InSAR及多基线InSAR关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉合成孔径雷达(InSAR)具有全天候、全天时、高效率获取目标区域数字高程地图(DEM)的能力,已广泛地应用在地形测绘、地表形变监测、目标探测等领域。多基线InSAR技术是InSAR技术的扩展,克服了传统InSAR技术对系统噪声和大气效应敏感等固有的缺陷,具有获取高精度DEM数据的能力,已成为InSAR技术应用研究的热点。
     本文对InSAR数据处理的主要环节,包括SAR图像配准、去平地效应等进行了分析与讨论,重点对干涉图滤波及缠绕相位展开等InSAR关键技术进行了较为系统、深入的研究。此外,重点对多基线InSAR关键技术—多基线干涉相位估计技术进行了较为深入的研究。本文主要工作和贡献如下:
     (1)对SAR图像配准、平地效应去除、相位噪声抑制等InSAR数据处理的主要环节开展了较为深入的研究。针对常用滤波算法难以在有效滤除噪声的同时保持干涉图条纹完整性的问题,提出了一种组合滤波方法;利用Goldstein滤波和均值滤波各自的特点,在滤除相位噪声的同时很好地保持了干涉图条纹的边缘特性。
     (2)对常用的相位展开方法进行了较为系统、深入的研究。针对InSAR技术应用中的难点—条纹密集干涉图和复杂地形干涉图的展开问题,把传统路径跟踪策略与Unscented Kalman filter(UKF)结合起来,提出了一种基于路径跟踪策略的UKF相位展开方法;实验结果表明该方法有效地展开了条纹密集且复杂的干涉图,且与传统方法相比具有较高的精度和较强的稳健性。在此基础之上,把人工智能的搜索策略引入到UKF相位展开算法之中,提出一种基于人工智能搜索策略的UKF相位展开方法;利用人工智能的搜索策略在实现传统路径跟踪策略的同时,又更加充分的利用了相邻已展开像元的信息,进一步提高了相位展开精度。
     (3)针对相位展开问题的非线性和非高斯特性,提出一种不受模型噪声统计特性和问题的非线性影响的粒子滤波(PF)相位展开方法;实验结果表明该方法具有较强的稳健性。
     (4)对经典多基线相位估计方法进行了较为系统的研究。针对现有多基线相位估计方法通常存在算法适应性和稳健性不强的问题,把UKF应用到多基线干涉相位估计之中,提出一种多基线UKF相位估计方法,并通过实验验证了该方法的有效性和稳健性。此外,利用扩展粒子滤波(EPF)的强大数据融合能力与不受模型噪声特性影响的特点,提出一种多基线EPF相位估计方法,并在多基线相位展开实验中获得了较好的效果。
     (5)提出一种适用于三基线以上的干涉相位估计方法;通过选取适当的基线组合,在展开最短基线干涉相位基础上,利用最大似然频率估计器提取每一复像元随基线变化的频率,有效地实现了长基线干涉相位估计。
Interferometry Synthetic Aperture Radar (InSAR) is a novel remote sensing technique that has been developed recently. Due to its capability of all-weather and all-time, and high-efficiently acquiring digital elevation maps (DEMs) of target scene, InSAR has been applied widely in topography mapping, the detection of surface deformations, the detection of target etc. It is well-known that conventional InSAR is sensitive to system noise and atmospheric effect. Multi-baseline InSAR, considered as the extension of conventional InSAR, is able to acquire high-precision DEMs of earth surface and has become an issue of remote sensing technology application research since it can overcome inherent defect of conventional InSAR.
     The principle and the methods of main steps of InSAR data processing, including SAR image registration, flat earth removal, noise filtering, phase unwrapping etc, are investigated and discussed, and two key steps in InSAR data processing, including noise filtering and phase unwrapping are studied in detail. In addition, multi-baseline phase unwrapping technique, considered as the key technology of multi-baseline InSAR data processing, is also studies in detail.
