基于时序SAR影像的地下资源开采导致的地表形变监测方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展、城市规模和人口数量膨胀以及工业化程度提高,各种资源消耗量急剧上升,地下水、煤炭、石油、天然气等多种地下资源被大量开采,并引发了严重的地面沉降。研究如何快速、高效的对地面形变进行监测,分析其规律及机理具有重要的现实意义。本论文根据InSAR技术特点,将地表线性沉降和非线性沉降区别对待,针对性的对PSInSAR技术和传统DInSAR技术进行改进,提出了基于时序SAR影像的地表形变监测分析方法;分别用改进的PSInSAR技术对北京地下水开采导致的地表形变、用基于时序差分干涉图的方法对澳大利亚某矿区开采导致的地表形变进行了监测分析,讨论、验证了各自结果的准确性与精度。论文主要成果如下:
     1)系统阐述了InSAR、DInSAR和PSInSAR的基本原理、技术特点、数据处理流程及其各自的优缺点;总结了国内外相关领域的研究现状及不足。
     2)提出了一种基于干涉相位的高精度基线估算方法。该方法从基线误差导致的相位误差分布规律出发,以低精度轨道或星历数据为初始数据,在干涉图中剔除因基线误差导致的相位差。该方法不需要进行相位解缠,也不需要地面控制点的参与,而且还可以用来对别的基线估算方法得到的结果进行“平差”。
     3)提出了基于PS点自适应估计的PSInSAR改进处理方法。针对用PSInSAR监测城市及周边地区地表形变存在的SAR图像覆盖区域内存在多个由植被分割开的建筑物群现状,围绕提高PS点密度目的,通过向高可靠性PS参考网引入相对低可靠性离散PS点,提高了PSInSAR处理时PS点的密度,增强了PSInSAR结果的可靠性与精度。实验研究结果显示,用此方法进行PSInSAR处理,无论是高可靠性PS点还是相对低可靠性PS点的数量,比Kampes所用算法都有所提高,相对低可靠性PS点的使用数量提高了近50%。
     4)提出了时序差分干涉相位图的误差剔除方法。将PS思想引入时序差分干涉图的数据处理中,剔除时间序列差分干涉图中的DEM误差、大气效应误差和噪声误差,提高了传统DInSAR结果的精度,能明显消除DEM误差和大气效应误差。
     5)应用改进的PSInSAR技术对北京地下水开采导致的地表形变进行了监测分析。针对缺乏地面监测数据的情况,应用不同的SAR影像(ENVISAT ASAR和ALOS PALSAR)进行实验,将两者的结果进行交叉验证。结合北京市浅层地下水水位的历史变化数据,对PSInSAR结果进行分析,探讨了浅层地下水水位与地表形变的关系,比较了ENVISAT ASAR和ALOS PALSAR数据用于PSInSAR分析的优缺点。
     6)用时序差分干涉数据对澳大利亚某矿区开采导致的地表形变进行了监测分析。为了保证差分干涉图的相干性,选用了长波段的ALOS PALSAR影像进行实验研究。将实验结果与开采工作面位置、推进进度信息相叠加,验证了结果的准确性以及开采沉陷与工作面推进速度之间的关系。将GPS实际监测数据与DInSAR实验结果进行了比较分析,得出GPS监测结果与DInSAR结果大致吻合,两者误差最大值为45mm,平均误差为12mm,标准差为8mm。
     7)探讨了DInSAR监测结果用于分析煤矿地表三维形变的方法及可行性。根据煤矿开采工作面的相关信息,采用基于Knothe时间函数的地表动态沉陷预计方法对开采沉陷进行预计,将其与DInSAR结果进行比较,说明一维的DInSAR结果无法满足开采沉陷监测对地表三维形变信息的需求。实验研究了利用DInSAR结果解算地表三维形变的方法,将之与GPS观测的地表三维形变信息对比,得出由DInSAR解算的地表三维形变信息在垂直、正东和正北方向的误差分别为1.4cm、0.7cm和3.5cm,标准差分别为3.0cm、0.7cm和5.9cm。结果表明,在一定的条件下,用DInSAR监测结果分析开采沉陷的动态规律和机理是可行的。
     该论文有图63幅,表18个,参考文献119篇。
In recent years, with the rapid growth of economy, industrialization, urbanization and population, the whole world is consuming a huge number of resources. Many kinds of underground resources, underground water, coal, oil and gas, are mined to meet the social requirement. These mine activities has caused devastating ground surface deformation. It is very important to research on how to monitor, analyze and mitigate the ground surface deformation rapidly and efficiently. InSAR is a remote sensing technique for topographic mapping and ground surface deformation monitoring which was developed in recent decades. In order to monitor the ground surface deformation caused by continuous underground resources mine activities, various time-series SAR data processing methodologies and algorithms are developed in this thesis according to two types of ground surface deformation: linear and non-linear.
