 ranges plant communities within south Texas. Ecol. 1961, 42: 794~810.
    104. Bulygin S Y. Challenges and approaches for WEPP interrill erodibility measurements in the Ukranie. In: Proceeding of Soil Erosion for the 21st Century International Symposium,Honolulu, Hawaii, 2001-01-03-05, ASAE, St. Joseph, MI,USA, 2001. 506-509.
    105. C. Carroll, L. Merton, P. Burger. Impact of vegetation cover and slope on runoff, erosion, and waterquality for field plots on a range of soil and spoil materials on central Queenlands coal mines. Aust. J. Soil Res, 2000,38: 313-327
    106. Carson M.A, Kirkby M.J. Hillslope form and process. Cambridge University Press, 1972
    107. Chaplot V A M, Bissonnais Y L. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal, 2003, 67: 844-851
    108. D.A.Woolhiser,C.L.Hanson,A.R.Kuhlman.Overland flow on range land water-sheds.Journal Hydrology, (HZ), Vol.9, 1970
    109. David J Eldridge, Brian R Wilson and Ian Oliver. Regrowth and Soil Erosion in the Semi-Arid Woodlands of New South Wales. A report to the Native Vegetation Advisory Council.
    110. De Roo A,Wesseling C.G. A single-event, physical based hydrological and soils ersion model for drainage basin. Theory, input and output. Hydrological Processes, 1996,10,1107-1117
    111. Dunne, T. et al., 1991. Effects of rainfall, vegetation and microtopography on infiltration and runoff. Water Resour. Res., 27(9): 2271-2285
    112. Eldridge, D.J. and Rothon, J. Runoff and sediment removal on a semi-arid soil in eastern Australia.I. The effect of pasture type. Rangeland Journal, 1992, 14: 26—39.
    113. Ellision, W.D., Soil Erosion Study Part II: Soil detachment hazard by raindrop splash. Aric. Eng. 1947,28:197-201
    114. Ellision, W.D., Soil Erosion Study-Part V: Soil transport in splash process, Aric.Eng. 1947,28:349-353
    115. Emmett, W.W. Overland flow. In Hillslope Hydrology, ed. By M.J. Kirkby, 145—175, John Wiley &Sons, New York..
    116. Flanagan D C, Nearing M A. Sediment particle sorting on hillslope profiles in the WEPP model.Trans ASAE, 2000,43:573-583.
    117. Foster G R, et al. Estimating erosion and sediment yield on field sized areas. Trans ASAE, 1981, 24.
    118. Foster G R. User requirements: LSDA-water erosion prediction project(WEPP)[R].National Soil Erosion Research Laboratory Report No. 1(USDA-ARS:W.Lafayette, IN.)1987.
    119. Ghidey F, Alberts EE. Plant root effects on soil erodibility, splash detachment, soil strength, and aggregate stability. Transaction of the ASAE. 1997, 40 (1): 129—135
    120. Grosh J L, Jarrett A R. Interrill erosion and runoff on veru steep slopes. Transactions of ASAE, 1994, 37(4): 1127-1133
    121. Guo Y W.Characteristics of Raindrop Erosion.SWCC.1997, 4:15- 17.
    122. Gupta S C, Foster G R. Raindrop-induced soil detachment and sediment transport from interrill areas. Soil Sci Soc Am, J, 1995, 59: 727-734
    123. Guy B T, Dickinson W T, Rudra R P. The roles of rain-fall and runoff in the sediment transport capacity of interrill flow. Transactions of ASAE,1987,30:1378-1386
    124. Gyssels G, Poesen J.2003.The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Proc Landforms, 28: 371—384
    
    125. Han B, Wu Q X, Liu X D.The effect on splash erosion by withered branches and dead leaves in woodland .Protection Forest Science and Technology. 1994,(2):7- 10
    126. Han B, Wu Q X,Liu X D,ect. The effects of litter layer on splash erosion in Populus davidiana woodland. Journal of plant resources and environment. 1994, 3(4): 5-9
    127. Horton, R. E. Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Bull.Geol.Soc.Am.,1945,Vol.56.275-370
    128. Hudson N.W. and Jackson D.C. 1959. Results achieved in the measurement of erosion and runoff in Southern Rhodesia. In: C.R. 3er Inter African Soils Conf. Dalaba, section 2: 1 — 15
    129. Kirkby M.J. Hillslope Hydrology. John wiley and sons, Ltd., 1978
    130. LAWRENCE D S L.Hydraulic resistance in overland flow during partial and marginal surface inundation:experimental observation, and modeling[J].WaterResour.Res., 2000,36(8):2381-2393.
