湖水源热泵系统水体热承载能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和技术的发展以及能源和环境问题的日益突出,地表水源热泵空调系统将得到越来越多的关注和应用。在我国长江流域和南方地区江河、湖泊、水库等地表水资源非常丰富,在我国大力发展地表水源热泵意义重大。地表水源热泵的应用需要有适宜的水源,且特定地表水体所能承担的热负荷有一定限度,本文的研究旨在确定湖水源热泵系统水体热承载能力。
     本文研究了湖泊和水库自然水温分布特性:水深大于4m的水体,其水温在春末、夏季、秋季初期和中期呈现明显的热分层现象,在冬季和春季初期整个湖泊和水库水温分布一致;水深小于3m的水体,其水温在一年中任何时候分布都比较均匀,不呈现热分层现象,且水温受气温影响很大。本文针对热分层型湖泊和水库建立了自然水温分布数学模型,并用大量的实测数据验证了模型的正确性和参数取值的合理性。
     在自然水温模型的基础上,通过在控制方程中添加源项的方法,建立了带负荷的水温模型,利用重庆开县人民医院湖水源热泵空调系统的实测数据,验证了建立的带负荷的水温水流模型的正确性。
     通过求解带负荷的水流水温模型来确定水体承担的最大热负荷,以夏热冬冷地区的重庆市为例计算了不同水深、不同水温的水体所能承担的最大热负荷,根据计算的42组数据,回归得到水体承担的最大热负荷q r( w /m2)与水体平均水深h(m )、平均水温t(℃)之间的关系式,进而确定出水体承担的最大空调冷负荷qcl( w /m2)与水体平均水深h(m )、平均水温t(℃)、机组能效比(EER)之间的关系式。
     比较了同温层排水方式与表层排水方式时的水底温度,认为采用同温层排水时提供的冷却水品质较表层排水时提供的冷却水品质要高。建议工程中采取措施尽量倾向于同温层排水。
     最后对水温恢复情况进行了研究,认为即使供冷期内水体承担的热负荷为其所能承担的最大热负荷,在采暖期开始前,水温也能恢复到自然条件下的值。
With the economic and technological development as well as energy and environmental issues have become increasingly prominent, the surface-water source heat pump (SWHP) draws more and more public attention. The Yangtze River district and the south of China abound with water resources, the surface-water source heat pump possess great significance. SWHP need appropriate water source, and there are heat load limit for one lake or reservoir. This paper focused on the research that the lake’s or reservoir’s highest heat capacity.
     The natural water temperature distribution characteristics of the lakes and reservoirs are studied in the paper: the temperature of the lake-water which the depth is greater than 4m is shown clear signs of thermal stratification in late spring, summer, early and mid autumn, but in the winter and early spring, the entire lake and reservoir water temperature distribution is uniform; the temperature of the lake-water which the depth is less than 3m is equally distributed during the whole year, and is non-thermal stratification, meanwhile, the water temperature is impacted by air meteorological parameters.
     In this paper, mathematical model of the natural water temperature distribution for the thermal stratification lakes and reservoirs is established, and utilized a large number of measured data to test the accuracy of the model and the reasonableness of parameters. On the basis of the natural water temperature model, the water temperature model when loading heat load is established by addition source item into equations, at the same time, the paper uses measured data of lake-water source heat pump air-conditioning system of People's Hospital in Kai County, Chongqing, to test the correctness of the water temperature model when loading heat load and the water flow model.
     By solving the water temperature model when loading heat load and the water flow model to calculate water’s highest heat capacity. Takeing Chongqing in the areas cold in winter and hot in summer as an example calculated the lake-water’s highest heat capacity with different temperature and different depth. Based on the data calculated, regressed the relationship between lake-water’s highest heat capacity (w/m2) and lake’s average depth (m) and lake-water’s average temperature (℃). According to this, get the relationship between lake-water’s highest air-conditioning cool load (w/m2), lake’s average depth (m), lake-water’s average temperature (℃) and the units’EER.
     With regards to drainage, there are two ways, one way is the drainage was drained to the layer which the temperature is as same as drainage’s temperature, and the other way is the drainage was drained to the surface layer. In this paper, the water temperatures at bottom in these two ways was compared, and conclude that the first way is better than the second one. Suggest that the first way is a better approach in practical project.