     A high-accuracy baseline estimation algorithm based on the Interferometric phases is developed to enhance the accuracy of InSAR technique. One ALOS PASAR pair is used to evaluate this algorithm, and the result is quite convincing.
     The advanced PSInSAR method based on the adaptive estimation of PS points is developed and applied to monitor the linear ground surface deformation caused by underground water extraction around Beijing. Two SAR images dataset, ENVISAT ASAR and ALOS PALSAR, are used for experimental research. The PSInSAR results fit quite well with the underground water level data.
     The multiple time-series differential interferograms processing strategy is discussed and applied to monitor the non-linear mine subsidence in Australia. The DInSAR results match quite well with the mine schedule. The accuracy of the DInSAR results is evaluated by the GPS surveying data; it is found that the accuracy of DInSAR results is up to cm level, which is lower than the mm level GPS data.
     There are 63 figures, 18 tables and 119 references.
引文
[1] Graham, L. C.. Synthetic Interferometer Radar for Topographic Mapping[C]. Proc. IEEE, 1974,62: 763-768.
    [2] Zebker, H. and R. Goldstein. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research, 1986, 91(B5): 4993-4999.
    [3] Gens, R. and Vangenderen, J. L.. SAR interferometry—issues, techniques, applications[J]. International Journal of Remote Sensing, 1996, 17:1803-35.
    [4] Gens, R. Quality assessment of SAR interferometry data[D]. Germany: Hannover University, 1998.
    [5] Gabriel, A.K., R.M. Goldstein, and H.A. Zebker. Mapping small elevation changes over large areas: differential radar interferometry[J], Journal of Geophysical Research, 1989, 94(B7): 9183-9191.
    [6] Massonnet, D., M. Rossi, C. Carmona, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(8): 138-142.
    [7] Rosen, P.A., S. Hensley, H.A. Zebker, et al. Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry[J]. Journal of Geophysical Research, 1996, 101 (E10):109-125.
    [8] Zebker, H.A., P.A.Rosen, R.M. Goldstein, et al. On the derivation of coseismic diaplacement fields using differential radar interferometry: the Landers earthquake[J]. Journal of Geophysical Research, 1994, 99: 19617-19634.
    [9] Fruneau, B. and F.Sarti, Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation[J]. Geophysical Research Letters, 2000, 27:3981-3984.
    [10] Christophe, D., A. Pascal, et al. Remote-sensing techniques for analysing landslide kinematics: a review[J]. Bulletin de la Societe Geologique de France, 2007, 2: 89-100.
    [11] Didier, M. and L. F. Kurt. Radar interferogrametry and its application to changes in the earth's surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
    [12] Gupta, S., S. V. K, et al. Surface displacement studies using differential SAR interferometry: an overview[C]. The International Society for Optical Engineering 2006 Conference on Disaster Forewarning Diagnostic Methods and Management, Goa, India.
    [13] Joyce, K. E., S. E. Belliss, et al. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J]. Progress in Physical Geography, 2009, 33(2): 183-20
    [14] Lanari, R., F. Casu, et al. An overview of the Small Baseline Subset Algorithm: a DInSAR technique for surface deformation analysis[J]. Pure and Applied Geophysics, 2009, 164(4): 637-661.
    [15] Roland, B., A. R. Paul, et al. Synthetic aperture radar interferometry to measure earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169-209.
    [16] Tronin, A.. Remote sensing and earthquakes: a review[J]. Physics and Chemistry of the Earth, Parts A/B/C,2006, 31(4-9): 138-142
    [17] Ge L, Chang H C, Rizos C. Mine subsidence monitoring using multi-source satellite SAR images[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(3):259-266.
    [18]邹友峰,邓喀中,马伟民.开采沉陷控制工程[M].徐州:中国矿业大学出版社, 2003.
