氡及其子体的释放和运移规律及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氡的释放和运移规律及机制研究是氡气测量的基础理论问题,它与氡在地球科学、环境科学等领域的广泛应用密切相关。本文从实验入手,采用静态、累积、高灵敏度的测氡方法,对氡及其子体在较理想条件下的释放和运移规律进行了实验研究,并从实验和理论上对氡释放和运移机制进行了探讨。
    实验发现,氡从铀矿物中的释放具有阵发性和自发性,并与铀矿物的种类、粒度大小等因素有关。其机制是:由于铀矿物内部空隙发育各异,Ra经α衰变放出Rn和He,待其在矿物内部空隙聚集到一定压力时,才能由空隙溢出,这是导致铀矿物释放氡呈阵发性和自发性的内因。
    实验还发现,氡及其子体的分布具有明显的方向性,而与扩散规律相违背。在向上,向下,横向各为4m的实验条件下,纵向运移能力远大于横向运移能力,向上运移能力也大于向下运移能力:其端点向上,向下,横向运移计数比分别为66%:31%:3%; 向上、向下及横向总计数的对比结果是:54%:35%:11%; 总运移量的对比结果是:54%:34%:12%; 运移系数的结果是:向上0.184cm~2s~(-1),向下0.094cm~2s~(-1),水平0.015cm~2s~(-1); 运移速度的结果是:向上220.4×10~(-6)cm/s,向下181.3×10~(-6)cm/s,水平58.3×10~(-6)cm/s。氡及其子体比重虽很大,但其“自身”却具有明显的向上运移能力,其机制是:氡及其子体经α衰变所放出的α粒子减速后,将成为He核,He核可与氡及其子体形成团簇,当团簇在介质中所受的浮力大于其重量时,团簇便能自行上升。在氡运移机制研究中,借助铀矿石产生的氡和液体镭源产生的氡形成的4He之差异,进一步验证了氡-氦团簇运移现象。论文还建立了氡运移理论分布方程,应用该理论方程对运移实验数据进行了计算,取得了较满意的结果。
The study of radon release and migration is the basic theoretical issue for radon measurement, which has close relationship with extensive applications in geoscience, environmental science and so on. In this thesis, the laws of the release and migration of radon and its daughters have been studied in laboratory conditions using the accumulative radon-measurement method in a static state with high sensitivity. The mechanism of release and migration of radon and its daughters has been studied by experimentation and theory.
     According to our experiments we find: The release of radon from uranium mineral is characterized by erratic and spontaneous features and is related to the uranium mineral’s category, granularity and so on. Because of the variety of porosity in uranium mineral’s interior, the radon and helium, which are brought by the emission of α-particles of radium, cannot flood out of mineral body until they accumulate in mineral’s interior and the air pressure goes beyond the limit. This is the inherent cause for the release of radon from uranium mineral characterized by erratic and spontaneous features.
    The migration of radon and its daughters is directional, and contravenes the law of the diffusion. On the condition that upwardness, downwardness and horizontalness reach respectively 4m, the ability of radon and its daughters to move vertically is much greater than its ability to move horizontally, while its ability to rise is obviously greater than its ability to fall. As far as upwardness, downwardness and horizontalness are concerned, the percentages of migration measurements results for each end point are respectively 66%, 31% and 3%; The average percentages are respectively 54%, 35% and 11%; The percentages of total volume of migration are respectively 54%, 34% and 12%; The migration coefficients are respectively 0.184cm2s-1, 0.094cm~2s~(-1) and 0.015cm~2s~(-1); The migration velocities are respectively 220.4× 10~(-6)cm/s, 181.3×10~(-6)cm/s and 58.3×10~(-6)cm/s. Radon and its daughters possess the ability to rise although the specific gravity of radon and its daughters is high. The mechanism is: after α-particles emitted by radon and its daughters decelerate, they become He nucleus. The He nuclei can combine with radon and its daughters and form clusters. Because He is very light, it can make the specific gravity of the clusters lower than their buoyancy in the medium. As a result, the clusters will rise of their own accord. The mechanism of radon-helium cluster migration is further verified by the difference of quantity of 4He emitted from uranium ore and liquid radium source in the course they release radon. The theoretical distribution equation is established to describe radon migration and the results of calculation with the equation are satisfactory.
