基于预案的突发地质灾害智能应急决策支持模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地貌形态多样、地质构造复杂,地壳断裂活动普遍,加之人类活动影响,是世界上地质灾害最严重、受威胁人口最多的国家之一,崩塌、滑坡、泥石流、地面塌陷等受地质作用影响的地质灾害隐患多、分布广。受极端气象、地震、工程建设加剧等因素的影响,近年来我国地质灾害频发群发,人民群众生命财产遭受了严重的损失,对社会经济可持续发展产生了重大影响。随着社会经济的快速发展,大规模基础设施建设与水资源和矿产资源的不断开发对地质环境的影响仍在持续,而且本世纪前期气候变化和地震均趋于活跃期,因此从引发地质灾害的内外因来看,我国地质灾害的发生还将呈现出灾害种类多、分布地域广、发生频率高的趋势。在地质灾害应急管理与决策过程中通过采取有效的信息化手段,提高对突发地质灾害事件的快速反应能力,从而尽量降低灾害造成的损失,具有重要的理论意义和实用价值。
     地质灾害应急行动过程通常涉及跨区域、跨领域的多个部门,需要部门之间的相互协调与合作,而信息资源的共享与协同服务是应急决策支持系统的基础支撑。地质灾害应急管理的信息化水平在不断提升,空间信息技术也已经深入地质灾害应急管理与决策支持的各方面。但是,作为应急决策的重要依据和知识载体,由各级部门制定的地质灾害应急预案目前仍然主要以自然语言描述的静态文本形式存在,在地质灾害应急响应与决策过程中存在以下问题。(1)应急响应与决策过程需要多个部门的信息共享与协同服务,而目前很多决策所需信息是在灾害事件发生后通过人工方式向有关部门询问获得,不仅浪费了大量的宝贵时间,而且难以实现快速的信息融合与决策支持分析。(2)静态文本预案是非结构化文档,为应急决策过程提供的信息有限,而且无法实现预案知识的共享和重用,难以有效支持应急决策方案的制定。(3)预案是根据处置突发事件的经验预先制定的处置方法,而灾害的发生通常是不可预测的,在应急处置过程中出现应急资源不充足、应急力量变动、信息不确定等情况时,基于文本预案的决策形式具有很大的局限性。
     本文的研究旨在为突发地质灾害应急决策提供高效、智能、直观的知识支撑,辅助决策者迅速做出决策,目标是通过有效的技术手段在正确的时机以适当的形式为应急管理或决策人员提供合适的知识。首先,在出现地质灾害灾情或险情时,面对复杂的应急态势,能够快速获取决策所需信息并进行智能化的分析,有针对性的为决策者提供可用的决策支持信息。其次,利用GIS的信息分析与展示优势,为决策者提供友好的人机交互界面与直观可视化的信息,确保决策过程高效、有序进行,但是计算机决不能代替人做出决策。
     本文在查阅与调研国内外相关文献与资料的基础上,围绕地质灾害应急管理与决策过程中信息融合与协同服务不足、基于文本预案决策形式不足等问题,通过研究应急管理体系与机制、应急决策知识以及决策体系,设计了面向服务的地质灾害智能化应急决策支持体系。重点研究了基于本体建模理论的地质灾害应急决策知识表达方法,对基于预案的地质灾害应急决策所需知识作了形式化表达。并提出了事件态势驱动的地质灾害智能化应急决策支持模型,以实时应急态势为驱动,将知识本体推理技术与空间辅助决策支持技术相结合,对地质灾害应急决策所需基础空间数据、专题数据以及应急决策知识进行无缝融合,为基于应急预案的智能化决策支持提供一种可行的方案。主要开展了以下几个方面的研究:
     (1)分析与研究了地质灾害应急管理与决策体系。首先明确了地质灾害应急管理的原则与目标以及应急管理的对象范围,对地质灾害应急管理组织体系进行了研究,并从应急管理生命周期与工作阶段两个角度对应急管理机制做了详细的分析,将应急管理生命周期中的预防、准备、响应和恢复的应急管理内容与日常管理、汛期预警、临灾响应及灾后恢复四个阶段的工作进行映射。然后进一步对与地质灾害应急决策紧密关联的地质灾害预防与预警、灾险情速报与处理、应急响应与处置等三个应急业务过程作了详细的分析。在分析应急管理体系与机制的基础上,对地质灾害应急决策的特征及体系作了详细分析。地质灾害应急决策需要大量知识的支持,因此对地质灾害应急决策所需知识的组成、结构与特征进行详细分析,指出应急预案中由人力知识与技能知识构成的隐性知识是决策支持的重要依据,提出利用本体建模理论对以预案为基础的应急决策知识进行形式化表达的思路。最后提出了面向服务的地质灾害智能化应急决策支持体系,明确了本文的研究重点是:在该决策支持体系下,将应急决策知识本体与空间信息技术相结合,为应急响应与处置过程提供智能决策支持。
     (2)利用本体建模理论构建了基于预案的地质灾害应急决策知识本体模型PEOMG。首先对本体建模的相关理论、技术和方法基础进行研究和了解,包括本体的定义和分类、本体描述语言、语义网规则语言以及本体构建方法论,并且对本体在信息共享、信息检索、知识服务及决策支持等应用场景的功能做了分析。通过分析国家级、省市级、县级等多个不同级别的地质灾害应急预案文本,提取以预案为基础的应急决策知识建模要素,包括应急管理实体、应急行动过程以及应急业务规则。以本体建模的相关理论、技术和方法为基础,以ABC事件本体模型为顶层本体,通过重用其中的概念和属性并结合地质灾害应急管理的特点对概念及属性进行扩充,基于网络本体语言OWL对应急管理实体和应急行动过程进行知识建模。在应急管理实体和应急行动过程本体定义的概念和属性的基础上,利用语义网规则语言SWRL对应急业务规则作形式化表达,为基于知识本体推理的地质灾害智能化应急决策支持奠定基础。最后以某县级地质灾害应急预案为对象进行知识本体建模,验证了PEOMG的一致性和有效性。
