地表水水源热泵系统节能问题及适用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和技术的发展以及能源和环境问题的日益突出,地表水源热泵空调系统将得到越来越多的关注和应用。在我国长江上游区域江河、湖泊、水库等地表水资源非常丰富,为地表水水源热泵的应用提供了优越的自然条件,然而目前地表水水源热泵的设计和应用中,还存在一些问题,输配系统能耗过大问题尤为突出,这使得水源热泵系统的节能效果降低,设计不合理的系统甚至不再节能。本文的研究旨在针对水源热泵系统能耗问题,提出降低系统能耗、提高能效的原则和方法。
     本文介绍了水源热泵系统的构成,并分析了水源热泵系统各个部件的影响因素;以水源热泵综合节能实验平台为例,建立该系统热泵机组能效比模型及冷却水泵能耗模型、冷冻水泵能耗模型;并利用该试验平台对不同工况下机组能效、冷却水泵、冷冻水泵能耗进行测试,与模型计算值比较,误差较小,模型正确。基于已建立的模型,对四种不同运行模式下机组以及系统能效变化规律进行研究,得出各因素对各运行模式下机组及系统能效比的影响情况;并以系统整体能效最佳为目标,利用MATLAB软件得出各负荷率下热泵机组及水泵的最佳运行方式。
     以常规空调系统(含冷却塔)为比较对象,从冷却水取水温度、取水高差,费用年值三个方面分析水源热泵系统在工程中的适用性;通过系统能耗模型得出系统能效比随冷却水取水温度和取水高差变化的关系式,并结合系统能效比的限定值(常规空调系统能效比),提出地表水水源热泵临界取水温度和取水高差的概念及计算分析方法;考虑到空调费用由初投资和运行费用组成,本文利用费用年值法对两种空调系统进行比较,得出水源热泵系统年费更小。
     本论文分析冷却水进出口温差对冷却水泵能耗和热泵机组性能的影响;结合涪陵CBD水源热泵工程实例,建立冷却水泵和热泵机组能耗模型,得出总能耗最小时的冷却水最佳进出口温差,并据此得出在相同运行模式下,对比传统运行模式(冷却水进出口温差为5℃)得出其相对节能率。本论文研究提出的地表水水源热泵系统的能耗分析方法、节能措施及适用条件为地表水水源热泵系统的设计和节能运行提供了重要的理论依据。
With economic and technological development as well as energy and environmental issues have become increasingly prominent, the surface water source heat pump air conditioning system will be paid more and more attention. In China the Yangtze River basin and southern regions rivers, lakes, reservoirs and other surface water resources are very rich in the application of surface water source heat pump,so it provides a superior natural conditions, however, there are still some problems in the surface water source heat pump design and applications, especially the transmission and distribution system energy is too large, which makes water source heat pump system is not energy-saving, this study aims to address energy consumption of water source heat pump system,give the principles and methods to lower the energy consumption and improve energy efficiency of system.
     This article describes the composition of water source heat pump system, and analysis the influencing factors of the various components; According to a comprehensive energy-saving water source heat pump experimental platform to establish model of heat pump and cooling water pump energy consumption, chilled water pump model, Under different operating conditions, Using the test platform to test the unit energy efficiency, cooling water pumps, chilled water pump energy consumption, Compared with the model value from the value of the error small, the model is correct.
     Based on the established model, under four different operating modes ,study variation of unit and system energy efficiency. Obtain that various factors affect the situation of units and systems energy efficiency. And to the best overall system energy efficiency as the goal, has been a case study in energy-saving heat pump unit and pumps operating mode.
     Compared with conventional air conditioning systems (including cooling towers) , From the water temperature, water height difference, annual cost of three aspects, analysis applicability of water source heat pump system in the project. According to energy consumption model ,to be taken for water temperature and water height difference and the relationship between energy efficiency, combined with the energy efficiency of the system limit value(Conventional air conditioning system EER), and proposed surface water source heat pump water temperature and water height difference of critical analysis of the concept and calculation method. Taking into account air conditioning costs by the composition of the initial investment and operating costs, this article use annual cost method to compare the two air conditioning systems, water source heat pump systems draw smaller annual fee.
     This paper analyzes cooling water pump power consumption and heat pump performance is affected bythe import and export temperature difference of the cooling water;combined with water source heat pump engineering example-Fu Ling CBD Project,Obtained the best temperature difference of cooling water when total energy consumption reached the minimum, Under the same operating mode, relative energy saving rate of the best operation mode is worked out related to the traditional operation mode (temperature difference is 5℃). This thesis proposed surface water source heat pump energy consumption of raw water system analysis method, energy saving measures and applicable conditions for the surface water source heat pump system design and energy-saving operation to provide important theoretical basis.