    [19] Wegmuller U, Strozzi, T, Werner, C. Land subsidence in the Po river valley, Italy[C]. IEEE International Geoscience and Remote Sensing Symposium Proceedings, 1998, 3: 1376-1378.
    [20] Z Lu, C Wicks Jr., John A. Power, and D Dzurisin. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry[J]. Journal of Geophysical Research, 2000, 105(B9):483-495.
    [21] Hoffmann J. The application of satellite radar interferometry to study of land subsidence over developed aquifer systems [D]. Stanford University,2003.
    [22] Hsing-Chung Chang, Ge, L., and Rizos,C.. Radar interferometry for monitoring land subsidence due to underground water extraction[C]. Proceedings of SSC 2005 Spatial Intelligence, Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute, September, 2005. Melbourne: Spatial Sciences Institute. ISBN 0-9581366-2-9.
    [23] Hsing-Chung Chang, Ge, L., and Rizos,C.. InSAR and mathematical modelling for measuring surface deformation due to geothermal water extraction in New Zealand[C]. Proceedings of Geoscience and Remote Sensing Symposium, 2005, (3):1587- 1589.
    [24]路旭,匡绍君,贾有良等.用INSAR作地面沉降监测的实验研究[J].大地测量与地球动力学,2002,22(4) :66-70.
    [25]王超,张红,于勇等.雷达差分干涉测量[J].地理学与国土研究, 2002, 18(3):13~16
    [26] Y. Zhou, A. Stein, M. Molenaar. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics[J]. International Journal of Remote Sensing, 2003, 24(18):3547–3563.
    [27] Perissin Daniele, Parizzi Alessandro, Prati Claudio, et al. Monitoring Tianjin subsidence with the permanent scatterers techniques[C]. European Space Agency special publication no.611, ESA Publications Division: Noordwijk, Netherlands. 2005:393-398.
    [28]汤益先,张红,王超.基于永久散射体雷达干涉测量的苏州地区沉降研究[J].自然科学进展,2006,16(8):1015-1020.
    [29]廖明生,卢丽君,王艳,李德仁.基于点目标分析的InSAR技术检测地表微小形变的研究[J].城市地质, 2006, 1(2):38-41.
    [30]陈强,刘国祥,丁晓利等.永久散射体雷达差分干涉应用于区域地表沉降探测[J].地球物理学报, 2007, 50(3):737-743.
    [31]卢丽君,廖明生,王腾等.一种在长时间序列SAR影像上提取稳定目标点的多级探测法[J].遥感学报, 2008, 12(4):561-566.
    [32]罗海滨.综合GPS和InSAR监测地表形变的理论方法和应用研究[D].南京:河海大学,2008.
    [33] Wang F, Huang Z Q, Zhang D R. A study of land subsidence with PS-InSAR method based on wavelet phase analysis[C]. In: Proceedings of 2009 Joint Remote Sensing Event,2009.
    [34] Carnec, C., D. Massonnet, C. King. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical Research Letters, 1996, 23(24): 3579-3582.
    [35] Carnec, C., C. Delacourt. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Journal of Applied Geophysics, 2000, 43(1): 43-54.
    [36] Wright, P., R. Stow. Detection and measurement of mining subsidence by SAR interferometry[C]. in IEE Colloquium on Radar Interferometry (Digest No:1997/153). London, UK. 11 April 1997, 5: 1-6.
    [37] Wright, P., R. Stow. Detecting mining subsidence from space[J]. International Journal of Remote Sensing,1999, 20(6): 1183-1188.
    [38] Wegmuller, U., T. Strozzi, C. Werner, et al. Monitoring of mining-induced surface deformation in the Ruhrgebiet (Germany) with SAR interferometry[C]. IGARSS 2000. Honolulu, USA. 2000, 2771-2773.
    [39] Strozzi, T., U. Wegmuller, C. Werner, et al. JERS SAR interferometry for land subsidence monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7 Part 1): 1702-1708.
    [40] Ge, L., Rizos, C., Han, S. and Zebker, H., 2001. Mining subsidence monitoring using the combined InSAR and GPS approach. Proceedings of the 10th International Symposium on Deformation Measurements, International Federation of Surveyors (FIG), 19–22 March, Orange, California, pp. 1–10.
    [41] Ge, L., Chen, H.-Y., Han, S. and Rizos, C., 2001. Integrated GPS and interferometric SAR techniques for highly dense crustal deformation monitoring[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the U.S. Institute of Navigation, 11–14 September, Salt Lake City, Utah: 2552–2563.