     (3)提出了事件态势驱动的地质灾害智能化应急决策支持模型,重点对该模型中的应急态势感知模型、决策知识服务模型以及决策推理与分析进行了研究。态势感知是应急决策过程中的重要环节,是决策者与应急环境之间的桥梁,为决策方案的制定提供实时应急态势信息。首先提出了地质灾害应急态势感知三层模型,包括感知应急情境中的元素、理解当前的应急态势以及预测将来的应急状态,以实现应急决策事件态势的实时感知。然后从事件态势信息流的角度研究了应急决策知识服务的过程。地质灾害预警信息流与速报信息流是应急态势感知的主要途径,对于应急决策知识的动态获取具有重要的驱动作用。通过建立决策知识本体服务目录提供对应急决策知识的服务描述与获取方式。通过解析预警信息流或速报信息流中的特征元素,获得事件信息、态势信息以及时空信息,与知识本体概念进行动态映射,提取所需知识项。在此基础上,以事件实时态势信息为驱动,研究了基于应急决策知识本体与空间信息技术的地质灾害应急决策推理与分析方法。一方面,通过知识本体推理使决策者在宏观上明确应急响应级别、应急响应与处置的任务,根据预案中的人力知识和技能知识指导决策者组织相应的机构开展应急行动;另一方面,在时间紧迫、资源紧缺的情况下,考虑到预案知识不能为具体的指挥调度过程提供直观的依据,将空间辅助决策分析融入预案智能执行的过程,在微观上以直观可视化的形式为指挥调度与态势标绘提供技术支持,形成优势互补、宏观和微观结合的智能化决策支持技术体系。
     (4)设计并实现了突发地质灾害应急预案智能化原型系统,对突发地质灾害智能应急决策支持模型的理论方法进行验证。通过梳理应急预案执行流程,对区域地质灾害预警响应和单体地质灾害应急响应的流程进行分析与设计。基于面向服务的架构思想对系统作了体系结构设计,并以预案执行的流程为依据对系统功能进行合理的组织,实现了基于预案的应急管理与决策支持过程的数字化、智能化与可视化,验证了基于知识本体推理与空间辅助决策技术进行智能化应急决策支持的理论方法和技术体系的可行性。
     通过论文研究,主要的创新和特色在于:(1)在综合各级地质灾害应急预案内容的基础上,通过分析基于预案的地质灾害应急决策所需知识和技术框架,基于网络本体语言OWL和语义网规则语言SWRL建立了基于预案的地质灾害应急决策知识本体模型PEOMG。通过PEOMG可以在人与人之间以及人与计算机之间实现应急决策知识共享、重用与互操作,为地质灾害应急决策过程提供了一种语义协调机制。以PEOMG为模型基础,利用本体推理技术为预案流程的智能化执行提供了一种方法。(2)提出了事件态势驱动的地质灾害智能化应急决策支持模型。以事件态势信息流为驱动,通过Jena与Pellet组合进行决策知识推理,使决策者在宏观上可以明确应急响应级别、应急响应与处置的任务,同时将空间辅助决策支持技术融入知识本体推理过程,在微观上以直观可视化的形式为指挥调度与实时标绘提供支持,从而形成优势互补、宏观和微观结合的智能化决策支持技术体系。
Crustal fracture activities is universal because of China's diversity morphology and complex geology, and human activities are very frequent, thus China is one of the countries in which there are the most serious geological disasters and the most threatened population in the world. Many geological disasters related to geological process, such as collapse, landslide, mudslide and ground sink, is widely distributed in China. Because of the impact of extreme weather events, earthquake and construction, geohazards in recent years have occurred frequently which affected sustainable development of social and economic. With the rapid development of social and economic, infrastructure construction and development of water resources and mineral resources continues to influence geological environment. Meanwhile climate changes and earthquakes tend to be more active in the early years of this century. From the inside and outside cause of geohazards, the occurrence of geological disasters in China will present a trend of variety, wide distribution and high frequency. It is of practical significance to improve the geohazard emergency response ability so as to minimize the loss caused by disasters through making full use of information technology in the process of emergency management and decision-making.