引文
[1]何天祺.供暖通风与空气调节[M].重庆:重庆大学出版社, 2002. 3.
    [2] Enstrom. Some experience of heat pump in district heating networks[R]. In Proceedings of 16th International Congress of Refrigeration. Paris, 1983, 25-30.
    [3]郎四维,龙惟定,林海燕等.公共建筑节能设计标准宣贯辅导教材[M].北京:中国建筑工业出版社. 2005, 11.
    [4] J. A. Pietsch, Water-loop heat pump systems assessment[S], ASHRAE Trans, 96(1990) 1029- 1038.
    [5]龙惟定.试论我国暖通空调业的可持续发展[J].暖通空调, 1999, 29(3): 25-30.
    [6]孙吉民.城市燃煤供暖系统节能与环境、经济效益潜力巨大. http: //www. cee. com. cn /99daqilunwen/ 263. 5. htm, 2002-11-15.
    [7]刘光远,陈兴华.俄罗斯热泵新技术简介[J].能源研究与利用, 2001, (3): 17-19.
    [8]王念.空调二级泵系统负荷侧水力管网的优化分析[D].武汉:华中科技大学, 2004.
    [9]毕崇宁.暖通空调水系统效率优化策略研究[D].山东大学, 2008.
    [10]涂岱昕,李建兴,胡振杰.空调变水量系统变频的相关问题[J].流体机械, 2007, 35(1): 49-52.
    [11]陈涛.一次泵变流量系统机房侧能耗动态模拟及节能研究[D].湖南科技大学, 2008.
    [12]王寒栋.空调冷冻水泵变频能耗特性的研究[J].节能, 2003, (12): 10-12.
    [13]李洪斌.基于稳态模型的水源热泵在线优化系统研究[D],湖南大学, 2006.
    [14]李建兴,涂光备,涂岱昕.多泵并联水系统的技术经济分析[J].流体机械, 2004, 32(10): 38-41.
    [15]张谋雄.冷水机组变流量的性能[J],暖通空调, 2000, 06.
    [16]姚国梁.空调变频水泵节能问题探讨[J].暖通空调, 2004, 34(6): 32-34.
    [17]王凡,徐玉党.中央空调水系统变流量分析及其改进[J].建筑热能通风空调, 2006, 25(1), 49-52.
    [18]陈晓,张国强,林宣军.南方地区开式湖水源热泵的应用[C]. 2005年全国空调雨热泵节能技术交流会论文集,大连, 2005.
    [19]重庆建委网站.关于重庆大剧院被列为示范项目的公告. http: //www. ccc. gov. cn/jgzn/index. html, , 2008. 12.
    [20]江训昌.空调冷水系统的沿革与变流量一次泵水系统的实践[J].暖通空调, 2006 36(7): 32-40.
    [21]孙一坚.空调水系统变流量节能控制[J].暖通空调, 2001, 31(6): 5-7.
    [22]一次泵变流量技术深入讨论一网易暖通首届高层论坛,网易暖通.(http: //co. 163. com), 2007, 4.
    [23]孟彬彬,朱颖心,林波荣.部分负荷下一次泵水系统变流量性能研究IJ].暖通空调, 2002, 32(6): 108-110.
    [24]朱伟峰,江亿.一次泵冷冻水系统直接应用变频的模拟分析及工程应用[J].制冷与空调, 2003, 3(l): 25一31.
    [25]李彬,肖勇全,李德英等.变流量空调水系统的节能探讨[J].暖通空调, 2006, 36(l): 132- 136.
    [26]刘晓梅,孙淑芬.变流量空调冷却水系统的技术探讨[J].能源工程, 2001, (2): 7-9.
    [27]陈剑,李斌.冷却水系统变流量可行性研究Ic].全国暖通空调制冷2004年学术文集, 188-193.
    [28]李苏珑,邹娜.空调冷却水变流量控制方法研究[J].暖通空调, 2005, 32(5): 51-54.
    [29] Schwedler, Mick. Variable primary-flow systems[J]. Heating, Piping, Air-conditioning Engineering. 2000, 72(4): 41-44.
    [30] Hartman, Thomas B. design issues of variable chilled-water flow throchillers[J]. ASHRAE Transaetions, 1996, 102(2): 679-683.
    [31] Redden, George H. Effect of variable flow on centrifugal chiller performance[J]. ASHRAE Transaetions, 1996, 102(2): 684-687.
    [32]托马斯B.哈特曼.冷水机利用变流量冷冻水的若干设计问题[J],暖通空调, 1997, 27(3): 29-33.
    [33] Peterson, Kent W . Variable primary-flow chilled-water-plant conversion[J]. Heating, Piping, Air-conditioning Engineering. 2004, 76(3): 10-12, 15.
    [34] Schwedler, Mick. Variable primary-flow in chilled-water systems[J]. Heating, Piping, Air-conditioning Engineering. 2000, 72(4): 41-44.