    [42] Ge, L., Chang, H.-C. and Rizos, C., 2004a. Monitoring ground subsidence due to underground mining using integrated space geodetic techniques. ACARP Report C11029. http://www.acarp.com.au/abstracts.aspx?repId=C11029.
    [43] Kim, S.-W., Lee, C.-W., Song, K.-Y. et al. Application of L-band differential SAR interferometry to subsidence rate estimation in reclaimed coastal land[J]. International Journal of Remote Sensing, 2005, 26(7):1363-1381.
    [44] Jung, H.C., Kim, S.-W., Jung, H.S., et al. Satellite observation of coal mining subsidence by persistent scatterer analysis[J]. Engineering Geology, 2007, 92:1-13.
    [45]吴立新,高均海,葛大庆等.工矿区地表沉陷D-lnSAR监测试验研究[J].东北大学学报(自然科学版), 2005, 26(8): 778-782.
    [46]独知行,阳凡林,刘国林等. GPS与DInSAR数据融合在矿山开采沉陷形变监测中的应用探讨[J].测绘科学, 2007, 32(1): 55-57.
    [47]董玉森, Ge, L.,Chang, H.-C等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版, 2007, 32(10):888-891.
    [48]王行风,汪云甲,杜培军.利用差分干涉测量技术监测煤矿区开采沉陷变形的初步研究[J].中国矿业, 2007, 16(7):76-79.
    [49] Cao, L., Y. Zhang, J. He, et al. Coal mine land subsidence monitoring by using spaceborne InSAR data-a case study of Fengfeng, Hebei Province, China [C]. The International Archives of the Photogrammery, Remote Sensing and Spatial Information Science, 2008, Vol.XXXV2,Part B8, Beijing.
    [50]廖明生,林珲.雷达干涉测量——原理与信号处理基础[M].北京:测绘出版社, 2003.
    [51]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
    [52]彭曙蓉.高分辨率合成孔径雷达干涉测量技术及其应用研究[D].长沙:湖南大学, 2007.
    [53]卢丽君.基于时序SAR影像地表形变检测方法及应用[D].武汉:武汉大学, 2008.
    [54]程晓.基于星载微波遥感数据的南极冰盖信息提取及变化研究[D].北京:中国科学院遥感应用研究所,2004.
    [55]刘国祥. InSAR数据处理与关键算法[J].四川测绘, 2005, 28(1):45-47.
    [56] Liu, Guoxiang. Mapping of Earth Deformations with Satellite Radar Interferometry: A Study of Its Accuracy and Reliability Performances[D].Hongkong: The Hong Kong Polytechnic University, 2003.
    [57] G. Fransceschetti, M. Migliaccio and D. Riccio, et al. SARAS: A synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 30(1):110-122.
    [58] W. Xu, I. Cumming. Simulator for repeat-pass InSAR studies[C]. Proceeding of International Geoscience and Remote Sensing Symposium, 1997: 1704-1706.
    [59] Ghiglia, D. C. and M. D. Pritt. Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. New York: John Wiley & Sons, 1998: 1-200.
    [60] Goldstein, R. M., H. A. Zebker, et al. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720.
    [61] Chen, C. and H. Zebker. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms[J]. The Journal of the Optical Society of America, 2000A, 17(3): 401-414.
    [62] Chen, C. and H. Zebker. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization[J]. The Journal of the Optical Society of America, 2001A, 18(2): 338-351.
    [63] Chen, C. Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar Interferometry[D].Stanford: Stanford University, 2001.
    [64] Chen, C. and H. Zebker. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719.
    [65] Erten, E., A. Reigber, et al. Generation of three-dimensional deformation maps from InSAR data using spectral diversity techniques[J]. Journal of Photogrammetry and Remote Sensing, 2010, 65(4): 388-394.
    [66] Tim J. Wright, Barry E. Parsons and Zhong Lu. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31, L01607: 01601-01605..
    [67]查显杰,傅容珊,刘斌等.基于DInSAR技术获取形变位移三分量的新方法[J].遥感信息, 2008,1: 4-9.
    [68]查显杰,傅容珊,戴志阳. DInSAR技术对不同方位形变的敏感性研究[J].测绘学报,2006, 35(2): 133-137.