引文
[1] EPA Discovers radon, Nature, Vol.322, 28, 1986
    [2] Reimer, G.M., The occurrence and transport of radon in the natural environment, Geophysical Research Letters, Vol.17, N6, 799, 1990
    [3] Durance, E.M., Radioactivity in Geology, 1986
    [4] НОВИКОВ, Г.Ф., Радиометрическая разведка, 1989
    [5] Gingrich, J.E., Radon as a geochemical exploration tool, Journal of geochemical exploration, Vol.21, 1984
    [6] 崔林沛,对美国物探的几点认识,国外地质勘探技术,No.7,1989
    [7] 贾文懿,放射性物探的科技进展,物探与化探,No.5,1989
    [8] 汪成民等,断层气测量在地震学中的应用,1991
    [9] Singh, B., et al., Investigation of radon-222 in soil-gas as an earthquake precursor, Nuclear Geophysics, Vol.8, N2, 1989
    [10] Papastefanon, C., et al., Radon flux measurements along active faults, Nuclear Geophysics, Vol.9, No.5, 1995
    [11] Espahbod M.R., 氡气在工程地质学中的应用—一种新的试验方法,地质科技动态,No.2, 1993
    [12] Olast M., 等,欧共体的氡研究计划,物探化探译丛,No.1, 1995
    [13] 赵亚民等,环境氡来源及危害,1990
    [14] J.E.Gingrich, Radon as a geochemical exploration tool, Journal of Geochemcial Exploration, Vol.21, 19-13, 1984
    [15] Takao Lida, et al., Vertical Distribution of Radon Concentration in the Atomosphere, Proceedings of the 7th Tahwa University International Symposium, 1997
    [16] 苏尔坦霍贾耶夫А?И等,放射性气体在研究地质过程中的应用,地震出版社,1983
    [17] Thomas M.Semkow and Pravin P.Parekh, The role of Radium distribution and porosity in Radon emanation from solids, Geophysical Research Letters, Vol.17, No.6, 1990
    [18] О.Б. Нещеткин, 马占中译,氡运移的机制问题,国外铀矿地质,No.2, 42-43, 1987
    [19] Malmqvist L., et al., Radon migration through soil and bedrock, Geoexploration, No.26, 1989
    [20] 吴慧山等,氡迁移的接力传递作用,地球物理学报,Vol 40, No. 1, 1997
    [21] Kristiansson K., et al., Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport, Geophysics, Vol.47, No.10:1444-1452, 1982
    [22] Abdoh A., et al., Radon emanation studies of the Ile Bizad Fault, Montreal, Geoexploration No.25, 1989
    [23] Varhegyi A., et al., Experimental study of radon transport in water as test for a transportation microbubble model, Journal of applied geophysics, Vol.9, 1992
    [24] Technology Today, Geogas prospecting method highlighted in stockholm, Mining Journal, June, 1987
    [25] Technology Today, Czech work on metallic emanations, Mining Journal, April, 1988
    [26] Tidjani A., et al., Realization of a simulator for radon-222 underground migration studies, Nuclear Instruments and Methods A255, 423, 1987
    [27] Vandergraaf T.T., Radionuclide migration experiments under laboratory conditions, Geophysical research letters, Vol.22, No. 11:1409-1412, 1995
    [28] Holford D.J., et al., Modeling radon transport in dry, cracked soil, Journal of geophysical research letters, Vol.08, NB1, 1993
    [29] Chen C., et al., Modeling of radon transport in unsaturated soil, Journal of geophysical research, Vol.100, No.8, 1995
    [30] Соколов М.М., идр., Омеханизме лереноса радона в горных лородах и глубинности эманационных ме-тодов поисков радиоактивных руд, Атомная энер-гия, Т.49, В.3:176-179, 1980
    [31] Kristiansson, K. and Malmqvist, L., Evidence for Nondiffusive Transport of 222Rn in the Ground and a New Physical Model for the Transport, Geophysics 47, 144-1452, 1982
    [32] Porstend?rfer, J.,Properties and behaviour of radon and thoron and their decay products in the air, In:5th International symposium on the Natural Radiaton Environment, ISSN 1018-5593(Report EUR 14411 EN),1994