     The main work and innovations accomplished in this dissertation are as follows:
     (1) The techniques of image registration, flat earth removal and noise filtering etc, is investigated and discussed in this dissertation. It is difficult to normal filtering algorithms to remove effectively phase noise in interferogram, and with good edge preservation. To solve above problem, a combined filtering algorithm that can remove phase noise effectively, and with good edge preservation is proposed in this dissertation.
     (2) Conventional phase unwrapping algorithms are investigated and summarized. As is known it is difficult for conventional algorithms to unwrap effectively the interferogram with complex fringe, or with dense fringe. To solve above problem, a novel phase unwrapping algorithm based on the unscented Kalman filter (UKF) is proposed. This method is the result of combining an UKF with the path-following strategy and an omni-directional local phase slope estimator. Simulation and real data processing results validate the effectiveness of proposed method, and show a significant improvement with respect to some conventional phase unwrapping algorithms in some situations. On this basis, combining an UKF with the artificial-intelligence search strategy,an novel UKF phase unwrapping algorithm based on the artificial-intelligence search strategy is proposed. The artificial-intelligence search strategy will ensure that this algorithm performs noise filtering and phase unwrapping along the path from high-quality region to low-quality region, and will guarantee unwrapped neighbors information are fully exploited. Therefore, phase wrapping accuracy can be improved further.
     (3) As for the nonlinearity and the non-Gaussian characteristic of the phase unwrapping problem, a novel phase unwrapping algorithm based on the particle filter (PF) is proposed. This method provides independence from noise statistics and is not constrained by the nonlinearity of the problem. Simulation and real data processing results validate the effectiveness of proposed method.
     (4) Classical multi-baseline phase unwrapping algorithms are investigated and summarized. As is well-known that adaptability and stability of conventional algorithm isn’t strong enough. To solve above problem, a novel multi-baseline phase unwrapping algorithm based on the UKF is proposed. The performance of the proposed method from synthetic data is illustrated. In addition, a novel multi-baseline phase unwrapping algorithm is proposed by using the strong data fusion capacity of extended particle filter (EPF), and the effectiveness of proposed method is validated by Simulation data processing results.
     (5) A novel multi-baseline phase estimate algorithm, applied in SAR interferometry with more than three baselines, is proposed. This method consists of two steps: firstly, selecting the appropriate set of baselines and unwraping the interferogram associated with the shortest baseline; then gaining the unwrapped phase of the longest baseline by using the maximum likelihood estimator to extract the frequency of any complex pixel.
引文
[1]王超,张红,刘智,星载合成孔径雷达干涉测量,北京:科学出版社,2002年
    [2]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005年
    [3]张直中,机载和星载合成孔径雷达导论,北京:电子工业出版社,2004年
    [4] L. Bayuaji, J. T. Sri Sumantyo, H. Kuze, ALOS PALSAR D-InSAR for land subsidence mapping in Jakarta, Indonesia, Canadian Journal of Remote Sensing, Vol.36, No.1, pp:1-8, 2010.
    [5] X. Ye, K. Hermann, High resolution D-InSAR measurement for land subsidence, 2010 International Geoscience and Remote Sensing Symposium (IGARSS’2010), pp:1541-1544, 2010.
    [6]魏志强,星载干涉合成孔径雷达若干关键技术的算法研究[博士学位论文],上海:复旦大学,2008年
    [7]陶鲲,干涉合成孔径雷达数据处理仿真研究[博士学位论文],北京:中国科学院电子学研究所,2003年
    [8]何儒云,星载合成孔径雷达干涉测量处理技术研究[博士学位论文],长沙:湖南大学,2007年
    [9] A. K. Gabriel, R. M. Goldstein, Crossed orbit interferometry: theory and experiment results from SIR-B, International journal of Remote Sensing, Vol.9, No.5, pp:857-872, 1998.
    [10] C. Prati, F. Rocca, Limits to the resolution of elevation maps from stereo SAR images, International Journal of Remote Sensing, Vol.11, No.12, pp:2215-2235, 1990.