     Emergency response process of geohazards usually involves several cross-regional and cross-domain departments, thus coordination and cooperation between departments is necessary, and information resource sharing and collaborative service is the basis of the emergency decision support system. With the improving of the geohazard emergency management informatization level, spatial information technology has also been applied to many aspects of the geohazard emergency management and decision support. But as the main basis of decision-making, emergency plans of geohazards made by all levels of departments are still mainly existed as static text in the form of natural language at present. So much shortage is still existed in the process of emergency decision-making.(1)Process of geohazard emergency decision-making requires information sharing and services collaboration among several departments. Now much information needed during decision-making is got through asking to the relevant departments by artificial way after geological disaster happened, which wastes a lot of precious time, and it is difficult to quickly realize information fusion and decision support analysis.(2)Knowledge of static text plans is unstructured, which cannot provide sufficient information for emergency decision-making process or implement sharing and reuse of emergency plan knowledge. So it is difficult to support decision-making effectively.(3)Emergency plans are established based on the experience of emergency disposal, but the disaster is usually unpredictable. Thus it has great limitations to cope with unexpected situations based on text plans. For example, emergency resources are not enough, emergency power is changed, and information is uncertain.
     The study of this thesis aims to help decision-makers make decisions quickly by providing efficient, intelligent and intuitive knowledge. The goal of this study is to provide effective knowledge for people of emergency management or decision-maker through effective technology in the appropriate form and at the right time. Firstly, when a geological disaster happened, facing the complicated emergency situation, it is capable of providing decision support information available for decision-makers through accessing to information rapidly and intelligentized analysis. Secondly, taking advantages of information analysis and showing of GIS, it is possible to ensure that the decision can be made efficiently in order by providing friendly man-machine interface and visual information, but the computer can never make decision replace decision-makers.
     In order to solve the above problems, this paper designed service-oriented intelligent decision support system for emergency of geohazards on the basis of reading relevant literature at home and abroad. Plan-based emergency ontology model of geohazard was constructed by using of the ontology modeling theory, on the basis of which knowledge of emergency plans of geohazards was represented formally. And then, making emergency situation information as driver, and combining with the ontology reasoning technology and space decision support technology, this research achieved seamless integration of spatial data, thematic data and knowledge of emergency plans which is required in emergency decision of geological disaster. Through these studies, this paper provided a viable solution for intelligent decision support of geohazards based on emergency plans. The key contributions of this study are as follows:
     (1)Emergency management and decision system of geohazards is analyzed and researched. First of all, the principle, goal and target of geohazards emergency management were understood, emergency management organization system was studied, and emergency management mechanism was analyzed from aspects of lifecycle and work phase in detail. Lifecycle of emergency management contains four steps of prevention, preparedness, response and recovery, and the main contents of the four work phases were mapped to the4-step lifecycle. Then three emergency businesses which were closely related to emergency decision-making of geohazards were analyzed further in detail, including pre-warning, disaster reporting and emergency response. Based on the analysis of emergency management system and mechanism, the characteristics and system of emergency decision-making were analyzed in detail. Much knowledge is needed by emergency decision of geohazards, so the composition, structure and characteristics of emergency decision knowledge of geohazards were analyzed. And it was pointed out that the tacit knowledge composed of know-who and know-how was important for emergency decision, and ontology modeling theory could be used of formalizing emergency decision-making knowledge based on the emergency plan. Finally, service-oriented intelligent decision support system for emergency of geohazards was proposed. And the focus in this system is to provide intelligent decision support for geohazards emergency response by combining knowledge of emergency plans and spatial information technology.
     (2)Plan-based emergency ontology model of geohazard(PEOMG) was constructed through ontology modeling theory. Firstly, theory, technology and method of ontology modeling were researched, including definition and classification of ontology, ontology description language, semantic web rule language and ontology construction methodology. And function of ontology in scenario of information sharing, information retrieval, knowledge service and decision support was analyzed. Then According to the analysis of geohazards emergency plans text in a number of different levels, three elements of emergency decision-making knowledge modeling based on plan were extracted, including emergency management entities, emergency actions and emergency business rules. Based on ontology modeling theory and OWL, making ABC event ontology model as the top ontology, the ontology model of emergency management entities and emergency actions were constructed by reusing the concepts and properties of ABC and extending new concepts and properties of geohazard emergency management. On the basis of the ontology model of emergency management entities and emergency actions, emergency business rules of geohazards were formalized by using SWRL. And these rules are the foundation of intelligent decision support for emergency of geohazard through the knowledge-based ontology reasoning. Finally, an application study was carried out for modelling a county-level emergency plan by using PEOMG, the consistency and effectiveness of which was validated.