    [33] M. Oostrom, R.J. Lenhard, Radon transport into dwelling: considering ground water as a source, Geophysical Research Letters, Vol.23, No.13, 1996
    [34] G.Martinelli, Gas Geochemistry and 222Rn Migration Peocesses, Radiation Protection Dosimetry, Vol.78, No.1:77-82, 1998
    [35] L.Sesana, L.Barbieri, U.Facchini and G.Marcazzan, 222Rn as a tracer of atmospheric motion, Radionation Protection Dosimetry, Vol.78, No.1, 1998
    [36] A.Mohammed, Activity Size Distributions of Short-lived Radon Progeny in Indoor Air, Radiation Protection Dosimetry, Vol.86, No.2, 1999
    [37] S.Tokonami, Determination of the Diffusion Coefficient of Unattached Radon Progeny with a Graded Screen Array at the EML Radon/Aerosol Chamber, Radionation Protection Dosimetry, Vol.81, No.4, 1999
    [38] D.Nikezic and K.N.Yu, Determination of Deposition Behaviour of 218Po from Track Density Distribution on SSNTD in Diffusion Chamber, Nuclear Instruments and Methods in Physics Research, A 437, 1999
    [39] G.Butterveck-Dempewolf, et al., Intercomparison of Approximation Algorithms for the Determination of the Size Distribution of the “Unattached” Fraction of Radon Progeny, Aerosol Science and Technology 33:262-273, 2000
    [40] A.M.Brasil, et al., Evaluation of the Fractal Properties of Cluster-Cluster Aggregates, Aerosol Science and Technology, Vol.33, No.5, 2000
    [41] 白云生,林玉飞,常桂兰,铀矿找矿中的氡的迁移机制探讨,铀矿地质,Vol.11, No.4, 1995
    [42] 刘庆成,环境氡理论与应用研究,北京科技大学博士后研究工作报告,1998
    [43] 贾文懿等,放射性勘察工作手册,1993
    [44] 贾文懿,方方,周蓉生,氡及其子体运移规律与机理研究,核技术,Vol.23,No.3,2000
    [45] 贾文懿等,理想条件下氡及其子体运移规律研究,成都理工学院学报,Vol.26,No.1,1999
    [46] 刘鸿福,氡及其子体运移的实验研究与机理探讨,成都理工学院博士论文,1997
    [47] 葛君伟,放射性方法找寻油气藏的理论、方法及应用,成都理工学院博士论文,1991
    [48] 刘英俊等,元素地球化学,科学出版社,1984
    [49] Gordon W.F.Drake, M.L.Mandich, Atomic, Molecular, &Optical Physics Handbook, American Institute of Physics Press, 1995
    [50] 张智慧,空气中氡及其子体的测量方法,原子能出版社,1994
    [51] 贾文懿,许必文,苗放,方方,便携式常压空气脉冲电离室α辐射仪,地球物理学报,33(3),1990
    [52] 邱元德等,活性炭测氡法的特点,核技术,Vol.19,No.9,1996
    [53] Saeed A. Durrani and Radomir Ilié, Radon measurements by etched track detectors, World Scientific Publishing Co. Ltd. P.8, 1997
    [54] 贾文懿,方方等,氡及其子体向上运移的内因与团簇现象,成都理工学院学报,26(2),1999
    [55] 成都地质学院翻译教材,铀矿床放射性勘探,1974
    [56] L.Morawska and M.Jamriska, Determination of the Activity Size Distribution of Radon Progeny, Aerosol Science and Technology, 26:5, 1997
    [57] A.El-Hussein, A.Mohammed and A.A.Ahmed, A Study on Radon and Radon Progeny in Surface Air of El-Minia, Egypt, Radiation Protection Dosimetry, Vol.78, No.2, 1998
    [58] Озима, М., Подосек Ф., Геохимия благородных газов, 1987
    [59] 赵凯华著,定性与半定量物理学,高等教育出版社,1991
    [60] Proceedings of the 5th International Meeting on Small Particles and Inorganic Clusters, Z. Phys. D. 19-20, 1991
    [61] Proceedings of the 6th International Meeting on Small Particles and Inorganic Clusters, Z. Phys. D. 26-26S, 1993
    [62] P. Jena, S.N. Khanna, and B.K.Rao, Physics and Chemistry of Finite Systems: From Clusters to Crystals,Vol.1&2, Kluwer Academic Publishers, 1992
    [63] V.Kumar, T.P.Martin, and E.Tosatti, Clusters and Fullerence, World Scientific, 1993
    [64] M.Joppien, R.Karbach, and T. Moller, Phys. Rev. Lett., 71, 2654, 1993
    [65] [美]理查特·丹尼斯编,气溶胶手册,原子能出版社,1988
    [66] 周蓉生等,核方法原理及应用,1994
    [67] 舒祥泽等,用测氡法在地表探测煤矿地下火源位置的研究,1992
    [68] 史勇等,以氡报震的力学基础—氡与固体潮的关系,地震学报,Vol.15, No.1, 1993