    [11] Q. Lin, J. F. Vesecky, H. A. Zebker, Registration of interferometric SAR images, 1992 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS'92), pp:2: 1579-1581, 1192.
    [12] I. Lim, T. S. Yeo, C. S. Ng, et al, Phase Noise Filter for Interferometric SAR, 1997 International Geoscience and Remote Sensing Symposium Proceedings (IGRASS’97), pp:445-447, 1997.
    [13] J. S. Lee, Intensity and phase statistics of multi-look polarimetric and Interferometric imagery, IEEE Transaction on Geoscience and Remote Sensing, Vol.32, No.5, pp:1017-1028, 1994.
    [14] R. M. Goldstein and C. L. Werner, Radar interferogram filtering for geophysical applications,Geophysical Research Letters, Vol.25, No.21, pp:4035-4038, 1998.
    [15] J. M. Juan, M. M. Tomás, B. B. J. David, et al, Insar phase unwrapping by means of a particle filter, 2008 International Geoscience and Remote Sensing Symposium (IGARSS’08), Vol.4, No.1, pp:IV1217-IV1220, 2008.
    [16] R. M. Goldstein, H. A. Zerber, C. L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science, Vol.23, No.41, pp:713-720, 1988.
    [17] W. Xu, I. Cumming, A region-growing algorithm for InSAR phase unwrapping, IEEE Transaction on Geoscience and Remote Sensing, Vol.37, No.1, pp:124-134, 1999.
    [18] T. J. Flynn, Consistent 2-D phase unwrapping guided by a quality map, 1996 International Geoscience and Remote Sensing Symposium (IGRASS’96), Vol.4, pp:124-134, 1996.
    [19] D. C. Ghiglia, L. A. Romero, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, Journal of the Optical Society of America, Vol.11, No.1, pp:107-117, 1994.
    [20] M. D. Pritt, Phase unwrapping by means of multigrid techniques for interferometric SAR, IEEE Transaction on Geoscience and Remote Sensing, Vol.34, No.3, pp:728-738, 1996.
    [21] D. C. Ghiglia, L. A. Romero, Minimum LP-norm two-dimensional phase unwrapping, Journal of the Optical Society of America, Vol.13, No.10, pp:1999-2013, 1996.
    [22]孙造宇,星载分布式InSAR信号仿真与处理研究[博士学位论文],长沙:国防科学技术大学,2007年
    [23]李洁,星载InSAR多基线干涉测高及编队优化设计方法研究[硕士学位论文],长沙:国防科学技术大学,2007年
    [24]张秋玲,王岩飞,利用多基线数据融合提高分布式卫星InSAR系统的干涉相位精度,电子与信息学报, Vol.28, No.11, pp:2011-2013, 2006.
    [25]刘慧,周荫清,徐华平,多基线干涉SAR的相位估计,宇航学报, Vol.29, No.6, pp:1992-1994, 2008.
    [26]柳祥乐,宋岳鹏,杨汝良,采用酉ESPRIT算法处理多基线InSAR层叠效应电子与信息学报, Vol.30, No.7, pp:1731-1735, 2008.
    [27] G. Vilardo, R. Isaia, G. Ventura, et al, InSAR Permanent Scatterer analysis reveals fault re-activation during inflation and deflation episodes at Campi Flegrei caldera, Remote Sensing of Environment, Vol.114, No.10, pp:2373-2383, 2010.
    [28] F. Wang, Z. Huang, L. Yu, et al, A study of PS-InSAR method for small area urban land subsidence, 2010 18th International Conference on Geoinformatics, pp:1-6, 2010.
    [29] I.Hajnsek, F. Kugler, S. K. Lee, et al, Tropical-forest-parameter estimation by means of Pol-InSAR:The INDREX-II campaign, IEEE Transactions on Geoscience and Remote Sensing, Vol.47, No.2, pp:481-493, 2009.
