基于GIS的流域地貌多重分形特征与侵蚀产沙关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于流域地貌形态的多样性及空间组合的复杂性,其科学准确量化成为建立具有广泛适用性的流域水土流失预报模型所亟待解决的关键问题之一。本文依据多重分形等相关理论、结合GIS技术和室内模拟试验,提出了基于数字高程模型DEM的流域三维地貌多重分形特征量化模型及实现方法,揭示了小流域模型、大理河及杏子河流域三维地貌多重分形谱参数的动态变化及空间分布特征,探讨了大理河流域不同空间尺度子流域地貌奇异指数变化范围的差异性,建立了基于地貌多重分形信息熵的流域地貌多重分形特征与次降雨侵蚀产沙耦合关系模型,取得了如下主要研究成果:
     (1)基于数字高程模型DEM的流域三维地貌多重分形特征量化模型和实现方法该量化模型包括三个子模型,即流域三维地貌特征概率测度子模型、阶距q估算子模型和多重分形谱测算子模型,此模型为实现流域地貌多重分形特征的直接量化提供了可靠保证。
     (2)小流域模型地貌多重分形谱及各参数动态变化特征依据地貌信息熵可将历经25模拟降雨的小流域模型地貌发育划分为幼年期和壮年期两个阶段,不同阶段小流域模型地貌地貌多重分形谱曲线形状基本相似,均呈向右的钩状;随着小流域模型地貌的不断发育,地貌多重分形谱奇异指数分布范围Δα均呈现增长趋势,多重分形谱曲线高差Δf则表现出递减趋势,其中壮年期二者的变化幅度明显比幼年期小;同时,小流域模型地貌奇异指数分布范围Δα与沟谷密度、平均坡度等6个传统地貌量化参数呈极显著相关。
     (3)大理河及杏子河流域地貌多重分形特征空间分异规律大理河、杏子河各子流域地貌的多重分形谱f(α)随地貌奇异指数α增大呈先增加后减小的变化趋势,但多重分形谱f(α)和地貌奇异指数α的极值、变化范围在各子流域均有所不同。大理河流域地貌奇异指数分布范围Δα平均值从上游到下游依次为:0.1304、0.1544和0.1584;左右岸分别为0.1431和0.1572;表明大理河流域地貌形态变化自上游向下游趋于复杂,右岸地貌复杂程度相对较大。杏子河流域地貌奇异指数分布范围Δα平均值从上游到下游依次为:0.1712、0.1617和0.1461;左右岸分别为0.1614和0.1557,表明杏子河流域地貌形态变化自上游向下游复杂性逐步减弱,左岸地貌复杂程度相对较大。
     (4)大理河流域地貌多重分形特征空间尺度效应大理河流域不同空间尺度的子流域三维地貌均具有多重分形特征,清阳岔、李家河和西庄子流域地貌奇异指数Δα随流域面积增大呈明显增长趋势,平均增幅分别为10.57%、5.26%和11.79%,其变化曲线可分别用极显著的对数和线性函数来定量表达,表明随着空间尺度增加改变,流域地貌的复杂性和不均匀性更为明显。
     (5)流域地貌多重分形信息熵与侵蚀产沙关系小流域模型地貌多重分形信息熵与次降雨相对输沙模数和径流模数关联度分别为0.8129和0.9050,明显高于其它传统地貌量化参数。地貌多重分形信息熵与次降雨输沙模数定量耦合关系表明,地貌对降雨侵蚀产沙的影响存在明显临界值,当地貌多重分形信息熵分别为2.6162和4.077时,小流域模型及野外典型流域岔巴沟次降雨侵蚀产沙出现峰值,成为其降雨侵蚀产沙的地貌临界点。
Because of Diversity and Spatial Combination Complexity of watershed geomorphology, the scientific and accurate quantification of watershed geomorphology has been one of key issues to be solved in building a watershed soil and water loss prediction model with broad applicability so far. According to the related theories such as multi-fractal theory and Geographic information system(i.e. GIS) and indoor simulated experiments, the DEM-based qualification model and its GIS-based realization method of watershed 3-D geomorphology multi-fractal characteristics were established in the paper. In addition, the dynamic variation and spatial distribution characteristics of the parameters of watershed 3-D geomorphology multi-fractal spectrums of indoor small geomorphology generalized watershed model, Dali River Watershed and Xingzi River Watershed were analyzed. And the difference of the distribution range of singularity exponents of watershed 3-D geomorphology multi-fractal spectrums of different spatial-scale sub-watershed of Dali River Watershed in the paper. And a coupled model based on the relationship between watershed geomorphology multi-fractal information entropy, which could be used to reflect the integrated characteristics of watershed geomorphology, and sediment yield of water erosion in single rainfall event was established too. The obtainded main study results in the paper are as follows:
     Firstly, the DEM-based qualification model and its GIS-based realization method of watershed 3-D geomorphology multi-fractal characteristics were established. The established qualification model, which was composed of probability measures submodel of watershed 3-D geomorphology characteristics, estimation submodel of step distance and the measurement submodel of watershed 3-D geomorphology multi-fractal spectrums, could provide reliable support for the realization of direct quantification of watershed geomorphology multi-fractal characteristics.