    [69] 王学求等,地气动态提取技术的研制及其在寻找隐伏矿上的初步试验,物探与化探,Vol.19, No.3, 1995
    [70] 刘庆成等,空气中氡浓度的预测,物探与化探,Vol.19, No.6, 1995
    [71] 张远程等,高温热水孔逸出气氡观测实验研究,地震,No.6, 1994
    [72] 地震气体地球化学的基础研究,国际地震动态,No.7, 1994
    [73] 岩石破裂与氡含量变化关系的实验研究,地球物理学报,No.4, 1977
    [74] 石玉春等,土壤氡浓度随气象因素变化规律及其应用,中国科学(D),(11)1190, 1994
    [75] 吴慧山等,氡测量方法与应用,原子能出版社,1995
    [76] 张同伟,王先彬,天然气运移的气体组分的地球化学示踪,沉积学报,Vol.17,No.4,1999
    [77] 陈凌,黄隆等,累积法测量土壤氡析出率的模拟计算,辐射防护,Vol.20,No.4,2000
    [78] 卫敬生,地球化学测汞方法应用讨论,物探与化探,Vol.22,No.6,1998
    [79] 贾文懿,周蓉生等.核方法全谱测量快速分析技术及应用研究,国土资源部科技报告,1999
    [80] V.Gómez Escobar, F.vera Tomé, J.C. Lozano, Procedures for the determination of 222Rn exhalation and effective 226Ra activity in soil samples, Applied Radiation, Vol.50, No.6, 1999
    [81] Salvatore de Martino, Cardo Sabbarrese, Giulia Monetti, Radon Emanation and Exhalation Rates from Soils Measured with an Electrostatic Collector, Applied Radiation and Isotopes, Vol.49, No.4, 1998
    [82] Tadeusz Andrzej Przylibski, Estimating the radon emanation coefficient from crystalline rocks into groundwater, Applied Radiation and Isotopes, Vol.53, No.3, 2000
    [83] Richard P. Turco, Jingxia Zhao, Fangqun Yu, A New Source of Tropospheric Aerosols: Ion-ion Recombination, Geophysical Research Letters, Vol.25, No.5, 1998
    [84] Richard P. Turco, The role of ions in the formation and evolution of particles in aircraft plumes, Geophysical Research Letters, Vol.24, No.15, 1997
    [85] Fangqun Yu, Richard P. Turco, Ultrafine aerosol formation via ion-mediated nucleation, Geophysical Research Letters, Vol.27, No.6, 2000
    [86] Weber, R.J., et al., Measurement of new particle formation and ultrafine partice growth rates at a clean continental site, Journal of geophysical research, Vol.102, 4375-4385, 1997
    [87] Yu, F., R.P. Turco, B. Kracher, The possible role of organics in the formation and evolution of ultrafine aircraft particles, Journal of geophysical research, Vol.104, 4079-4087, 1999
    [88] Jenping Chen, Particle nucleation by recondensation in combustion exhausts, Geophysical Research Letters, Vol.26, No.15, 1999
    [89] Butterweck G., A. Reineking, J. Kesten, J. Portstend?rfer, The use of the natural radioactive noble gases radon and thoron as tracers for the study of turbulent exchange in the atmospheric boundary layer—case study on and above a wheat field, Atmospheric Environment 28, 12, 1963-1969, 1994
    [90] Lehmann B.E., M. Lehmann, et al., Use of temporal variations of radon activities in soil gas depth profiles for calibrating trace gas exchange in agro-ecosystems, In Isotope Techniques in the Study of Environmental Change, IAEA Symposium IAEA-SM-249/48, Proceedings 717-725, 1997
    [91] Rogers, V.C., K.K. Nielson, Multiphase radon generation and transport in porous materials, Health Physics, 60, 807-815, 1991
    [92] Nazaroff, W.W., Radon transport from soil to air, Reviews of Geophysics, 30, 137-160, 1992
    [93] Loureiro, C.O., L.M. Abriola, J.E. Martin, R.G. Sextro, Three-dimensional simulation of radon transport into houses with basements under constant negative pressure, Environmental Science Technology, 24, 1338-1348, 1990
    [94] Bernhard E. Lehmann, Martin Lehmman, Radon-220 Calibration of Near-Surface Turbulent Gas Transport, Geophysical Research Letters, Vol.26, No.5, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700