    [30] M. Schw?bisch, S. Gopal, B. Mercer, et al, Early results using single-pass L-band pol-insar, 2008 International Geoscience and Remote Sensing Symposium (IGARSS’2008), Vol.5, No.1, pp:V286-V289, 2008.
    [31] H.Yamada, R. Komaya, Y. Yamaguchi, et al, Scattering component decomposition for Pol-InSAR dataset and its application, 2009 International Geoscience and Remote Sensing Symposium (IGARSS’99), Vol.5, No.1, pp:V154-V157, 1999.
    [32] J. S. Lee, K. Papathanassiou, T. L. Ainsworth, et al, A new technique for noise filtering of SAR interferometric phase images, IEEE Transactions on Geoscience and Remote Sensing, Vol.36, No.5, pp:1456-1465, 1998.
    [33] C. Lopez, F. X. Fabregas, SAR interferometric phase denoising, A new approach based on wavelet transform, 2000 International Society for Optical Engineering (SPIE’00), Vol.4173, pp:199-210, 2010.
    [34] Yanjie Z, An interferogram filtering method using wavelet transform, 2005 International Geoscience and Remote Sensing Symposium (IGARSS’05), Vol.7, pp:4564-4566, 2005.
    [35] C. López, X. Fàbregas, J. Mallorquí, et al, Noise filtering of SAR interferometric phase based on wavelet transform, 2001 International Geoscience and Remote Sensing Symposium (IGARSS’01), Vol.6, pp:2928-2930, 2001.
    [36] Q. Zeng, L. Gao, R.. Liu, Interferometric phase noise filtering based on adaptive optimized wavelet packets transform, European Space Agency, (Special Publication) ESA SP, Vol.611, pp:363-367, 2006.
    [37] A. B. Suksmono, A. Hirose, Improving phase unwrapping result of InSAR images by incorporating the fractal model, 2003 IEEE International Conference on Image Processing, Vol.2, pp:831-834, 2003.
    [38] J. J. Martinez-Espla, T. Martinez-Marin, J. M. Lopez-Sanchez, Using a grid-based filter to solve InSAR phase unwrapping, IEEE Geoscience and Remote Sensing Letters, Vol.5, No.2, pp:147-151, 2008.
    [39] Y. Shao, Z. Zhu, New method of phase unwrapping for InSAR, 1996 IEEE Proceedings of the National Aerospace and Electronics Conference, Vol.1, pp:379-382, 1996.
    [40] T. Xiong, W. Zhang, W. M. Boerner, Phase unwrapping method based on image segmentation,International Journal of Remote Sensing, Vol.29, No.16, pp:4871-4877, 2008.
    [41] G. Liu, H. Huang, F. Yang, et al, InSAR Kalman Filter phase unwrapping algorithm based on topographic factors, 2010 OCEANS'10 IEEE Sydney (OCEANSSYD’10), pp:1-6, 2010.
    [42] M. Costantini, A Novel Phase Unwrapping Method Based on Network Programming, IEEE Transactions on Geoscience and Remote Sensing, Vol.36, No.3, pp:4871-4877, 1998.
    [43] T. J. Flynn, Two-dimensional phase unwrapping with minimum weighted discontinuity, Journal of the optical Society of America A, Vol.14, No.10, pp:2692-2701, 1997.
    [44]刘保伟,张廷新,欧祥荣,InSAR最小二乘相位解缠算法,空间电子技术,No.1, pp:17-22, 2008.
    [45] G. H. Kaufmann, G. E. Galizzi, P. D. Ruiz, Evaluation of a preconditioned conjugate-gradient algorithm for weighted least-squares unwrapping of digital speckle-pattern interferometry phase maps, Applied Optics, Vol.37, No.14, pp:3076, 1998.
    [46] Y. Bian, B. Mercer, Weighted regularized preconditioned conjugate gradient (PCG) phase unwrapping method, Journal of Optics A: Pure and Applied Optics, Vol.11, No.1, pp:1-12, 2009.