     Secondly, the dynamic variation characteristics of watershed 3-D geomorphology multi-fractal spectrum and its parameters of indoor small geomorphology generalized watershed model were analyzed. Based on the calculated geomorphology information entropies of indoor small geomorphology generalized watershed model during 25 simulated rainfalls, the geomorphology development of the small watershed model could be divided into two different stages,i.e. youthful stage and mature stage. The curves of watershed 3-D geomorphology multi-fractal spectrums of the small watershed model in different development stages had similar right-hooked bend shape. Along with the development of watershed geomorphology of the small watershed model, the distribution range of singularity exponents of watershed 3-D geomorphology multi-fractal spectrums tended to become bigger and bigger, while the height gap of the multi-fractal spectrum curves tended to become smaller and smaller, in addition, the variation scopes of the distribution range of singularity exponents and the height gap of the multi-fractal spectrum curves in geomorphology development youthful stage were smaller than those in geomorphology development mature stage. And the distribution range of singularity exponents of the small watershed model was highly correlated with six different traditional geomorphology quantitative parameters such as gully density, average gradient, etc.
     Thirdly, the spatial distribution rules of the parameters of watershed 3-D geomorphology multi-fractal spectrums of Dali River Watershed and Xingzi River Watershed were analyzed. The watershed 3-D geomorphology multi-fractal spectrum values firstly increased and then reduced with the increase of the singularity exponents of watershed 3-D geomorphology multi-fractal spectrum among the different sub-watersheds in both of Dali River and Xingzi River Watersheds, while the extreme values, variation scopes of watershed 3-D geomorphology multi-fractal spectrum value and singularity exponent were different in different sub-watersheds. The average values of the distribution range of singularity exponents of watershed 3-D geomorphology of the upstream, middle and downstream reaches of Dali River watershed was 0.1304,0.1544 and 0.1584 respectively, and that of right and left banks of Dali River watershed was 0.1431 and 0.1572 respectively, which indicated that the watershed geomorphology became more and more complex from upstream reach to downstream reach, and the complex degree of sub-watershed geomorphology on right bank is relatively bigger than that on left bank in Dali River Watershed. The average values of the distribution range of singularity exponents of watershed 3-D geomorphology of the upstream, middle and downstream reaches of Xingzi River watershed was 0.1712,0.1617 and 0.1461 respectively, and that of right and left banks of Dali River watershed was 0.1614 and 0.1557 respectively, which indicated that the watershed geomorphology became more and more complex from downstream reach to upstream reach, and the complex degree of sub-watershed geomorphology on left bank is relatively bigger than that on right bank in XIngzi River Watershed.
     Fourthly, the spatial-scale effect of watershed 3-D geomorphology multi-fractal characteristics of Dali River watershed was studied. The results indicated that watershed 3-D geomorphology of all the studied different spatial-scale sub-watershed of Dali River watershed had multi-fractal characteristics, the distribution ranges of singularity exponents of watershed 3-D geomorphology of Qingyangcha, Lijiahe and Xizhuang subwatersheds significantly increased with the increasing watershed controlled coverage area, with a average increase extent of 10.57%,5.26%and 11.79% individually. And the distribution ranges of singularity exponents of watershed 3-D geomorphology of Qingyangcha, Lijiahe and Xizhuang subwatersheds were highly logarithmically or linearly correlated with watershed controlled coverage area. As a result, the complexity and unhomogeneity of watershed geomorphology became more and more significant with the increasing watershed controlled coverage area.
     Finally, a coupled relationship between watershed geomorphology multi-fractal information entropy and sediment yield of water erosion in single rainfall event was established. The results showed that the grey correlation coefficient between the watershed geomorphology multi-fractal information entropy and the corresponding relative sediment transportation modulus in a single rainfall event was 0.8129 and 0.9050 respectively, which was significantly bigger than the traditional watershed geomorphology quantitative parameters. The quantitative coupled relationship between watershed geomorphology multi-fractal information entropy and the corresponding relative sediment transportation modulus indicated that there existed certain critical value of watershed geomorphology multi-fractal information entropy, i.e. when the watershed geomorphology multi-fractal information entropy of the indoor small watershed model and Chabagou watershed was 2.6162 and 4.077 respectively, the water erosion and sediment yield of the indoor small watershed model and Chabagou watershed in single rainfall events could be up to peak value.
引文
【1】蔡强国,刘纪根,刘前进.岔巴沟流域次暴雨产沙统计模型.地理研究[J],2004,23(4):433-439.