     (3) Event-driven intelligent decision support model for emergency of geohazard was proposed, and the focus of the research was emergency situation awareness, decision-making knowledge service and reasoning and analysis of decision. Emergency situation awareness which provides real-time situation, takes an important part in decision-making process as a bridge between decision-makers and emergency environment. Firstly, the3-level model of geohazard emergency situation awareness was proposed in order to get real-time event situation for emergency decision-making. The three levels are the perception of the elements in the emergency environment, the comprehension of their meaning and the projection of their status in the near future. Then knowledge service of the emergency decision-making based on event situational information flow was studied. The main way for emergency situation awareness is the information flow of pre-warning and reporting, which has an important role for dynamic access to knowledge of emergency decision. The service descriptions for knowledge of emergency plans were provided through establishing services directory of decision-making knowledge. And the real-time information of geohazards, such as event information, situational information and spatio-temporal information, was got by parsing the information flow of pre-warning or reporting and extracting the characteristic elements. The necessary knowledge items for decision-making can be extracted through mapping between the real-time information of gehazards and concepts of emergency plan ontology model. Finally, Reasoning and analysis based on ontology and spatial information technology for geohazard emergency decision-making were studied, which was driven by the real-time situational information. On the one hand, decision-makers can get information about the grade and task of emergency response at the macro level by ontology reasoning, and to guide the emergency action according to the knowledge of human and skill. On the other hand, in order to provide intuitive basis for the processes of command and scheduling under constraints of time and resource, this study integrated spatial decision support analysis into the process of knowledge reasoning of emergency plan, which can provide intuitive information support for the real-time dispatching and plotting at the micro level in a visual form. So an intelligent decision support system was provided for emergency of geohazard by combining with advantages of these two aspects.
     (4)An prototype system of intelligent emergency plan for geohazard was designed and implemented in order to validate the theory of intelligent decision support model for emergency of geohazard. At first, emergency response process of regional geohazard pre-warning and monomer geological disaster were analyzed and designed by teasing out the implementation procedure of emergency plan. Then, an service-oriented system architecture was designed, and the system functions was organized based on the process of emergency plan, which achieved digital, intelligent and visual emergency management and decision support based on emergency plans. The theory and technology of intelligent decision support which combined knowledge ontology of emergency plan with spatial information technique, was validated being feasible.
     The main in novations and features of this study are as follows:(1)In the basis of considering geohazard emergency plans at all levels, the knowledge and technical framework required for geohazard emergency decision based on plan was analyzed, and then plan-based emergency ontology model of geohazard(PEOMG) was constructed by using OWL and SWRL. Sharing, reuse and interoperability of knowledge of emergency plan between people or between people and computers can be achieved through PEOMG. which provides a semantic coordination mechanism for emergency decision of geohazards. And ontology reasoning based on PEOMG provides a way for intelligent execution of emergency plans.(2)Event-driven intelligent decision support model for emergency of geohazard was proposed. Decision-makers can get information about the grade and task of emergency response at the macro level by knowledge reasoning based on ontology by using Jena and Pellet, which is driven by information flow of event situation. At the same time, the research integrated spatial decision support analysis into the process of knowledge reasoning of emergency plan, which can provide intuitive information for the real-time dispatching and plotting at the micro level in a visual form. So an intelligent decision support system was provided for emergency of geohazard by combining with advantages of knowledge reasoning and spatial information technology.
引文
[1]国土资源部关于印发《全国地质灾害防治“十二五”规划》的通知[J].国土资源通讯,2012(21):21-31.
    [2]全国地质灾害通报(2012年)[EB/OL]. http://www.cigem.gov.cn/auto/db/detail.aspx?db= 1006&rid=45932&agfi=0&cls=0&uni=False&cid=0&md=15&pd=210&msd=11&psd=5&mdd= 11&pdd=5&count=20,2013.
    [3]冷小鹏.基于G/S模式的三维地质灾害信息管理平台研究[D].成都:成都理工大学,2012.
    [4]汪宙峰.地质灾害空间信息共享平台关键技术研究及应用[D].成都:成都理工大学,2011.
    [5]张文江.地质灾害数据集成关键技术研究[D].成都:成都理工大学,2013.
    [6]朱传华.三峡库区地质灾害数据仓库与数据挖掘应用研究[D].武汉:中国地质大学,2010.
    [7]Chino M, Ishikawa H, Yamazawa H. SPEEDI and WSPEEDI:Japanese Emergency Response Systems to Predict Radiological Impacts in Local and Workplace Areas due to a Nuclear Accident [J]. Radiation Protection Dosimetry,1993,50(2-4):145-152.
    [8]黄以宽. e-FEMA对我国应急管理体系建设的启示[J].信息化建设,2006,6(6):25-28.