    [47] M. D. Pritt, Weighted least squares phase unwrapping by means of multi-grid techniques, 1995 The International Society for Optical Engineering (SPIE’95), Vol.2584, pp:278-288,1995.
    [48]龚国静,罗代升,何小海,无权重多重网格的最小二乘相位解缠研究,计算机工程与应用, Vol.46, No.4, pp:166-169, 2010.
    [49] J. M. Juan, M. M. Tomás, A Particle Filter Approach for InSAR Phase Filtering and Unwrapping, IEEE Transactions on Geoscience and Remote Sensing, Vol.47, No.4, pp:1197-1206, 2009.
    [50] O. Loffeld, R. Kraemer, Phase unwrapping for SAR interferometry-a data fusion approach by Kalman filtering, 1999 International Geoscience and Remote Sensing Symposium (IGARSS’99), Vol.3, pp:1715-1717, 1999.
    [51] N. Holger, O. Loffeld, W. Robert, Phase unwrapping using 2D-Kalman Filter potential and limitations, 2008 International Geoscience and Remote Sensing Symposium (IGARSS’08), Vol.4, pp:1213-1216, 2008.
    [52] O. Loffeld, H. Nies, S. Knedlik, et al, Phase unwrapping for SAR interferometry: A data fusion approach by Kalman Filtering, IEEE Transactions on Geoscience and Remote Sensing, Vol.46, No.1, pp:47-58, 2008.
    [53]何峰,梁甸农,刘建平,星载双基地SAR干涉测高精度分析,系统工程与电子技术, Vol.27, No.9, pp:1519-1522, 2005.
    [54]孙造宇,梁甸农,路兴强,张永胜,星载InSAR系统干涉信号模拟方法,通信学报, Vol.27, No.8, pp:57-61, 2006.
    [55] E. A. Murray, S. R. Ploen, K. G. Gromov, et al, Formation flying for distributed InSAR, 2006 Collection of Technical Papers-AIAA/AAS Astrodynamics Specialist Conference, Vol.2, pp:1305-1319, 2006.
    [56] X. Shi, Y. Zhan, A multi-baseline data fusion algorithm for distributed satellites SAR interferometry by combining iterative and maximum-likelihood methods, 2009 Asia-Pacific Conference on Synthetic Aperture Radar, Proceedings (APSAR’09), pp:165-168, 2009.
    [57] W. Xu, E. C. Chang, L. K. Kwoh, et al, Phase unwrapping of SAR interferogram with multi-frequency or multi-baseline, 1994 International Geoscience and Remote Sensing Symposium (IGARSS’94), Vol.2, pp:730–732, 1994.
    [58] D. C. Ghiglia, D. E. Wahl, Interferometric synthetic aperture radar terrain elevation mapping from multiple observations, 1994 IEEE Digital Signal Processing Workshop, pp:33–36, 1994.
    [59] D. G. Thompson, A. E. Robertson, D. V. Arnold, et al, Multi-baseline interferometric SAR for iterative height estimation, 1999 International Geoscience and Remote Sensing Symposium (IGARSS’99), Vol.1, pp:251–253, 1999.
    [60] M. G. Kim, H. D. Griffiths, Phase unwrapping of multi-baseline interferometry using kalman filtering, Image Processing and its Applications, IEE Conference, pp:813-817, 1999.
    [61] Z. Li, Z. Bao, A Joint Image Coregistration, Phase Noise Suppression, and Phase Unwrapping method Based on Subspace Projection for Multi-baseline InSAR Systems, IEEE Transactions on Geoscience and Remote Sensing, Vol.45, No.3, pp:584-591, 2007.
    [62]李海,廖桂生,对配准误差稳健的多基线相位展开方法,电子学报, Vol.36, No.9, pp:1671-1675, 2008.
    [63]李海,廖桂生,基于相关系数加权观测矢量的多基线相位解缠方法,自然科学进展, Vol.18, No.3, pp:313-322, 2008.
    [64]毛志杰,廖桂生,李海,自适应图像配准多基线InSAR干涉相位展开方法,电波科学学报,Vol.23, No.5, pp:878-898, 2008.