     At last, studied the water temperature recovery, concluded that even if the water bears the highest heat load in summer, its temperature can recover to the level under natural conditions before the beginning of heating period.
引文
[1]中华人民共和国建设部.贯彻落实科学发展观大力发展节能与绿色建筑[EB/01]. httP://www.cin.gov.cn/green/,2005,2,23.
    [2]郎四维,龙惟定,林海燕等.公共建筑节能设计标准宣贯辅导教材[M].北京:中国建筑工业出版社,2005,11.
    [3]江亿.中国建筑节能年度发展研究报告[M].中国建筑工业出版社,2007.
    [4]郁永章.热泵原理与应用[M].北京:机械工业出版社,1993.
    [5]马最良,吕悦.地源热泵系统设计与应用[M].机械工业出版社,2007,1: 15-20.
    [6] Rackliffe GB, Schabel KB.Ground water Heat Pump Demonstration Results for Residential Applications in New York State [J].ASHRAE Trans. 1986: 351-340.
    [7]马最良,刘永红.热泵站的现状及在我国应用的前景[J].暖通空调,1994,24(5): 158-162.
    [8]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调,2004,23(3): 20-23.
    [9]马最良译.蒸汽压缩式热泵的经济效益[J].暖通空调,1995(6): 156-161.
    [10]陈兴华,庄斌舵.俄罗斯热泵新技术简介[J].节能技术与产品,2001(3): 65-68.
    [11] JARN Ltd.A new river water source Heat Pump Project [J].Japan Air-Conditioning,Heating & Refrigeration News,1996,8: 314-319.
    [12] Hanneke V.Large energy systems——an international overview[J].IEA Heat Pump Center Newsletter, 1998,16(1): 147-151.
    [13] Pratsch. L, Hughes.P. Technical and Market Results of Major U.S. Geothermal Heat Pump Programs [C]. 7th International Energy.Agency conference on Heat Pumping Technologies,2002: 287-291.
    [14]王兆印,曾庆华,吕秀贞,黄金池等译.蓄水河流对环境的影响[J].北京:中国环境科学出版社,1988: 263-266.
    [15] Hattemer B, Kavanaugh S P.Design temperature data for surface water heating and cooling systems [J]. ASHRAE Transactions,2005,111(1): 15-20.
    [16] Sauer J H, Howell R H.Heat Pump systems [J]. New York: John Wiley & Sons,1993,106-110.
    [17] Aittomǎki.Lakes as heat source in cold climate [C].Proceedings of the 21st International Congress of Refrigeration,Washington,2003: 111-115.
    [18] Bǔyǔkalaca O. Ekinei F. Yilmaz T.Experimental investigation of Seyhan River and dam 0r lake as heat source-sink for a heat pump [J].Energy,2003,28(2): 268-271.
    [19]陈华.后石电厂温排水的数学模型研究[D].厦门,厦门大学,2002.
    [20] Francois boulot.Modeling of heated water discharge on the French coast of the English channel [J].Proceeding of a symposium on ability, Academic process, 1992,5: 78-82.
    [21]国家海洋局第二海洋研究所.象山港电厂温排水对海洋生态环境影响预测研究报告[R].2006.
    [22] J.M.Cantrell.“Shallow Ponds for Dissipation of Building Heat:A Case Study”[J].ASHRAE Transactions,Vol.90,Pt.2A, 1984: 238-246.
    [23] M C.Pezent.“Development and Verification of a Thermal Model of Lakes Used with Water Source Heat Pumps”[J].ASHRAE Transactions, Vol.96, Pt.1, 1990: 574-582.
    [24]徐伟等译.地源热泵工程技术指南[M].[美国],北京:中国建筑工业出版社.
    [25]李永安,李继志,王先玉,张晓锋.湖水水源热泵综合能源利用设计与实践[J].低温建筑技术,2003(5): 125-128.
    [26]何满潮,李学元.混合水源联动运行空调技术及工程应用[J].矿业研究与开发,2004(2): 201-204.
    [27]谢有君.潜水式地源热泵系统设计方案及运行费用分析[J].供热制冷,2003,12: 69-73.
    [28]冯小平,熊占野,鞠晓芳,龙惟定.崇明某生态住宅小区地表水地源热泵系统方案可行性分析[J].暖通空调,2006, 9: 125-128.