    【2】尹国康,陈钦恋.黄土高原小流域特性指标与产沙统计模式[J].地理学报,1989,44(1):32-46.
    【3】李钜章,景可,李风新.黄土高原多沙粗沙区侵蚀模型探讨[J].地理科学进展,1999,18(1):46-53.
    【4】刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型研究[J].水土保持学报,1993,7(3):73-79.
    【5】江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    【6】卢金发.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):171-178.
    【7】辛树帜,蒋德麒.中国水土保持概论[M].北京:农业出版社,1982.
    【8】唐克丽,等.中国水土保持[M].北京:科学出版社,2004.
    【9】艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):92-96.
    【10】高鹏,李后强,艾南山.流域地貌分形研究[J].地球科学进展,1993,8(5):63-70
    【11】 Horton R E. Erosional Development of Streams and Their Drainage Basins. Hydrophsical Approach to Quantitative Morpholgy [J]. Geol. Soc. America Bull.1945.Vol56:275-370.
    【12】 Strahler A N. Dynamic Basis of Geomorphology[J]. Geol. Soc. America Bull. Vol63: 923-938.
    【13】 Schumm S. A. The Evalution of Drainage Systems and slope in Badland at perth Amboy New, Jersey [J]. Geol. soc. America Bull.1956,Vol67:596-646.
    【14】 Schumm S. A and Khan H. R. Experiment study on channel patterns [J]. Amer. Bull.1972.83(6): 1755-1770.
    【15】 Schumm S A. The Fluvial System[M]. New York:Wiley.1977.
    【16】 A E Scheidegger. Theoritical Geomorphology.Verlag-Springger.1961.
    【17】 Morisawa M. E. Quantitative Geomorphology of Some Watersheds in the Appalachian plateoa [J]. Bull Geol. Soc. Amer.1962, Vol73(9):1025-1046.
    【18】 Morisawa M. E. Development of Drainage systems on an upraised lake Floor [J]. Amer. Jour. of Science.1964.Vol262:341-354.
    【19】陈浩.陕北黄土高原沟道小流域地态特征分析[J].地理研究,1986,5(1):82-91.
    【20】秦富仓,郑明军,孙旭.小流域地貌要素相关关系的研究[J].水土保持研究,1998,5(3):30-33.
    【21】张丽萍,马志正.流域地貌演化的不同阶段沟壑密度与切割深度关系研究[J].地理研究,1998,17(3):273-278.
    【22】方学敏.通用土壤流失方程式研究进展[J].中国水土保持,1993,(8):21-24.
    【23】张光辉.土壤水蚀预报模型研究进展[J].地理研究,2001,20(3):275-281.
    【24】蔡强国.流域产沙模型概述[J].中国水土保持,1990,(6):14-18.
    【25】 Laflen J M. Lwonard J L, Foster G R. WEPP a new generation of erosion prediction technology[J]. J of Soil and Water Cons.1991.46 (1):34-38.
    【26】 Ascough Ⅱ J C,Baffaut C, Nearing M A, Lin B Y. The WEPP watershed model; model description[J]. Trans.ASAE.1997.40 (9):1489-1497.
    【27】刘宝元,史培军.WEPP水蚀预报流域模型[J].水土保持通报,1998,18(5):6-12.
    【28】江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算[A].见:第一次河流泥沙国际学术讨论会论文集[C].北京:光华出版社,1980.A3-1,A3-10.
    【29】牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[A].见:第一次河流泥沙国际学术讨论会文集[C].北京:光华出版社,1980.A4-1,A4-10.
    【30】尹国康,陈钦峦.黄土高原小流域特征性指标与产沙统计模式[J].地理学报,1989,44(1):32-44.
    【31】刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型的研究[J].水土保持学报,1993,7(3):73-79.
    【32】李矩章,景可,李凤新.黄土高原多沙粗沙区侵蚀模型探讨[J].地理科学进展.1999,18(1):46-53.
    【33】卢金发.黄河中游流域特性对产沙量与降雨关系影[J].地理学报,2000,55(6):737-743.
    【34】崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究[M].郑州:黄河水利出版社,2006.11.
    【35】 Mandelbrot B. How long is the coast of Britain-statistical self-similarity and fractional dimension. Science,1967,156 (3775):636-638.
    【36】张捷,包浩生.分形理论及其在地貌学中的应用—分形地貌学研究综述及展望[J].地理研究,1994,13(3):104~111.
    【37】艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国上研究,1999,15(1):92-96.
    【38】秦耀辰,刘凯.分形理论在地理学中的应用研究进展[J].地理科学进展,2003,22(4):426~436.
    【39】 La Barbera, P. and R,Rosso. The fractal dimension of river networks[J]. Water Resoures research.1989,25 (4):735-741.
    【40】 Robert A, Roy AG. On the fractal interpretation of the mainstream length-Drainage area Relationship [J]. Water Resources Research.1990,26(5):839-842.