    [65]魏钟铨,王贞松,陈元藻等,合成孔径雷达卫星,北京:科学出版社,2001年.
    [66]刘永坦,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999年.
    [67] H. A. Zebker, R. M. Goldstein, Topographic Mapping from Interferometric Synthetic Aperture Radar Observations, Journal of Geophysical Research, Vol.91, pp:4993-4999, 1986.
    [68] E. Rodriguez, J. M. Martin, Theory and design of interferometric synthetic aperture radars,IEEE Proceedings of Radar and Signal Processing, Vol.139, No.2, pp:147-159, 1992.
    [69] R. M. Goldstein, T. H. Engelhard, et al, Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application on an Antarctic Ice Stream, Science, Vol.262, No.5139, pp:1525-1530, 1993.
    [70]廖明生,林晖,雷达干涉测量原理与信号处理基础,北京:测绘出版社,2003年.
    [71] P. Shurong, H. Kexue, W. Yaonan, et al, A high accurate approach for InSAR flat earth effect removal, 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA’09),Vol.3, pp:742-745, 2009.
    [72] G. Fornaro, G. Franceschetti, Image registration in interferometric SAR processing, IEE Proceedings: Radar, Sonar and Navigation, Vol.142, No.6, pp:313-320, 1995.
    [73] R. Scheiber, A. Moreira, Improving co-registration accuracy of interferometric SAR images using spectral diversity, 1999 International Geoscience and Remote Sensing Symposium (IGARSS’99), Vol.3, pp:1709-1711,1999.
    [74] B. Zitova, J. Flusser, Image registration methods: a survey, Image and Computing, Vol.21, No.11, pp:977-1000, 2003.
    [75] J. Salvi, C. Matabosch, D. Fofi, et al, A review of recent range image registration methods with accuracy evaluation, Image and Computing, Vol.25, No.5, pp:578-596, 2007.
    [76]武楠,冯大政,刘宝泉,基于局部频率估计和有限元的相位展开方法,系统仿真学报, Vol.19, No.19, pp:4574-4578, 2007.
    [77] Z. Suo, Z. Li, Z. Bao, A new strategy to estimate local fringe frequencies for InSAR phase noise reduction, IEEE Geoscience and Remote Sensing Letters, Vol.7, No.4, pp:771-775, 2010.
    [78] E. Trouvé, M. Caramma, H. Ma?tre, Fringe detection in noisy complex interferograms, Applied Optics, Vol.35, No.20, pp:3799-3806, 1996.
    [79]何儒云,王耀南,毛建旭,彭曙蓉,基于支持向量机的InSAR干涉图相位解缠法,系统仿真学报, Vol.20, No.6, pp:1493-1496, 2008.
    [80] A. Collaro, G. Franceschetti, F. Palmieri, et al, Phase unwrapping by means of genetic algorithms, Journal of the Optical Society of America A, Vol.15, No.2, pp:407-418, 1998.
    [81]魏志强,金亚秋,基于蚁群算法的InSAR相位解缠算,电子与信息学报, Vol.30, No.3, pp: 518-523, 2008.
    [82] Z. Wei, F. Xu and Y. Jin, Phase Unwrapping for SAR Interferometry Based on Ant Colony Optimization Algorithm, International Journal of Remote Sensing, Vol.29, No.3, pp:711-725,2008.
    [83] L. Perea, P. Elosegui, New state update equation for the unscented kalman filter, Journal of Guidance, Control, and Dynamics, Vol.31, No.5, pp:1500-1503, 2008.
    [84] T. E. Zander, V. Madyastha, A. Patil, et al, Phase-step estimation in interferometry via an unscented Kalman filter, Optics Letters, Vol.34, No.9, pp:1396-1398, 2009.
    [85] G. Valverde, V. Terzija, Unscented Kalman filter for power system dynamic state estimation, IET Generation, Transmission and Distribution, Vol.5, No.1, pp:29-37, 2011.