    [29]陈晓,张国强,林宣军,林汉柱.南方地区开式湖水源热泵的应用[C].中国制冷学会2005年制冷空调学术年会,2005: 257-260.
    [30]陈晓.地表水源热泵系统的运行特性与运行优化研究[D].湖南大学,2006.
    [31]殷平.地源热泵在中国[J].现代空调(3),中国建筑工业出版社,2001: 14-18.
    [32]秦红,文远高,张文华.空调系统的地表水利用及其节能和环境影响分析[C].全国暖通空调制冷1998年学术文集,1998: 322-326.
    [33]中国建筑节能网. http://www.k211.com/.
    [34]崔海成.地表水水源热泵系统在工程中的应用[J].工程建设与设计,2008: 1-2.
    [35]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水利学报,1998,9(9): 13-16.
    [36]李怀恩,沈晋.一维垂向水库水温数学模型研究与黑河水库水温预测[J].陕西机械学院学报,1990, 4: 58-62.
    [37]殷学鹏,杨传智.垂向一维水质模型及在龙滩水库水质预测中的应用[J].水利水电环境,1991 (1): 211-214.
    [38]蒋红.水库水温计算方法探讨[J].水力发电学报,1999(2): 178-183.
    [39]江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型[J].水利学报,1998(9): 25-30.
    [40]陈小红.湖泊水库垂向二维水温分布预测[J].武汉水利电力学院学报,1992(4): 12-16.
    [41]邓云,李嘉,罗麟,赵文谦.水库温差异重流模型研究[J].水利学报,2003(9): 39-42.
    [42]张仙娥,周孝德,臧林.水库水温研究方法述评[J].水资源与水工程学报,2006(6): 256-261.
    [43]李振海,祝秋梅.填海工程影响下的电厂冷却水工程布置数值模拟研究[J].电力环境保护,2003, 19(3): 147-151.
    [44]郝瑞霞,韩新生.潮汐水域电厂温排水的水流和热传输准三维数值模拟[J].水利学报,2004(8): 18-22.
    [45]张文宇.上海世博园大型地表水源热泵对黄浦江水环境的影响分析[D].同济大学,2007,3.
    [46]陈晓,张国强,彭建国,林宣军,林汉柱.开式地表水源热泵在湖南某人工湖的应用研究[J].制冷学报,2006,6: 221-225.
    [47]王子介译.热泵的理论与实践[M].北京:中国建筑工业出版社,1986.
    [48]戴群英.水库库区及下游河道水温预测研究[D].河海大学,2006.5.
    [49]雒文生,宋星原.水环境分析及预测[J].武汉大学出版社,2000.6: 137-139.
    [50]袁静秀,张文华,王银珠.滇池的热学状况[J].海洋与湖沼,1986.11: 176-181.
    [51]余常昭, M.马尔柯夫斯基,李玉梁编著.水环境中污染物扩散输移原理与水质模型[M].北京:中国环境科学出版社,1989:175-191.
    [52] J.M. Cantrell .“Shallow Ponds for Dissipation of Building Heat: A Case Study”[J].ASHRAE Transactions, Vol.90, 1984: 238-246.
    [53]谈广鸣,夏军强,郑邦民.挟沙水流紊动扩散系数的研究[J].水利学报,1998.12(12): 256-259.
    [54] http://www.121.cq.cn/service/cqweather.htm
    [55]王建云,普发贵.抚仙湖垂向水质状况及特征研究[J].玉溪师范学院学报,2003,19(增刊).
    [56] P.Tim. W.S.Joyce. Lake-source cooling [J].ASHRAE. journal. 2002. 44(4): 37-39.
    [57] T. Davey.Deep lake water cooling a matter of degrees [J].Environmental Science & Engineering. 2003 (9): 121-133.
    [58] Francois boulot.Modeling of heated water discharge on the French coast of the English Channel [J].Proceeding of a Symposium on Ability, Academic Press. 1999,18 (4): 82-87.
    [59]李永安,常静,徐广利,戎卫国,刘学来.封闭式冷却塔供冷系统气象条件分析[J].暖通空调,2005,35(6): 107-108.
    [60]李永安,刘杰,李继志.空调用封闭式冷却塔热工性能的实验方法[J].实验室研究与探索, 2005, 24(1): 122-125.
    [61]刘泽华,彭梦珑,周湘江.空调冷热源工程[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700