    131. Laws J O, Parson DA. Relation of raindrop size to intensity. Trans Amer Geophy NION, 1943(24):275-370
    132. Laws J O.Measurement of fall Velocity of Water Drops and Rain Drops.Transactions of the American Geophisical Union, 1941,22
    133. Li G.,Ahrahams A D,Atkinson J F. Correction factors in the determination of mean velocity of overland flow[J].Earth surface Processes and Landforms, 1996,21:509-515.
    134. Liebenow, A.M., Elliot, W..J..Laflen, J.M., and Kohl, K.D., Interrill Erodibility: Collection and Analysis of Data from Cropland Soils.Transactions of the ASAE. 1990, Vol.33:1882-1888
    135. M.J. Kirkby.Hillslop Hydrology.A Wiley-Interscience Publication, 1978
    136. Michael Clark, Hohn Small. Slopes and weathering. Cambridge University Press, 1982
    137. Morgan R. The European Soil Erosion Model: an update on its structure and.research base. In :Rickson, CAB Internation, Cambridge, 1994, 286-299
    138. Nearing M.A, Lane L.J. Prediction technology for soil erosion by water: Status and research needs. Soil Sci.Soc.Am, 1990, 54(6), 1702-1711
    139. Paintal,A,S.,A Stochastic Model of Bed Load Transport. J.Hydraulics Division Vol. 97No.4,pp.527—553, 1971.
    140. Parson A.J, Abrahams A.D. Overland flow Hydraulics and erosion mechanic. UCL Press, 1982.
    141. Q.Q.Liua,L.Chena,J.C.Lia,V.P.Singh.Two-dimensional kinematic wave model of overland-flow .2004,291:24—41
    142. Rose C W, Williams J R, Sander G C, Barry D A. A math-ematical model of soil erosion and deposition processes. I: Theory for a plane land element. Soil Sct Soc Am J, 1983,47: 991-995
    143. Savat, J.The hydraulics of sheet flow on a smooth surface and the effect of simulated rainfall. Earth Surface Processes 2,1977,125 - 140
    144. Selby L.D, Wischmeir G.A. Mathematical simulation of the proceed of soil erosion by waterTrans ofASAE,1969
    145. Shen, H.W. and Li, R.M.. Rainfall effect on sheet flow over smooth surface. Transactions of the ASAE, 1973, 99, (HY5), 771 -792
    146. Slaymaker. Field experiments and measurement programs in geomorphology. University of British Columbie Press, 1991.
    147. Thornes, J.B., 1990b. The interaction of erosional and vegetational dynamics in land degradation: spatial outcomes. In: Thornes J.B(ed.), Vegetation and erosion, John Wiley&Sons Ltd, 41 -53
    148. Wang G P, Zeng B Q,Lu Z X,ect. Soil erosion and its prediction on slope surface in the gullied hilly loess region of western Shanxi Province .SWCC,1992,(3):16- 20
    149. Wang K. Effects of plant roots on soil anti-erosion. Soil and Environmental Sciences.2001,10(3):250-252
    150. Wischmeier W H, Smith D D. A universal soil loss equation to guide conservation farm playing. Trans 7th Internationa] Cong. Soil Sci.l960:418-425.