    [69] Yuri Fialko1, Mark Simons. The complete (3-D) surface displacement field in the epicentral area of the 1999 M7.1 Hector Mine earthquake California from space geodetic observations[J]. Geophysical Research Letters, 2001, 28(16): 3063-3066.
    [70] Yuri Fialko. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake[J]. Journal of Geophysical Research, 2004, 109, B03307, doi:10.1029/2003JB002756.
    [71] Jorn Hoffmann, Howard A. Zebker. Prospecting for horizontal surface displacements in Antelope Valley, California, using satellite radar interferometry[J]. Journal of Geophysical Research, 2003, 108( F1), 6011, doi:10.1029/2003JF000055.
    [72] Ivana Barisin, Sebastien Leprince, Barry Parsons, et al. Surface displacements in the September 2005 Afar rifting event from satellite image matching: Asymmetric uplift and faulting[J]. Geophysical Research Letters, 2009, 36, L07301, doi:10.1029/2008GL036431.
    [73] Sergey Samsonov, Kristy Tiampo. Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 10.1109/LGRS.2005.858483.
    [74] S.V. Samsonova, K.F. Tiampoa and J.B. Rundle. Application of DInSAR-GPS optimization for derivation of three-dimensional surface motion of the southern California region along the San Andreas fault[J]. Computers & Geosciences, 2008, 34: 503–514.
    [75]刘国祥,丁晓利,李志林等.卫星SAR复数图像的空间配准[J].测绘学报,2001,30: 60-66.
    [76]魏钟铨等.合成孔径雷达[M].北京:科学出版社, 2001.
    [77] Zebker, H.A., P.A. Rosen, S. Hensley. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research, 1997, 102(B4): 7547-7563.
    [78] Hanssen, R.F. Atmospheric heterogeneities in ERS tandem SAR interferometry[R], DEOS Report No. 98.1.Delft University, 1998.
    [79] A. Ferretti, C. Prati, and F. Rocca. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
    [80] A. Ferretti, C. Prati, and F. Rocca. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
    [81] S. Stramondo a, F. Bozzanob, F. Marra, et al. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations[J]. Remote Sensing of Environment, 2008, 112: 3160–3172.
    [82] Werner, C., Wegmuller, U., Strozzi, T., et al. Interferometric point target analysis for deformation mapping[C]. IGARSS. Toulouse, France. 2003:4362-4364
    [83] A. J. Hooper. Persistent Scatterer radar interferometry for crustal deformation studies and modeling of volcano deformation[D]. Stanford University, 2006.
    [84] Kampes, B., R.F. Hanssen. Ambiguity resolution for permanent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2446-2453.
    [85] Kampes, B., A. Nico. The STUN algorithm for persistent scatterer interferometry[C]. Proceedings of the FRINGE Workshop 2005. Frascatti, Italy. 2005, 16.
    [86] Van der Kooij, M., A. Lambert. Results of processing and analysis of large volumes of repeat-pass InSAR data of Vancouver and Mount Meager (B.C.)[C]. IGARSS. Toronto, Canada. 2002: 1228-1230.
    [87] Mora, O., J. Mallorqui, J. Duro. Generation of deformation maps at low resolution using differential interferometric SAR data[C]. IGARSS 2002. Toronto, Canada. 2002: 2696-2698.
    [88] Kampes, B. M.. Radar Interferometry: Persistent Scatterer Technique[M]. Dordrecht: Springer, 2006.
    [89] Hanssen R. F., Zebker, H., Klees, R., et al. On the use of meteorological observations in SAR interferometry[C]. International Geoscience and Remote Sensing Symposium, Seattle, Washington, USA, 6-10 July 1998: 1644-1646.
    [90] Rosen P. A., Hensley S., Joughin I R.. Synthetic aperture radar interferometry[C]. Proceedings of the IEEE,2000, 88(3): 333-382.
    [91]范洪冬. InSAR若干关键算法及其在沉陷监测中的应用[D].徐州:中国矿业大学, 2010.
    [92] David Small, Charles Werner, and Daniel Nueseh. Baseline modeling for ERS-1 SAR interferometry[C]. International Geoseienee and Remote Sensing SymPosium.Tokyo, 1993: 1204-1206.
    [93]张晓玲,王建,黄顺吉.干涉SAR成像中地形高度估计及基线估计方法的研究[J].信号处理, 1999, 15(4): 316-320.