    【41】 Tarboton DG, Bras RL, Rodriguez-Itube IA. Physical basis for drainage density[J]. Geomorphology.1992,5 (1) 59-76.
    【42】 Hack JT. Studies of longitudinal profiles in Virginia and Maryland [J]. U. S Geol. Surv prof pap.1957.294-B:53-63.
    【43】 Mandelbort B B. The Fractal geometry of Nature[M]. New York: WH Freeman and Co.,1982.
    【44】 J. Feder. Fractals[M]. New York.1988.
    【45】李后强,艾南山.分形地貌学及发育的分形模型[J].自然杂志,1991,15(7):516-519.
    【46】姜永清,邵明安,李占斌,等.黄土高原流域水系的HORTON级比数和分形特性[J].山地学报,2004,20(2):206-211.
    【47】朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.
    【48】马宗伟,许有鹏,李嘉峻.河流形态的分维及与洪水关系的探讨——以长江中下游为例[J].水科学进展,2005,16(4):530-534.
    【49】何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128.
    【50】冯平,冯焱.河流形态特征的分维计算方法[J].地理学报.1997,52(4):324-329.
    【51】王协康,方绎.流域地貌系统定量研究的新指标[J].山地研究.1998,16(1):8-12.
    【52】杜国云,李晓燕.多阶段构造地貌的水系统计特征——以山东半岛东北部为例[J].山地学报,2001,19(增刊):108-111.
    【53】梁春玲,梁海清,张祖陆.祖厉河流域水系分维与地貌发育阶段浅析[J].水土保持研究,2006,13(3):187-191.
    【54】崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究[M].郑州:黄河水利出版社,2006.
    【55】杨玉荣.基于分形理论的地貌表达[J].武汉测绘科技大学学报,1996,21(2):154-158.
    【56】邹宁,柳健,周曼丽.基于分形的地形分类技术及其在导航中的应用[J].华中理工大学学报,1999,27(5):21-25.
    【57】肖高瑜,周源华.基于分形插值的地貌生成技术[J].上海交通大学学报,2000,34(5):705-707.
    【58】李锰,朱令人.地形等高线的分形特征及其动力学含义[J].西北地震学报,2002,24(2):97-103.
    【59】屈建军,常学礼,董光荣,等.巴丹吉林沙漠高大沙山典型区风沙地貌的分形特性[J].中国沙
    漠,2003,23(4):361-365.
    【60】崔灵周,李占斌,肖学年.岔巴沟流域地貌形态分形特征量化研究[J].水土保持学报,2004,18(2):41-44.
    【61】 B.B. Mandelbort, in Lroc. Synp., Turbulence of Fluid and Plasma, ed. by E. Weber, (interscience, New York,1969)P483, J.Fluid Mech.62(1974)331.
    【62】 Goodchild M F. Fractals and accuracy of geographical measures [J]. Math. Geol, 1980,12(2):85-98.
    【63】 Mark D M, Aronson P B. Scale-dependent fractal dimension of topographic surface[J]. Math. Geol.1984,16(7):671-684.
    【64】Andrle R, Abrahams AD. Fractal techniques and the surface roughness of talus slopes [J]. Earth. Surf. Proc. Landform 1989,14(4):197-209.
    【65】 Matsushita M, Ouchi S. On the self-affinity of various curves[J]. Physica D.1989,38(1/4):246-251.
    【66】 Andrle R. Estimating fractal dimension with the divide method in geomorphology[J]. Geomorphology.1992.5 (1):131-141.
    【67】 Rodriguez-Iturbe M, Marani R, Rigon A Rialdo. Self-organized river basin landscapes: fractal and multifractal characteristics[J]. Water Rsour Res,1994,30(12):3531-3539.
    【68】高鹏.流域水系的多标度分形研究及应用[J].中国地质灾害与防治学报,1995,6(2):31-38.
    【69】曹汉强,朱光喜,李旭涛,等.多重分形及其在地形特征分析中的应用[J].北京航空航天大学学报,2004,30(12):1182-1185.
    【70】李锰,朱令人,龙海英.不同类型地貌的各向异性分形与多重分形特征研究[J].地球学报,2003,24(3):237-242.
    【71】 Strahler A N. Dynamic Basis of Geomorphology. Geol. Soc. Amercia Bull.1952,63:923-938.
    【72】艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-8.
    【73】李后强,艾南山.分形地貌学及发育的分形模型[J].自然杂志,1991,15(7):516-519.
    【74】艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国上研究,1999,15(1):92-96.
    【75】励强,陆中臣,袁宝印.地貌发育阶段的定量研究[J].地理学报,1990,45(1):110-119.
    【76】马新中,陆中臣,金德生.流域地貌系统的侵蚀演化与耗散结构[J].地理学报,1993,48(4):367-375.
    【77】武春龙,李壁成,雷会珠.小流域侵蚀地貌演化的计量分析[J].土壤侵蚀与水土保持学报,1997,3(4):55-61.