    [9]中国安全生产科学研究院赴美考察团.美国的应急管理体系(下)[J].劳动保护,2006(6):88-90.
    [10]张超,裴玉起,邱华.国内外数字化应急预案技术发展现状与趋势[J].中国安全生产科学技术,2010,6(5):154-158.
    [11]李雪峰.英国应急管理体系、方法与借鉴[M].北京市:国家行政学院出版社,2010.
    [12]Baumer Ingo,邵瑜.德国的危机预防信息系统[J].信息化建设,2005(8):46-48.
    [13]范维澄,陈涛.国家应急平台体系建设现状与发展趋势[J].中国突发事件防范与快速处置优秀成果选编,2009:3.
    [14]安全监管总局规划科技司.城市突发重大事故应急预案及应急决策支持系统研究[EB/OL]. http://www.chinasafety.gov.cn/zhuantibaodao/2007-04/25/content_234203.htm,2007.
    [15]廖光煊,朱霁平,翁韬.城市突发重大事故应急决策支持系统[J].中国科技成果,2006(2):54.
    [16]Tecuci G, Boicu M, Hajduk T, et al. A Tool for Training and Assistance in Emergency Response Planning[A]. In:40th Annual Hawaii International Conference on System Sciences [C]. Hawaii,2007:23-28.
    [17]Grathwohl M, De Bertr F, de Beuvron F C C O, et al. A new application for description logics:disaster management[A]. In:Lambrix P, Borgida A, Lenzerini M, et al, eds. Proceedings of the 1999 International Workshop on Description Logics (DL'99) [C]. Linkoping, Sweden:CEUR-WS.org,1999.
    [18]李红臣,邓云峰,刘艳军.应急预案的形式化描述[J].中国安全生产科学技术,2006,2(4):29-34.
    [19]张晓丹,刘丹,俞侃.基于Open XML的应急预案数字化方法[J].计算机工程与设计,2012,33(6):2246-2250.
    [20]童庆,张敬谊,陈诚等.应急指挥系统的结构化和可视化预案[J].计算机工程,2011,37(13):275-278.
    [21]Girgin S, Unlu K, Yetis U. Use of GIS as a Supporting Tool for Environmental Risk Assessment and Emergency Response Plans[M]. In:Linkov I, Ramadan A B, eds. Comparative Risk Assessment and Environmental Decision Making. Springer Netherlands,2005,267-274.
    [22]张欣,钟耳顺.基于GIS的应急预案过程动态推演模拟技术研究[J].武汉大学学报(信息科学版),2008,33(3):281-284.
    [23]王文俊,刘昕鹏,罗英伟等.应急事件Ontology语义模型及其应用[J].计算机工程,2005,31(10):10-12.
    [24]温立,周书民,王延章.基于辅助决策的应急事件本体模型研究[J].情报杂志,2010,29(2):131-134.
    [25]杜冬霞,谢红薇,刘畅.基于关系数据库的应急预案领域本体构建研究[J].微计算机应用,2010,31(1):8-14.
    [26]唐攀.基于HTN规划的应急行动方案制定方法及技术[D].武汉:华中科技大学,2011.
    [27]ter Mors A, Valk J, Witteveen C. An event-based task framework for disaster planning and decision support[A]. In:Van de Walle B, Carl B, eds. Proceedings of the Second International ISCRAM Conference [C]. Brussels, Belgium,2005:151-153.
    [28]Hoogendoorn M, Jonker C M, Popova V, et al. Formal modelling and comparing of disaster plans[A]. In:Proceedings of the 2nd International ISCRAM Conference [C]. Brussels, Belgium, 2005:97-107.
    [29]童喆.基于着色Petri网的应急预案业务流程建模与分析研究[D].南京:南京邮电大学,2011.
    [30]Scaioni M, Alba M, Rota R, et al. A GIS-Based SW Prototype for Emergency Preparedness Management Applied to a Real Case Study[M]. In:Gervasi O, Taniar D, Murgante B, et al, eds. Computational Science and Its Applications-ICCSA 2009. Seoul, Korea:Springer Berlin Heidelberg,2009,79-93.
    [31]张璐.基于本体的城市轨道应急预案数字化方法及应用[D].北京:北京交通大学,2012.
    [32]姚磊.铁路应急预案的数字化技术[D].北京:清华大学,2012.
    [33]王志兵.津滨轻轨应急预案数字化研究及应用[D].天津:天津大学,2008.
    [34]张茜.基于性能化的数字化消防应急预案编制模式[J].消防科学与技术,2008,27(4):4.
    [35]王慧娟,张金星,徐克生等.浅析数字消防应急预案[J].林业劳动安全,2008,21(3):26-33.
    [36]李凯.基于电子沙盘的消防预案可视化系统设计与实现[D].天津:天津大学,2011.
    [37]张平平,刘雅玲,吴富宁.防汛预案智能化实施平台的研究初探[J].水利发展研究,2006,6(12):25-28.