    151. Woolhiser, D.A, and Liggett, J.A., Unsteady one-dimensional flow over a plan—the rising hydrograph. Water Resource Res. 1967,3 (3): 753—771
    152. Yalin,M.S.,Mechanics of Sediment Transport, 2nd Edi: Pergamon Press, 1977,P.290.
    153. Yang Nam Yoon and Harry GWnzel, Mechanics of Sheet Flow under Simulated Rainfall, ASCE,1971,Vol.97(9):1367-1386.
    154. Yen B.C, Wenzel H.G.Dynamic equations for steady spatially varied flow. Journal of the Hydraulics Division, ASAE, Vol.96, HY3, Proc.p7179, Mar., 1970,801—814
    155. Yoon Y N, Brater E F. Spatially varied flow from controlled rainfall.Journal of the Hydraulics Division, ASCE, 1962, 97 (HY9): 1367-1386
    156. Zhang X C, Nearing M A, Miller W P, Norton L D, West L T: Modeling interrill sediment delivery. Soil Science Society of America Jourrnal,1998,62(2): 438-444
    157. Hudson NW. Rain drop size distribution in high intensity storms. Rhod. J. Agric. Res. 1 1963, 6-11.
    158. Horton R E. Erosional development of streams and their drainage basions: Hydrological approach to quantitative morphology. Bull Gel Soc Am, 1945, 56(2): 275-370.
    159. Meyer L D, Harmton W C. How row sideslope length and steepness affect sideslope erosion. Trans ASAE, 1989, 24(1):472-475.
    160. Bradford J M, Foster G R. Interrill soil and slope steepness factors. Soil Scz Soc Am J, 1996, 60: 909-915.
    161. Flanagan D C, Nearing M A. Sediment particle sorting on hillslope profiles in the WEPP model. Trans ASAE, 2000,43: 573-583.
    162.Chaplot V A M, Bissonnais Y L. Runoff features for inter-rill erosion at different rainfall intensities, slope lengths,and gradients in an agricultural loessial hillslope. Soil Science Society of America Journal,2003, 67:844-851.
    163. Julien P Y, Simon D B. Sediment transport capacity of over-land flow. Trans of ASAE,1985,8: 755-762.
    164. Nearing M A, Foster G R, Lane L J, Finkner S C. A Process-based soil erosion model for USDA-water erosion prediction project technology. Tra,ns of ASAE, 1989, 32(5): 1587-1593.
    165. Horton R E, Leach H P, van Vliet R. Laminar sheet flow Trans Am GeoPhys Union, 1934,15(2): 393-404.
    166. Woolhiser D A, Liggett J A. Unsteady, one-dimensional flow over a plane The rising hydrograph. Water Res Res, 1967,3(3): 753-771.
    167. Freeze R A. Mathematical models of hillslope hydrology. In: Kirkby M J, ed. Hillslope Hydrology, New York: Wiley Interscience, 1978, 177-225.
    168. Lighthill M J, Whitham G B. On Kinematic Waves I: Flood movement in long rivers. In:Proceed- ings Royal Society of London, London, England, Series A, 1955. Vol. 229,281-316.
    169. Woolhiser D A, Liggett J A. Unsteady, one-dimensional flow over a plane The rising hydrograph. Water Res Res, 1967, 3(3):753-771.
    170. Henderson F M, Woding R A. Overland flow and groundwater flow from a steady rainfall of finite duration. J Ceophys Res,1964,69: 1531-1540.
    171. Brakensiek D L. Hydrodynamics of overland flow and nonpriamatic channels.Trans ASAE,1966, 9 (1):20-26.
    172. Morgali J R, Linsley R K. Computer analysis of overland flow. J Hydr Div, ASCE, 1965, 91(HY3): 81-100.
    173. Smith R. E, Wollhiser DA. Overland flow on an infiltrating surface. Water Resources Research, 1971,7:899-913.
    174. Singh V P. Kinematic Wave Modeling in Water Resources:Environmental Hydrology. New York: John Wiley&Sons, 1997.
    175. Singh V P. Kinematic Modeling in Water Resources:Surface waterHydrology.New York: John Wiley&Sons, 1996.
    176. Esteves M. Faucher X. Galle S, Vauclin M. Overland flow and infiltration modelling for small plots during unsteady rain:numerical results Versus observed values.Journal of Hydrology, 2000, 228:265-282.
    177. Deletic A. Modelling of water and sediment transport over grassed areas. Journal of Hydrology, 2001,248:168-182.
    178. Chen L, Liu Q Q, Li J C. Runoff generation characteristics in typical erosion regions on the Loess Plateau. International Journal of Sediment Research, 2001, 16(4): 473-485.
    179. Wishmeier W H, Smith D D. Rainfall energy and its relation to soil loss[J]. Transactions of the American Geophysical Union,1958,39:285-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700