    [94]徐华平,周荫清,李春升.星载干涉SAR中的基线问题[J].电子学报, 2003, 31(3):1-3.
    [95]索志勇,李真芳,吴建新等.利用局部先验知识的InSAR基线估计方法[J].西安电子科技大学学报(自然科学版), 2008, 35(5): 774-776.147.
    [96] A. Moreira, G. Krieger, I. Hajnsek, et al. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferomery[C]. Geoscience and Remote Sensing Symposium,2004, 2: 1000-1003.
    [97]刘广.长时序InSAR技术中的空间基线校正和图像配准方法研究[D].北京:中科院研究生院, 2007.
    [98]李新武,郭华东,廖静娟等.基于快速傅立叶变换的干涉SAR基线估计[J].测绘学报, 2003, 32(l): 70-73.
    [99]靳国旺,徐青,朱彩英等.利用平地干涉相位进行INSAR初始基线估计[J].测绘科学技术学报, 2006, 23(4): 278-283.
    [100]唐晓青,向茂生,吴一戎.一种改进的基于干涉相位的基线估计方法[J].电子与信息学报, 2008, 30(12): 2795-2798.
    [101]张军,向家彬,彭石宝.一种新的InSAR基线估计方法[J].空军雷达学院学报, 2008, 22(1): 36-39.
    [102] Colesanti, C., Ferretti, A., Novali, F., Prati, C. and Rocca, F.. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1685-1701.
    [103] Jiang, L. and Lin, H.. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong[J]. Engineering Geology, 2010, 110(3-4): 77-92.
    [104] Massironi, M., Zampieri, D., Bianchi, M., Schiavo, A. and Franceschini, A.. Use of PSInSAR(TM) data to infer active tectonics: Clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy) [J]. Tectonophysics, 2009, 476(1-2): 297-303.
    [105] Farina, P., Colombo, D., Fumagalli, A., Marks, F. and Moretti, S.. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project [J]. Engineering Geology, 2006, 88(3-4): 200-217.
    [106] Beradino, P., Fornaro, G., Lanari, R. and Sansosti, E.. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
    [107] Blanco, P., Mallorqui, J., Duque, S. and Monells, D.. The Coherent Pixels Technique (CPT): An advanced DInSAR technique for nonlinear deformation monitoring[J]. Pure and Applied Geophysics, 2008, 165(6): 1167-1193.
    [108] Adam, N., Kampes, B.M. and Eineder, M.. The development of a scientific persistent scatterer system: Modifications for mixed ERS/ENVISAT time series[C]. ENVISAT & ERS Symposium, Salzburg, Austria, 2004: 1-9.
    [109] Cassee, B.N. Selection of permanent scatterer candidates for deformation monitoring[D]. Netherland, Delft University of Technology, 2004:93.
    [110] Hanssen, R. F.. Radar Interferometry[M]. Netherlands: Kluwer Academic Publishers, 2001:301.
    [111] Costantini, M. and Rosen, P. A.. A generalized phase unwrapping approach for sparse data[C]. IGARSS 1999:267-269.
    [112] Raucoules, D., et al.. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results[J]. Journal of Applied Geophysics, 2009, 68(3): 335-347.
    [113] Li, Z., Sun, J., Zhang, S., Wang, S., and Guo, X.. Distribution characteristics and countermeasures of the environmental geology problems in the Huang-Huai-Hai plain[J]. Available from: http://old.cgs.gov.cn/zt_more/34/zhaiyao/html/04/408.htm.
    [114] Liu, B. et al.. Cause Analysis of Groundwater Funnel in Langfang of Hebei Province[J]. Arid Meteorology, 2008, 26(2): 53-56.
    [115] Hanssen, R., Moisseev, D. and Businger. Resolving the acquisition ambiguity for atmospheric monitoring in multi-pass radar interferometry[C]. IGARSS, 2003, 2:1202-1205.
    [116] Goldstein, R.M. and Werner, C. L.. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035–4038.
    [117]崔希民,杨立武.沉陷大变形动态监测与力学分析[D].北京:煤炭工业出版社,2003:70-75.
    [118] L. Jiang, H. Lin, J. Ma, et al. Potential of small-baseline SAR interferometry for monitoring land subsidencerelated to underground coal ?res: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115: 257-268.
    [119]胡波,汪汉胜.用PSInSAR技术监测地面沉降研究[J].大地测量与地球动力学,2010,30(2): 34-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700