    [38]李晓静.黄河可视化防汛预案管理系统的设计与实现[D].郑州:解放军信息工程大学, 2008.
    [39]张欣,王体健,蒋自强等.突发性大气污染事件数字化动态应急预案系统及其应用[J].安全与环境学报,2012,12(001):254-260.
    [40]蒋浩,荆玲,武港山.突发环境污染事件应急预案数字化方法研究[J].计算机技术与发展,2013(5):6-9.
    [41]丁火平.基于空间信息技术的城市应急管理系统研究[D].北京:中国地质大学(北京),2009.
    [42]曹恒.北京市房山区环境污染突发事件应急决策支持系统研究[D].北京:北京林业大学,2012.
    [43]Gorry G A, Scott-Morton M S. A framework for management information system[J]. Sloan Management Review,1971,13(1):55-70.
    [44]郭召松.火电厂应急救援决策支持系统研究[D].武汉:中国地质大学,2010.
    [45]Kraemer K L, Danziger J N, Dunkle D E, et al. The usefulness of computer-based information to public managers[J]. Mis Quarterly,1993:129-148.
    [46]谢红薇.应急决策知识模型及其进化推理研究[D].太原:太原理工大学,2009.
    [47]李红良.智能决策支持系统的发展现状及应用展望[J].重庆工学院学报(自然科学版),2009,23(10):140-144.
    [48]专家系统[EB/OL]. http://baike.baidu.com/link?url=XLdiyZ-Pn6p9BFgEDngijEFHOwP6F 2j5NFMGU6Jg62GLSJDgxyrkYvd7BZhjLOoz.
    [49]陈钊.森林资源灾害应急机制及应急智能决策系统构架初步研究[D].北京:北京林业大学,2003.
    [50]何亚群.基于粗糙集的智能决策理论与应用研究[D].南京:南京航空航天大学,2004.
    [51]Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases[J]. AI magazine,1996,17(3):37.
    [52]Agrawal R, Imielinski T, Swami A. Database mining:A performance perspective[J]. Knowledge and Data Engineering, IEEE Transactions on,1993,5(6):914-925.
    [53]张贤坤.基于案例推理的应急决策方法研究[D].天津:天津大学,2012.
    [54]陈兴,王勇,吴凌云等.多阶段多目标多部门应急决策模型[J].系统工程理论与实践,2010(011):1977-1985.
    [55]李华.基于本体的应急领域知识表示与复用研究[D].天津:天津大学,2008.
    [56]Crossland M D. Spatial Decision Support System:Encyclopedia of GIS[Z]. Shekhar S, Xiong H. Springer US,2008:1095.
    [57]Mayer I, de Jong M. Combining GDSS and Gaming for Decision Support[J]. Group Decision and Negotiation,2004,13(3):223-241.
    [58]Papamichail K N, French S. Design and evaluation of an intelligent decision support system for nuclear emergencies[J]. Decision Support Systems,2005,41(1):84-111.
    [59]冯嘉礼.核电站严重事故应急决策支持系统及其计算机实现研究[D].北京:中国原子能科学研究院,2001.
    [60]Chen T E, Gao H Y. GIS-based evaluation of the disaster sources in the city[C].,2002.
    [61]马洪超,姚春静,张生德.机载激光雷达在汶川地震应急响应中的若干关键问题探讨 [J].遥感学报,2008,12(6):929-931.
    [62]Kalabokidis K, Xanthopoulos G, Moore P, et al. Decision support system for forest fire protection in the Euro-Mediterranean region[J]. European Journal of Forest Research, 2012,131(3):597-608.
    [63]朱霁平,范维澄,薛海生等.一种基于GIS和Petri网的城市火灾扑救调度决策方法[J].中国科学技术大学学报,2005,35(6):849-855.
    [64]佟志军.草原火灾应急管理与决策支持集成研究[D].长春:东北师范大学,2009.
    [65]Hernandez J Z, Serrano J M. Knowledge-based models for emergency management systems[J]. Expert Systems with Applications,2001,20(2):173-186.
    [66]胡卓玮.洪涝灾害应急响应决策支持业务系统关键技术研究[D].北京:首都师范大学,2007.
    [67]Othman A N, Mohd N W, Noraini S, et al. GIS Based Multi-Criteria Decision Making for Landslide Hazard Zonation[J]. Procedia-Social and Behavioral Sciences,2012,35:595-602.
    [68]Biswajeet P, Saro L. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model[J]. Earth Science Frontiers, 2007,14(6):143-151.
    [69]张桂荣,殷坤龙.基于Webgis的地质灾害信息系统网络数据库的建设[J].中国地质灾害与防治学报,2005,16(3):114-118.
    [70]曾联明,吴湘滨,刘鹏.网格技术在区域性环境地质灾害评估和预测中的应用[J].测绘与空间地理信息,2007,30(5):23-27.
