滕北矿区水文地质特征及岩溶陷落柱发育规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶陷落柱系指坚硬的非可溶性岩层向下伏岩溶洞穴坍塌的老基岩塌陷。岩溶陷落柱不仅给地面工程带来危害,而且也可对地下采矿造成严重影响。就煤矿生产而言,岩溶陷落柱的存在,由于其形状、大小不一,内部地层杂乱无章,破坏了煤层的连续性,给煤矿的井巷工程布置与施工、采煤方法及采掘机械的选择等增加了相当大的困难。每年由此而造成的经济损失高达数亿元人民币。岩溶陷落柱有可能穿透地下含水层,在井下一旦被导通,便会给煤矿生产造成不堪设想的严重后果;还可能使其周围煤炭氧化,从而失去可采价值,减少井田的煤炭储量,使得矿井服务年限缩短,甚至可造成报废井巷工程的重大经济损失。地下水径流条件不仅影响岩溶陷落柱导水能力的强弱,而且直接控制强导水型岩溶陷落柱的分布。但并非所有岩溶陷落柱都可构成充水通道,只有处在现代岩溶水强径流带和集中排泄带并隐伏埋藏在地下水头面以下者,才能构成突水的潜在威胁,造成突水危害。导水性极强的岩溶陷落柱是底板岩溶裂隙水的重要充水通道,必须加以重视和研究。因此进行滕北矿区水文地质特征研究,阐明地下水径流条件,研究陷落柱的位置和导水性、进行陷落柱导水性类型划分是本课题的主要任务。
     滕北煤田位于滕县背斜西北翼,凫山断层和张坡断层之间,其地质构造控制着本区的煤层及地下水的赋存和运动规律,进而影响本区的岩溶陷落柱的形态及分布规律。本文拟以《滕北矿区水文地质特征及岩溶陷落柱发育规律研究》为题目,通过对滕北矿区的地质构造情况、水文地质条件、地下水的水化学特征及补、径、排条件等因素的分析,结合陷落柱理论,同时对滕北矿区岩溶陷落柱的内部物质特征、外部形态、突水机理等,从点到面进行综合分析,进而探索总结滕北矿区岩溶陷落柱的成因和发育规律。
The karstic collapse column is the old bedrock subside which the stiff non-dissolubility rock caved in subjacent karst cave. It is not only harm for the ground project also serious influence to underground mining. Speaking of the coal mine production , the karstic collapse column as its shape , size and internal stratum was chaotic ,destroyed the coal bed continuity ,which increased largish difficulty to the arrangement and construction of well lane , the mining coal method and the choice of excavated machinery. Which cause the economic loss to several hundred million Yuan every year . It has not obvious sign in the surface but it is harm to the regular production of coal mine and the local resident lives . The karstic collapse column can possibility penetrate the underground water-bearing stratum which is led in once , that will have serious consequence to the coal mine production, it will cause the periphery coal be oxidation which will loss the exploitation value , and the coal reserves will reduce , the mine' s service life will reduce and even the well lane project will not be used , all the above is the largest economic loss. The ground water runoff condition not only influences the karstic collapse column' s water conducted, moreover controls the distribution of strang water conducted karstic collapse column. Not all the karstic collapse column will bring harm except present strang runoff strap and concentrate drainage strap . The strang water conducted karstic collapse column is the important passage ,which should be attached importance to and studied on . So. that we must detect the karstic collapse column; carry on the correlation preventive measure purposefully ; eliminate the security hidden danger, and recall the economic loss, all that has the vital significance to the coal mine economic efficiency.
    The mining area of TengBei is in the northwest wing of Teng county anticline , between FuShan fault and ZhangPo fault . The geologic structure cortrols coal bed and groundwater' s preservation and the movement rule of the research area, and it affects the development law and shape and distributed rule of the karstic
引文
1.杨为民,周治安,李智毅.岩溶陷落柱充填特征及活化导水分析[J],中国岩溶,2001,20(4):279-283.
    2.李增学.矿井地质与资源环境[M].北京:地质出版社,2004:51-54
    3.王锐.华北地区岩溶陷落柱的成因探讨[J],水文地质与工程地质,1982,9(1):37-414.
    4.唐岱茂,刘鸿福,段鸿杰等.氡气测量用于地表探测岩溶陷落柱的位置与范围[J],核技术,1999,22(4):21-24.