    [35] Bahnfleth, William P Varying views on variable-primary-flow chilled-wate systems[J]. Heating, Piping, Air-conditioning Engineering. 2004, 76(3): 5-9.
    [36] Reindl, Douglas T. Using variable speed drives for evaporative condensers[J]. ASHRAE Journal, 2005, 47(8): 18-24.
    [37] Xing Shun Gao. Energy consumption of HVAC variable-speed pumping systems[D]. Alabama: Doctor, sthesis of the University of Alabama. 2002
    [38] Powell, R. Variable flow hot water heating systems a wonderful technology[J]. Journal of the Association of Energy Engineering, 2002, 99(l): 74-79.
    [39] Moses, Terry. Variable-Primary- flow: Important lessons learned[J]. Heating Piping, Air-Conditioning Engineering, 2004, 76(7): 40-43.
    [40]方彦军.集中空调循环水系统变频调节节能技术研究[J].武汉大学学报(工学版), 2002, 35(l): 59-60.
    [41]罗新梅,周向阳,曾祖铭.水泵变流量运行性能分析[J].华东交通大学学武汉科技报, 2004, 21(4): 19-21.
    [42]林红英.变频控制在宝钢纯水系统中的应用[J].电力需求侧管理, 2004, 6(l): 47-49.
    [43]王庆丰,李国安,苗国宽.锅炉风机变频调节应用实践[J].节能技术, 2004, 22(1): 57-58.
    [44]李苏垅.一次泵系统冷水变流量节能控制研究[J].暖通空调, 2006, 32(7): 72-75.
    [45] Ahmedo. DDC application in variable-water-volume systems[J], ASHRAE Transactions, 1991, 97(1): 751-758.
    [46]曹琦,傅明星,谢明华.空调供水系统变频控制的节能[J].自动化博览, 2005, 36(9): 31- 32.
    [47]郑东林.大温差空调水系统的应用研究[D],上海,同济大学, 2006, 03.
    [48]张言军.地表水水源热泵输配系统节能问题研究[D].重庆,重庆大学, 2009, 11.
    [49]彦启森.空气调节用制冷技术[M].北京:中国建筑工业出版社, 1999.
    [50]金权,端木琳,舒海文,敖永安,寇伟.蒸气压缩式热泵与冷水机组模型回顾及探讨[J].制冷与空调, 2007, 10: 6-10.
    [51]夏建军.建筑环境设计模拟分析软件DeST-第9讲冷热源与水系统模拟分析(上)[J].暖通空调, 2005, 03.
    [52]丁国良,张春路.制冷空调装置仿真与优化[D].北京:科学出版社, 2001.
    [53]缪道平,吴业正.制冷压缩机[D].北京:机械工业出版社, 2001.
    [54]李鹏翔,戎卫国.水源热泵机组的变工况特性研究[J].流体机械2004. 8: 50-53.
    [55] Michel A, Bernier, Bernard Bourret. Pumping Energy and Variable Frequency Drivers[J]. ASHRAE J, 1999, (12): 37-40.
    [56]网易博客.非线性方程组求解算法. http: //blog. 163. com/prevBlogPerma. do? host= zhh- 1987 & srl=238352602008411858836 & mode=prev, 2008, 5.
    [57] MATLAB 7使用说明书.
    [58]谢爱霞,蒋小强.适用变工况模拟的螺杆式冷水机组模型[J].制冷, 2009, 4: 30-35
    [59]台佳水源热泵机组样本.
    [60]机械工业部冷冻设备标准化技术委员会编.制冷空调技术标准应用手册[D].北京:机械工业出版社, 1998.
    [61]江亿,薛志峰.既有建筑节能诊断与改造[M]. 2006, 5.
    [62]杨李宁.重庆市公共建筑集中空调工程设计能效比限制(夏)[J],工程设计, 2007(5)
    [63] Henry Malcolm Steiner.工程经济原理[M].北京:经济科学出版社, 2000.
    [64] Parson R. ASHRAE Handbook-Fundamentals. Atlanta(USA): ASHRAEIne, 1985, Chapter2.
    [65]章熙民.传热学[M].北京:中国建筑工业出版社, 2001.
    [66] WayneKirsner, P. E. Designing for 42℉ chilled water supply temperature-Does it save energy[J]. ASHRAE Journal, 1998, 1: 37-42.
    [67]吴晓艳.公共建筑空调系统的节能设计与优化管理[D],长沙,湖南大学, 2006, 05.
    [68]符永正.管路特性对泵与风机变速调节节能效益的影响[J].中国给排水. 1999, 15(9): 26-28.
    [69]邹娜.空调一次泵水系统变流量节能分析[D].南京,南京理工大学, 2005, 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700