    [71]Huang R Q, Huang J, Ju N P, et al. WebGIS-based information management system for landslides triggered by Wenchuan earthquake[J]. Natural Hazards,2013,65(3):1507-1517.
    [72]Devoli G, Strauch W, Chavez G, et al. A landslide database for Nicaragua:a tool for landslide-hazard management[J]. Landslides,2007,4(2):163-176.
    [73]Hadji R, Limani Y, Baghem M, et al. Geologic, topographic and climatic controls in Landslide hazard assessment using GIS modeling:A case study of Souk Ahras region, NE Algeria[J]. Quaternary International,2012.
    [74]Temesgen B, Mohammed M U, Korme T. Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia[J]. Physics and Chemistry of the Earth, Part C:Solar, Terrestrial\& Planetary Science,2001,26(9): 665-675.
    [75]Metternicht G, Hurni L, Gogu R. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote sensing of Environment,2005,98(2):284-303.
    [76]丁辉.基于遥感技术滑坡灾害区划研究[D].西安:长安大学,2011.
    [77]Mantovani F, Soeters R, Van Westen C J. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology,1996,15(3):213-225.
    [78]殷坤龙,张桂荣,龚日祥等.基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J].水文地质工程地质,2003,30(3):19-23.
    [79]张桂荣,殷坤龙,刘礼领等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报 系统[J].岩土力学,2005,26(8):1312-1317.
    [80]张桂荣.基于WEBGIS的滑坡灾害预测预报与风险管理[D].武汉:中国地质大学,2006.
    [81]刘传正.中国地质灾害区域预警方法与应用[M].地质出版社,2009.
    [82]肖进.重大滑坡灾害应急处置理论与实践[D].成都:成都理工大学,2009.
    [83]廖声银,江鸿彬.初论突发地质灾害应急预案的管理[J].中国地质灾害与防治学报,2009,20(4):109-112.
    [84]国家突发地质灾害应急预案[EB/OL]. http://www.gov.cn/yjgl/2006-01/13/content_157993.htm,2006.
    [85]廖声银,江鸿彬.初论地质灾害的应急管理[J].地质灾害与环境保护,2011,22(1):27-30.
    [86]关于进一步完善地质灾害速报制度和月报制度的通知[J].国土资源通讯,2006(15):11-14.
    [87]魏圆圆.基于本体论的农业知识建模及推理研究[D].合肥:中国科学技术大学,2011.
    [88]Bellinger G, Castro D, Mills A. Data, information, knowledge, and wisdom[EB/OL]. http://www.systems-thinking.org/dikw/dikw.htm,2004.
    [89]Organization for Economic Co-operation and Development. The Knowledge-based Economy [EB/OL]. http://www.oecd.org/sti/sci-tech/theknowledge-basedeconomy.htm,1996.
    [90]Studer R, Benjamins V R, Fensel D. Knowledge engineering:Principles and methods[J]. Data and Knowledge Engineering,1998,25(1/2):161-197.
    [91]邓志鸿,唐世渭,张铭等Ontology研究综述[J].北京大学学报(自然科学版),2002,38(5):730-738.
    [92]张雪锋,王孟钧.突发事件应急决策探讨[J].防灾科技学院学报,2009,11(4):80-84.
    [93]Stanton N A, Chambers P, Piggott J. Situational awareness and safety[J]. Safety Science, 2001,39(3):189-204.
    [94]Endsley M R. Toward a theory of situation awareness in dynamic systems[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society,1995,37(1):32-64.
    [95]Blandford A, William Wong B L. Situation awareness in emergency medical dispatch[J]. International Journal of human-computer studies,2004,61(4):421-452.
    [96]Adams K, Wassell A, Ceruti M G, et al. Emergency-management situational-awareness prototype (EMSAP)[A]. In:Cognitive Methods in Situation Awareness and Decision Support (CogSIMA),2011 IEEE First International Multi-Disciplinary Conference on [C]. Miami Beach, FL,2011:110-114.
    [97]Service-oriented architecture[EB/OL]. http://en.wikipedia.org/wiki/Service-oriented_archite cture,2014.
    [98]面向服务架构[EB/OL]. http://wiki.mbalib.com/wiki/SOA,2013.
    [99]Sprott David, Wilkes Lawrence理解面向服务的体系结构[EB/OL]. http://msdn.microsoft.com/zh-cn/library/aa480021.aspx,2005.
    [100]SOA(面向服务架构)[EB/OL]. http://www-01.ibm.com/software/cn/solutions/soa/? csr=apch_dsw4_20131204_1386125675588&cm=aok&cr=google&ct=103GM0303S&ck=soa& cmp=103GM&mkwid=sCltaKoBW-dc_26325386453_432t3t30585.
    [101]罗显刚.数字地球三维空间信息服务关键技术研究[D].武汉:中国地质大学,2010.