    5.赵同谦.峰峰矿区西北部岩溶陷落柱的成因及其发育规律探讨[J],焦作矿业学院学报,1994,13(2):40-44.
    6.李佩全.淮南矿区水防治工作的思考[J],煤炭科技,2005,(5):42-43.
    7.郭达志,盛业华,金学林等.矿区岩溶陷落柱探测中遥感与地理信息系统技术的应用研究[J],测绘学报,1994,23(2):113-119.
    8.李长有,于福清.沈南煤田岩溶陷落柱及其导水性特点[J],东北煤炭技术,1995,(5):14-17
    9.冯玉明.太原西山隐伏岩溶区陷落柱的成因及其水文地质意义分析[J],山西水利科技,1996,(5):168-120.
    10.王建谱.土壤样氦气测量在勘查隐伏陷落柱及找深部铀矿中的应用研究[J],铀矿地质,1994,10(3):154-157.
    11.张永双等.试论断陷盆地中陷落柱的形成溶化及分布规律[J],自然灾害学报,1998,7(3):39-43.
    12.刘泰峰,安海忠,亢俊健等.陷落柱地表氡气场成因探讨[J],煤炭工程,2002,(12):41-44.
    13.杨为民,周治安.岩溶陷落柱岩体结构分析[J],淮南矿业学院学报,1997,17(2):82-86.
    14.吴小平,赵鸿儒.我国工程多波地震勘探研究与应用现状[J],地震学报,1996,18(2):144-148.
    15.郭达志,盛业华,金学林等.岩溶陷落柱综合探测的基本原理与方法[J],煤炭学报,1994,19(6):166-168.
    16.尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[Jj,岩石力学与工 程学报,2005,24(1):77-82.
    17.钟亚平.开滦煤矿防治水综合技术研究[M],北京:煤炭工业出版社,2001:212-230.
    18.刘国林,黄万新.华北型煤田岩溶陷落柱发育分布规律研究[J],河北建筑科技学院学报,1997,14(2):29-32.
    19.尹尚先,武强.华北煤矿区岩溶陷落柱特征及成因探讨[J],岩石力学与工程学报,2004,23(1):120-123.
    20.张宝柱,陈振东.华北型煤田岩溶陷落柱分布规律及其水文地质意义[J],阜新矿业学院学报,1996,15(3):295-298.
    21.吕朋菊,张永双,张明利等.鲁西煤田岩溶陷落柱的发育特征[J],山东矿业学院学报,1998,17(3):217-223.
    22.尹尚先,武强,王尚旭.范各庄矿井地下水系统广义多重介质渗流模型[J],岩石力学与工程学报,2004,23(14):2319-2325.
    23.盛业华,郭达志.GIS支持下矿区岩溶陷落柱的综合探测技术[J],中国安全科学学报,1998,8(4):22-25.
    24.盛业华、郭达志.遥感与地理信息系统技术在晋城矿区陷落柱探测中的应用[J],遥感技术与应用,1993,8(2):25-31.
    25.洪雷.大同四台井田岩溶陷落柱发育规律的研究[J],矿业安全与环保,2006,(30):217-218.
    26.孙淑云.对我国岩溶地质状况的几项分析[J],内蒙古科技与经济,2005,(3):105-106.
    27.仵彦卿.岩体结构类型与水力学模型[J],岩石力学与工程学报,2000,19(6):687-691
    28.尹尚先,武强,王尚旭.华北煤矿区岩溶陷落柱特征及成因探讨[J],岩石力学与工程学报,2004,23(1):120-123.
    29.煤炭科学研究总院西安分院,峰峰矿务局,鹤壁矿务局等.华北型煤矿奥灰水防治[M].西安:陕西人民出版社,1990:267-275.
    30.中国科学院地质研究所.中国煤矿岩溶水突水机理的研究[M].北京:科学出版社,1992:248-253.
    31.刘国林,周文国,黄万新.华北型煤田岩溶陷落柱发育规律及其对煤矿安全影响的研究[J],华北矿业高等专科学校学报,2001,3(4):22-24.
    32.肖裕行等.裂隙岩体水力特征数值模拟试验的初步结果[J],工程地质学报,1999,7(3):82-88.
    33.陈钢,梁京华.孙千等.采空超声波正演物理模拟[J],煤田地质与勘探,1995,23(4):54-59.