    【78】张勋昌.陕北洛川地区沟道侵蚀与发育.黄河泥沙来源及侵蚀产沙机理研究文集[C],北京:气象出版社,1988.
    【79】白占国,黄土高原(塬区)沟壑系统演变的研究[D].1991.
    【80】白占国.地貌条件与土壤侵蚀关系的定量研究[J].陕西师大学报,1992,20(2):63-66.
    【81】周伏建,陈明华,林福兴.福建省土壤侵蚀预报研究[J].水土保持学报,1995,9(1):25-36.
    【82】陈渭南.从地貌条件预测土壤侵蚀的研究[J].人民黄河,1988,(3):59-61.
    【83】甘枝茂.黄土高原地貌与土壤侵蚀研究[M].陕西:陕西人民出版社,1990.
    【84】齐矗华.高原侵蚀地貌与水土流水关系研究[M].陕西:陕西人民出版社,1991.
    【85】白占国.从地貌空间结构特征预测土壤侵蚀的研究—以神府、东胜煤田区为例[J].中国水土保持,1993,(12):23-24.
    【86】卢金发.燕山地区流域形态量计研究—以潮白河流域为例[J].黄河泥沙来源及侵蚀产沙机理研究文集[C].北京:气象出版社,1988.
    【87】赵文武,傅伯杰,陈利顶.陕北黄土丘陵沟壑区地形因子与水土流失的相关性分析[J].水土保持学报,2003,(3):66-69.
    【88】汪丽娜,穆兴民,高鹏民,等.黄土丘陵区产流输沙量对地貌因子的响应[J].水利学报,2005,36(8):656-960.
    【89】 Philps JD. Spatial analysis of shoreline Erosion [J]. Ann. Am. Geographer.1986,76 (1): 50-62
    【90】冯金良,张稳.海滦河流域水系分形[J].泥沙研究,1999,(1):62-65.
    【91】金德生,陈浩,郭庆伍.流域物质与水系及产沙间非线性关系实验研究[J].地理学报,2000,55(4):339-348.
    【92】马宗伟,许有鹏,李嘉峻.河流形态的分维及与洪水关系的探讨——以长江中下游为例[J].水科学进展,2005,16(4)530-533.
    【93】崔灵周,李占斌,朱永清,等流域地貌分形特征与侵蚀产沙定量耦合关系试验研究[J].水土保持学报,2006,20(2):1-4.
    【94】侯建才,李占斌,崔灵周,等.黄土高原典型流域次降雨径流侵蚀产沙规律研究[J].西北农林科技大学学报(自然科学版),2008,36(2):210-215.
    【95】李德仁.地理信息系统导论[M].北京:测绘出版社,1993.
    【96】边馥苓.地理信息系统原理与方法[M].北京:测绘出版社,1996.
    【97】龚建雅.地理信息系统基础[M].北京,科学出版社,2001.
    【98】 Beven K J, Kirkby M J. A physically based variable contributing model of basin hydrology [J]. Hydrological Sciences Bulletin,1979,24(1):43-69.
    【99】 Beven K J. Topmodel [A].In:V P Singh. Chapter 18 in Computer Models of Watershed Hydrology[C]. Publications,Littleton,Co,1995.
    【100】刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-447.
    【101】王纲胜,夏军,谈戈,等.潮河流域时变增益分布式水循环模型研究[J].地理科学进展,2002,21(6):573-582
    【102】傅伯杰,汪西林.DEM在研究黄土高原丘陵沟壑区土壤侵蚀类型和过程中的应用[J].水土保持学报,1994,8(3):17-21.
    【103】朱红春,刘海英,张继贤,等.基于DEM的流域地形因子提取与量化关系研究——以陕北黄土高原的实验为例[J].测绘科学,2007,32(2):138-142.
    【104】焦超卫,赵牡丹,汤国安,等.基于GIS的植被空间格局特征与地形因子的相关关系——以陕西省耀县为例[J].水土保持通报,2005,25(6):19-23.
    【105】高守英,吴泉源,安国强.基于GIS的龙口市泳汶河流域地貌形态定量分析[J].遥感技术与应用,2003,18(2):87-90.
    【106】王妍,刘洪斌,武伟,等.基于GIS的三峡库区地貌形态信息统计分析[J].测绘科学,2006,31(2):93-96.
    【107】闾国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究[J].地理学报,1998,53(6).
    【108】王倩,邹欣庆,朱大奎:基于GIS技术的秦淮河流域水系分维研究[J].水科学进展,2002,13(6):752-756.
    【109】吕爱锋,陈嘻,王纲胜.基于DEM的流域水系分维估算方法探讨[J].干旱区地理,2002,25(4):315-320.
    【110】杨秀春,朱晓华.中国七大流域水系与洪涝的分维及其关系研究[J].灾害学,2002,17(3):10-14.