    [86] D. Jwo, C. Lai, Unscented Kalman filter with nonlinear dynamic process modeling for GPS Navigation, GPS Solutions, Vol.12, No.4, pp:249-260, 2008.
    [87] S. K Rao, K. R. Rajeswar, K. S. Lingamurty, Unscented Kalman filter with application to bearings-only target tracking, IETE Journal of Research, Vol.55, No.2, pp:63-67, 2009.
    [88] E. H. Shin, N. El-Sheimy, Unscented kalman filter and attitude errors of low-cost inertial navigation systems, Journal of the Institute of Navigation, IETE Journal of Research, Vol.54, No.1, pp:1-9, 2007.
    [89] X. Xie, Y. Pi, Multi-baseline phase unwrapping algorithm based on the unscented Kalman filter, IET Radar, Sonar & Navigation, Vol.5, No.3, pp:296-304, 2011.
    [90]徐小来,雷英杰,谢文彪,基于UKF的自组织直觉模糊神经网络,电子学报, Vol.8, No.3, pp: 639-645, 2008.
    [91]马野,王孝通,戴耀,基于UKF的神经网络自适应全局信息融合方法,电子学报, Vol.33, No.10, pp:1915-1916, 2005.
    [92] K. L. Lo, Y. Rathamarit, State estimation of a boiler model using the unscented Kalman filter, IET Generation, Transmission and Distribution, Vol.2, No.6, pp:917-931, 2008.
    [93] M. Wu, A. W. Smyth, Application of the unscented Kalman filter for real-time nonlinear structural system identification, Structural Control and Health Monitoring, Vol.14, No.7, pp: 971-990, 2007.
    [94] S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear estimation, 2004 Sequential State Estimation: From Kalman Filters to Particles Filters, Vol.92, No.3, pp:401-422, 2004.
    [95] S. J. Julier, The scaled unscented transformation, 2002 American Control Conference, Vol.6, pp: 4555-4559, 2002.
    [96] G. Vasile, E. Trouvé, L. Petillot, et al, High-resolution SAR interferometry: Estimation of local frequencies in the context of alpine glaciers, IEEE Transactions on Geoscience and Remote Sensing, Vol.46, No.4, pp:1079-1090, 2008.
    [97] R. Kraemer, O. Loffeld, New results in calculating the unambiguous phase for SAR interferometry, 1997 Proceedings of SPIE-The International Society for Optical Engineering (SPIE’97), Vol.3100, pp:166-174, 1997.
    [98] E. Trouve, J. M. Nicolas, H. Maitre, Improving phase unwrapping techniques by the use of local frequency estimates, IEEE Transactions on Geoscience and Remote Sensing, Vol.36, No.6, pp:1963-1972, 1998.
    [99] E. Trouve, J. M. Nicolas, H. Maitre, Noise immune least squares phase unwrapping based on two dimensional frequency estimation, 1996 International Conference on Signal Processing Proceedings (ICSP’96), Vol.2, pp:1191-1194, 1996.
    [100] E. W. Daniel, Improved SAR Interferometric Processing using Local Phase-Slope Correction, 2007 Proceedings of SPIE (SPIE’07), Vol.5427, pp:103-107, 2007.
    [101] U. Spagnolini, 2D phase unwrapping and instantaneous frequency estimation, IEEE Transactions on Geoscience and Remote Sensing, Vol.33, No.3, pp:579-589, 1994.
    [102]张焱,张志龙,基于动态显著性特征的粒子滤波多目标跟踪算法,电子学报, Vol.36, No.12, pp:2307-2308, 2008.
    [103]姚红革,齐华,复杂情形下目标跟踪的自适应粒子滤波算法,电子与信息学报, Vol.31, No.2, pp:276-278, 2009.
    [104]李良群,黄敬雄,被动传感器阵列中基于粒子滤波的目标跟踪,电子与信息学报, Vol.31, No.4, pp:845-848, 2009.