    34.陈钢,许维进,梁京华等.浅层地震采空区探测计算机仿真正演[J],煤炭学报,1996,21(1):18-23.
    35.董其成,高文泰,宋书年等.煤田陷落柱对地震波场影响的超声模拟[J],煤炭学报,1993,18(6):72-81.
    36.董其成,赵鸿儒.非均质矿体地震模型的衍射、转换波及次生波研究[J],地球物理学报,1994,37(2):228-237.
    37.尹尚先,武强,王尚旭.华北岩溶陷落柱突水的水文地质及力学基础[J],煤炭学报,2004,29(2):182-185.
    38.中国煤田地质总局.中国煤出水文地质学[M],北京:煤炭工业出版社,2000:277-283.
    39.尹尚先,武强,王尚旭.陷落柱突水模式及理论判据[J],岩石力学与工程学报,2004,23(6):1068-1071.
    40.唐大荣.地面岩溶塌陷的高分辨地震勘查[J],物探与化探,1994,18(1):35-39.
    41.石国栋,宋旺,刘伯.开栾煤矿岩溶陷落柱的发育特征及规律研究[J],中国煤田地质,2004,16(5):52-54.
    42.马在田.当前反射地震学研究中的问题浅析[J],地球物埋学进展,1994,9(1):84-86.
    43.尹尚先,武强.煤层底板陷落柱突水模拟及机理分析[J],岩石力学与工程学报,2004,23(15):2551-2556.
    44。贾贵廷,胡宽容.华北型煤田陷落柱的形成及分布规律[J],中国岩溶,1989,8(4):261-266
    45.武强,金玉洁等.华北型煤田矿井防治水决策系统[M],北京:煤炭工业出版社,1995:222-226.
    46.黄大熊.西山煤田陷落柱形成机理与预测[D],安徽淮南:淮南矿业学院,1986:36-38
    47.杨为民,周治安.岩溶陷落柱形成的岩体力学条件[J]煤田地质与勘探,1997,25(6):31-33
    48.褚志忠.陷落柱伴生断层特征及陷落柱预测[J],煤田地质与勘探,1998,26(3):123-125.
    49.龙荣生.矿井地质学[M],北京:煤炭工业出版社,1991:121-125.
    50.尹尚先.煤矿区突(涌)水系统分析模拟及应用[D],北京:中国矿业大学,2002:45-46
    51.开滦矿务局等.开滦范各庄矿岩溶陷落柱特大突水灾害的治理[J],煤田地质与勘探,1986,14(2):46-48.
    52.王则才.陷落柱成因及预防初探[J],矿业安全与环保,2001,2(8):172-175.
    53.司海宝,杨为民,吴文金.岩溶陷落柱发育的地质环境及导水类型分析[J],煤炭工程,2004,(10):52-55.
    54. Faria Santos C, Bieniawski Z T. Floor design in underground mines[J], Rock Mechanics and Rock Engineering, 1989, 22(4): 226~249
    55. Arguello J G, Stone C M, Lorenz J C. Geomechanical numerical simulations of complex geologic structures[A]. In: Aubertin M, Hassani F, ed. Rock Mechanics [C]. Rotterdam: Balkema, 1996:1841-1848
    56. Jorge M, Javier S, Ruben J. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks[J], Eng. Geol., 2002, 64(4): 369-386.
    57. Hatzor Y H, Talesnick M, Tsesarsky M. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel[J], Int. J. Rock Mech. Min. Sci, 2002, 39(7): 867-886
    58. Itasca Consulting Group Inc. FLAC User's Manual[J], State University of Minnesota, 1997,8(3):451-456
    59. Pariseau W G Applications of finite element analysis to mining engineering[A]. In: Hudson J A ed. Comprehensive Rock Engi-neermg[C]. Oxford: Pergamon Press, 1993: 491-522.
    60. Jury W A. Simulation of solute transport using a transfer functions model[J], Water Resour.Res, I982, 18(2): 363-368.
    61. Johns H. digital image processing for rock joint surface studies[J]. PE&RS., 1988, (4): 395-400.
    62. Warrick A Wbiggar J Wand Nielsen D R. Simultaneous solute and water transfer for an unsaturated soil [J], Water Resour.Res., 1971, 7(5): 1216-1225.
    63. Bresler E. Simultaneous transport of solute and water under transient unsaturated flow conditions [J], Water Resour. Res.,1973, 9(4):975-986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700