    【111】朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.
    【112】王秀春,吴姗,毕晓丽,等.泾河流域水系分维特征及其生态意义[J].北京师范大学学报(自然科学版),2004,40(3):364-368.
    【113】朱嘉伟,赵云章,闫振鹏,等.黄河下游河道地貌分形分维特征研究[J].测绘科学,2005,30(5):
    28-31.
    【114】朱永清,李占斌,崔灵周等.基于GIS流域地貌形态特征分形与计算方法研究[J].武汉大学学报.2005,30(12):1089-1091.
    【115】王林,陈兴伟.基于DEM的流域水系分维计算与结果分析[J].地球信息科学,2007,9(4):133-137.
    【116】孙祝友,杜国云,李德一,等.基于GIS技术的莱州湾东岸河流分形研究[J].测绘科学,2007,32(3):120-122.
    【117】边馥苓.地理信息系统原理与方法[M].北京:测绘出版社,1996.
    【118】陆守一,唐小明,王国胜地理信息系统实用教程[M],中国林业出版社,1998.
    【119】陈述彭,鲁学军,周虎成.地理信息系统导论[M].北京:科学出版社,2000.
    【120】龚建雅.地理信息系统基础[M].北京,科学出版社,2001.
    【121】邬伦,刘瑜,张晶编著.地理信息系统原理、方法和应用[M].北京:科学出版社.2003.
    【122】刘光编著.地理信息系统——基础篇[M].北京:中国电力出版社.2003.
    【123】刘南,刘仁义编著.地理信息系统[M].北京:高等教育出版社.2002.
    【124】汤国安,赵牡丹编著.地理信息系统[M].北京:科学出版社.2000.
    【125】 Falconer K J. Mathematical foundations and applications [M]. Lonon:John Wiley Sons, 190:164-166.
    【126】张济忠编著.分形[M].北京:清华大学出版社,1997.
    【127】陈顒,陈凌编著.分形几何学[M].北京:地震出版社,1998.
    【128】黄震方,朱晓华.分形论、界壳论于山地研究及地理学创新和发展[J].山地学报,2001,19(1):92-96.
    【129】李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.
    【130】崔灵周.流域降雨侵蚀产沙与地貌形态特征耦合关系研究[D].杨凌:中国科学院水利部水土保持研究所,2002.
    【131】亢宽盈.分形理论的创立、发展及其科学方法论意义[J].科学管理研究,1998,16(6):53-56.
    【132】 Horton R E. Erosional development of streams and their drainage basin, hydrological approach to quantitative morphology. Geol. Soc. Amer. Bull.,1954,56:286-295.
    【133】艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):92-96.
    【134】 B. B. Mandelbrot. The Fractal Geometry of Nature[M]. New York:W. H Freeman,1983.
    【135】 B. B. Mandelbrot. Self-af fine fractal and fractal dimension [J]. Physical Scripts,1985, 32:257-260.
    【136】 Grassberger P. Generalized dimensions of strange attractors[J]. Physics Let. A,1983, (97):227-230
    【137】 Hentschel H G E, Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors[J]. Physical D,1983,8:435-444.
    【138】 Halsey T. C., Jensen M. H. et al. Fractal measures and their singularities:the characterization of Strange sets[J]. Phys Rev A,1986,33:1141-1151
    【139】谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004:230-267
    【140】刘树新.二维岩体质量的多重分形研究[J].包头钢铁学院学报,2003,22(2):97-103
    【141】 Bacry E, Delour J, Muzy J. E. Multi-fractal random walks [J].Phys Rev E,2001, (64): 026103-026106.
    【142】 Kantelhardt J. W., Stephan A. Z., Eva K. B., et al. Multi-fractal detrended fluctuation analysis Of nonstationary time series[J]. phys A,2002, (316):57-114.
    【143】 R. Benzi, G Paladin, et al. On the multi-fractal nature of fully developed turbulence and chaotic systems[J]. Phys J.1984, A(17):3521-3531.
    【144】李后强,汪福泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1993.
    【145】 Falconer K J. Fractal Geometry:Mathematical Foundations and Applications [M]. New York: John Wiley&Sons,1990.
    【146】文环明.分形测井解释理论方法研究[D].成都理工大学,2003(6):23-24.
    【147】陈顒,陈凌编著.分形几何学[M].北京:地震出版社,1998.
    【148】张济忠编著.分形[M].北京:清华大学出版社,1997.
    【149】肯尼思,法尔科内著.曾文曲,刘世耀等译.分形几何—数学基础及其应用[M].沈阳:东北大学出版社,2001.
    【150】李会方.多重分形理论及其在图象处理中应用研究[D].西安:西北工业大学,2004.
    【151】 Hentschel H G E, Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors [J]. Physical D,1983,8:435-444.
    【152】周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性I.经典Renyi定义法[J].华东理工大学学报,2008,26(4):385-389.