    [105] S. Yan, M. Qin, W. Huang, Particle swarm optimized unscented particle filter for target tracking, Proceedings of the 2009 2nd International Congress on Image and Signal Processing (CISP'09), pp:1-5, 2009.
    [106] R. K. Jatoth, D. N. Rao, K. S. Kumar, Particle swarm optimization aided unscented kalman filter for ballistic target tracking, 2010 IEEE International Conference on Communication Control and Computing Technologies (ICCCCT’10), pp:455-460, 2010.
    [107] M. S. Arulampalam, S. Maskell, N. Gordon, et al, A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking, IEEE Transactions on Signal Processing, Vol.50, No.2, pp:174~188, 2002.
    [108] D. Guo, X. Wang, R.Chen, New sequential Monte Carlo methods for non-linear dynamic systems, Statistics and Computing, Vol.15, No.2, pp:135-147, 2005.
    [109] D. Just, R. Bamler, Phase statistics of interferograms with applications to synthetic aperture radar, Applied Optics, Vol.33, No.20, pp:4361-4368, 1997.
    [110] J. S. Lee, K. Hoppel, et al, Intensity and phase statistics of multi-look polarimetric SAR imagery, 1993 International Geoscience and Remote Sensing Symposium (IGARSS’93), Vol.2, pp:813-816, 1993.
    [111] M. Mosallaei, K. Salahshoor, Comparison of centralized multi-sensor measurement and state fusion methods with an adaptive unscented kalman filter for process fault diagnosis, Proceedings of the 2008 4th International Conference on Information and Automation for Sustainability (ICIAFS’08), pp:519-524, 2008.
    [112] M. L. Anjum, J. Park, W. Hwang, et al, Sensor data fusion using Unscented Kalman Filter for accurate localization of mobile robots, 2010 International Conference on Control, Automation and Systems (ICCAS’10), pp:947-952, 2010.
    [113] S. M. Oh, Multisensor fusion for autonomous UAV navigation based on the unscented Kalman filter with sequential measurement updates, 2010 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI‘10), pp:217-222, 2010.
    [114]陈姝,邹北骥,应用粒子滤波及先验概率模型进行图像分割的新算法,电子学报, Vol.35, No.8, pp:1534-1536, 2007.
    [115] M. Lin, S. Liu, Multi-sensor information fusion extended Kalman particle filter, 2010 Proceedings-2nd IEEE International Conference on Advanced Computer Control (ICACC’10), pp:417-419, 2010.
    [116] L. Smith, V. Aitken, The auxiliary extended and auxiliary unscented kalman particle filters, 2007 Canadian Conference on Electrical and Computer Engineering (CCECD’07), pp:1626-1630, 2007.
    [117] M. V. Vinogradov, I.V. Elizavetin, Phase unwrapping method for the multi-frequency and multi-baseline interferometry, 1998 International Geoscience and Remote Sensing Symposium (IGARSS’98), Vol.2, pp:1103-1105, 1998.
    [118] S. Trittler, F.A. Hamprecht, Near optimum sampling design and an efficient algorithm for single tone frequency estimation, Digital Signal Processing: A Review Journal, Vol.19, No.4, pp:628-639, 2009.
    [119] M. Unser, Samplinn-50 years after Shannon, Proceedings of the IEEE, Vol.88, No.4, pp: 569-587, 2000.
    [120] P. P. Vaidyanathan, V. C. Liu, Classical sampling theorems in the context of multi-rate and polyphase digital filter bank structures, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.36, No.9, pp:1480-1495, 1988.
    [121] R. G. Shenoy, Nonuniform sampling of signals & applications, 1994 Proceedings-IEEE International Symposium on Circuits and Systems, Vol.2, pp:181-184, 1994.
    [122] M. D. Felder, J.C. Mason, B. L. Evans, Efficient dual-tone multi-frequency detection using the non-uniform discrete Fourier transform, IEEE Signal Processing Letters, Vol.5, No.7, pp: 160-163, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700