    【152】刘洋,杨弋涛,姜磊,等.基于多重分形理论的球铁石墨颗粒分散均匀性的分析[J].铸造,2007,(2):167-170.
    【153】 Clark K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J]. Computers and Geoscience,1986,12(5): 713-722.
    【154】谢和平,王金安.岩石节理(断裂)表面的多重分形性质[J].力学学报,1998,30(3):314-320.
    【155】王金安,谢和平,田晓燕,等.一种新的断裂表面分形测量方法[J].北京科技大学学报,1999,21(1):6-9.
    【156】董云,柴贺军.土石混合料剪切面分形特征试验研究[J].岩土力学,2007,28(5):1015-1020.
    【157】 Agterberg F P. Multi-fractal Simulation of Geochemical Map Patterns[J]. Journal of China University of Geosciences,2001,12(1):31-29.
    【158】 Lee A K, John F W. Quantifying spatial structure of volumetric neutral models[J]. Ecological Modelling,2005,186:312-325.
    【159】孙霞,吴自勤.规则表面形貌的分形和多重分形描述[J].物理学报,2001,50(11):2126-2131.
    【160】都国雄,宁宣熙.统计物理学在证券市场多重分形特性研究中的应用[J].数理统计与管理,2008,(1):177-184.
    【161】 Yamaguti M, Prado C. P. C, A direct calculation of the spectrum of singularities f (alpha) of multifractals[J]. Physics Letters A,1995,206(5-6),318-322.
    【162】 Chhabra A, Jensen R V, Direct determination of the f (alpha) singularity spectrum[J]. Physical Review Letters,1989,62(12),1327-1330
    【163】 Chhabra A, Jensen R V. Direct determination of. the f (a) singularity spectrum [J]. Phys Review Letters,1989,62(2):1327-1330.
    【164】 Chhabra A B, Meneveau C, Jensen R V, etc., Direct determination of the f(alpha) singularity spectrum and its application to fully developed turbulence[J]. Physical Review A,1989,40(9),5284-5294.
    【165】 Jensen M H, Kadanoff L P, Procaccia I, Scaling structure and thermodynamics of strange sets[J]. Physical Review A,1987,36(3),1409-1420.
    【166】 Chhabra A B, Jensen R V, Sreenivasan K R, Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism[J]. Physical Review A(General Physics),1989,40(8),4593-4611.
    【167】邬伦,刘瑜,张晶编著.地理信息系统原理、方法和应用[M].北京:科学出版社,2003.
    【168】 Miller C L. The Spatial Model Concept of Photogrammetry[J]. Photogrammetric Engineering,1957,23(1).
    【169】李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    【170】汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究[J].水土保持通报,2001,21(1):54-46.
    【171】朱永清.黄土高原典型流域地貌形态分形特征与空间尺度转换研究[D].西安理工大学:2006.
    【172】郑粉莉,赵军.人工模拟降雨大厅及模拟降雨设备简介.水土保持研究,2004,11(4):177-178.
    【173】金德生、郭庆伍.均质流域地貌发育过程实验研究[A].金德生主编,地貌实验与模拟[C]北京;地震出版社,1995,79-101.
    【174】雷阿林、唐克丽.土壤侵蚀模型试验的原型选定问题[J].水土保持学报,1995,9(3):60-65.
    【175】徐为群,倪晋仁,徐海鹏等.黄土坡面侵蚀过程实验研究I.产流产沙过程[J].水土保持学报,1995,(3):9-18.
    【176】徐为群,倪晋仁,徐海鹏等.黄土坡面侵蚀过程实验研究II.坡面形态过程[J].水土保持学报,1995,(4):19-28.
    【177】袁建平,蒋定生,甘淑.不同治理度下小流域正态整体模型试验—林草措施对小流域径流泥沙的影响[J].自然资源学报,2000,(1):92-97.
    【178】石辉、田均良、刘普灵.小流域坡沟侵蚀关系的模拟试验研究[J].水土保持学报,1997,(1):30-33.
    【179】王万中,焦菊英著.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996
    【180】周佩华,王占礼.黄土高原土壤侵蚀暴雨的研究[J].水土保持学报,1992,6(3):1-5.
    【181】李长兴等.黄土地区小流域降雨空间变化特征分析[J].水科学进展,1995,6(2):12-16.
    【182】 A. N. Strahler. Hypsometric.(area-altitude) analysis of erosional topography[J]. Geol.Soc.Am.Bull.1952,(63):1117-1142.
    【183】励强,陆中臣,袁宝印.地貌发育阶段的定量研究[J].地理学报,1990,45(1):110-119.
    【184】马新中,陆中臣,金德生.流域地貌系统的侵蚀演化与耗散结构[J].地理学报,1993,48(4):367-375.
    【185】艾南山,侯文贵.流域演化动力学的初步研究[J].中国地质灾害与防治学报,1993,(3):29-34.
    【186】吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2095-2094.
    【187】李小文,王锦地,A H Strahler.尺度效应及几何光学模型用于尺度纠正[J].中国科学E辑,2000,(30):12-17.
    【188】朱雪龙.应用信息论基础[M].北京:清华大学出版社,2001:3-5.
    【189】 A N Kolmogorov. Three Approaches to the Quantitative Definition of Information [J]. Problems of Information Transmission,1965,1(1):1-7.
    【190] G J Chaitin. Information theoretic computational complexity[J]. IEEE Traps Inform, Theory,1974, IT-20:10-15.
    【191】 S M Pincus.Approximate Entropy as a Measure of System Complexity[J]. Proc. Natl. Acad.Sci.1991,88:2297-2301.
    【192】王永明.地形最大信息熵方向分析在地形匹配中的应用[J].计算机应用与软件,1999,(4):40-45.
    【193】魏林宏,郝振纯,李丽.不同分辨率DEM的信息熵评价及其对径流模拟的影响[J].水电能源科学,2004,22(4):1-4.
    【194】李雄伟,刘建业,康国华.熵的地形信息分析在高程匹配中的应用[J].应用科学学报,2006,24(6):608-612.
    【195】邓聚龙.灰色系统基本方法[M].武汉:华中工学院出版社,1985.
    【196】王瑄,李占斌,李雯,等.土壤剥蚀率与水流功率关系室内模拟实验[J].农业工程学报,2006,(2):525-530.
    【197】崔灵周,李占斌,朱永清,等.流域侵蚀强度空间分异及动态变化模拟研究[J].农业工程学报,
    2006,22(12):17=22.
    【198】 Horton R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology[J]. Bull Geol Soc Am,1945,56(2):275-370.
    【199】姚文艺.坡面流阻力规律试验研究[J].泥沙研究,1996,3:74-82.
    【200】吴普特,周佩华.黄土坡面薄层水流侵蚀实验研究[J].土壤侵蚀与水土保持学报,1996,2(2):40-45.
    【201】 Yen B C, Wenzel H G. Dynamic equations for steady spatially variedflow[J]. Journal of hydraulics Division, ASCE,1970,96(HY3):801-814.
    【202】 Foster G R, et al. Estimating erosion and sediment yield on field sized areas [J]. Trans ASAE,1981,24:1253-1262.
    【203】 Rose C W, Williams J R, Sander G C, Barry D A. A mathematical model of soil erosion and deposition processes[J].I:Theory for a plane land element. Soil Sci Am,1983,47(5):991-995.
    【204】汤立群,陈国祥.坡面土壤侵蚀公式的建立及其在流域产沙中的应用[J].水科学进展,1994,5(2):104-110
    【205】 Nearing M A, Foster G R, Lane L J, Finkner S C. A Process-based soil erosion model.for USDA-water erosion prediction project techonology[J]. Tran of ASAE,1989,32 (5):1587-1593.
    【206】Gilly J E, Kottwitz E R, Simanton J R. Hydraulic characteristics of rills[J]. Transactions of the American Society of Agricultural Engineers,1990,33(6):1900-1906.
    【207】雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报,1998,4(2)39-43.
    【208】雷廷武,M.A.Nearing.侵蚀细沟水力学特性及细沟侵蚀与形态特征的试验研究[J].水利学报,2000,31(11):48-53.
    【209】 Wischmeier W H, Smith D D. Predicting rainfall erosion losses:a guide to conservation planning[R]. Agric. Handbook. No.537. Washington, D. C:USDA,1978.
    【210】蔡强国,刘纪根,刘前进.岔巴沟流域次暴雨产沙统计模型[J].地理研究,2004,23(4):433-439.
    【211】李占斌,符素华,解建仓,等.窟野河流域暴雨侵蚀产沙研究[J].水利学报(增刊),1998(1)18-23.
    【212】汪丽娜,穆兴民,高鹏.黄土丘陵区产流输沙量对地貌因子的响应[J].水利学报,2005,36(8)956-960.
    【213】尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式[J].地理学报,1989,44(1):32-44.
    【214】王孟楼,张仁.陕北岔巴沟流域次暴雨产沙模型的研究[J].水土保持学报,1990,4(1):11-18.
    【215】王治华,黄联捷.降雨与流域产沙—黄土高原产沙模型研究之一[J].中国科学(B),1992,(9):1987-1993.
    【216】曹文洪,张启舜,姜乃森.黄土地区一次暴雨产沙数学模型的研究[J].泥沙研究,1993,(1):1-13.
    【217】李占斌,鲁克新,李鹏,等.基于径流侵蚀功率的流域次暴雨产沙模型研究[C].黄河水利科学研究院.第六届全国泥沙基本理论研究学术讨论会论文集[A].郑州:黄河水利出版社,2005.54-59.
    【218】崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究[M].郑州:黄河水利出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700