    [102]Gruber T R. The role of common ontology in achieving sharable, reusable knowledge bases[A]. In:Allen J A, Fikes R, Sandewall, eds. Principles of Knowledge Representation and Reasoning:Proceedings of the Second International Conference [C]. Cambridge,1991:601-602.
    [103]Gruber T R. A Translation Approach to Portable Ontology Specifications [J]. Knowledge Acquisition,1993,5(2):199-220.
    [104]Gruber T R. Toward principles for the design of ontologies used for knowledge sharing?[J]. International journal of human-computer studies,1995,43(5):907-928.
    [105]Borst W N. Construction of engineering ontologies for knowledge sharing and reuse[D]. Enschede:University of Twente,1997.
    [106]Guarino N. Semantic matching:Formal ontological distinctions for information organization, extraction, and integration[M]. In:Pazienza M, eds. Information Extraction A Multidisciplinary Approach to an Emerging Information Technology. Springer Berlin Heidelberg,1997:1299,139-170.
    [107]Ontology理论研究和应用建模[EB/OL]. http://wenku.baidu.com/link?url=mpGp6X1bVp9 g9f1Lp7PrQkodG_RTtArpARb9BLXwfkzucZe8kZ8dtniGY8UAyjP4RYKpfYYics5XFzk47w2J OA1wK3T6wJ5tbUkB8vKxkTC.
    [108]OWL Working Group. Web Ontology Language (OWL) [EB/OL]. http://www.w3.org/ 2001/sw/wiki/OWL,2012.
    [109]W3C. OWL Web Ontology Language Overview[EB/OL]. http://www.w3.org/TR/ owl-features/,2004.
    [110]Gomez-Perez A, Benjamins V R. Overview of Knowledge Sharing and Reuse Components: Ontologies and Problem-Solving Methods[C]. Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden,1999.
    [111]Motik B, Patel-Schneider P F, Parsia B. OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition)[EB/OL]. http://www.w3.org/TR/ 2012/REC-owl2-syntax-20121211/#Class_Expression_Axioms,2012.
    [112]Park S G, Kim H. Dental Decision Making on Missing Tooth Represented in an Ontology and Rules[M]. In:Mizoguchi R, Shi Z, Giunchiglia F, eds. The Semantic Web-ASWC 2006. Springer Berlin Heidelberg,2006,322-328.
    [113]Horrocks I, Patel-Schneider P F, Boley H, et al. SWRL:A Semantic Web Rule Language Combining OWL and RuleML[EB/OL]. http://www.w3.org/Submission/SWRL/,2004.
    [114]Zhao W, Liu J K. OWL/SWRL representation methodology for EXPRESS-driven product information model:Part I. Implementation methodology [J]. Computers in Industry,2008,59(6): 580-589.
    [115]张囡囡.面向语义网的领域本体半自动构建方法的研究[D].大连:大连海事大学,2008.
    [116]刘仁宁,李禹生.领域本体构建方法[J].武汉工业学院学报,2008,27(1):46-49,53.
    [117]尚新丽.国外本体构建方法比较分析[J].图书情报工作,2012,56(4):116-119.
    [118]Domingue J, Zdrahal Z. The World Wide Design Lab:an environment for distributed collaborative design[C].1 lth International Conference on Engineering Design, Tampere, Finland, 1997.
    [119]Sure Y, Angele J, Staab S. OntoEdit:Guiding ontology development by methodology and inferencing[M]. In:On the Move to Meaningful Internet Systems 2002:CoopIS, DOA, and ODBASE. Springer,2002,1205-1222.
    [120]Arpirez J C, Corcho O, Fernandez-Lopez M, et al. WebODE:a scalable workbench for ontological engineering[C]. Proceedings of the 1st international conference on Knowledge capture, Victoria, British Columbia, Canada,2001:6-13.
    [121]Protege[EB/OL]. http://www.w3.org/2001/sw/wiki/Protege.
    [122]李静,桂慕梅,张剑.基于本体的知识服务[J].图书馆工作与研究,2007(4):44-47.
    [123]Lagoze C, Hunter J. The ABC ontology and model (v3.0)[J]. Journal of Digital Information,2001,2(2):478-496.
    [124]王文俊,孟凡阔,王月龙等.基于本体的应急预案研究[J].计算机工程,2006,32(19):170-172.
    [125]王红,杨璇,王静等.基于本体的民航应急决策知识表达与推理方法研究[J].计算机工程与科学,2011,33(4):129-133.
    [126]王晓慧.本体的查询与推理及其在军事领域中的应用研究[D].重庆:重庆大学,2012.
    [127]张玉亮.面向优化控制的公共危机信息流及其运行模式——基于云计算技术的视角[J].吉首大学学报(社会科学版),2011,32(4):143-146.
    [128]秦胜君,陈燕,杨明.信息流结构分析法的应用[J].大连海事大学学报,2013,39(3):63-66.
    [129]薛群威,罗显刚.国家级地质灾害气象预警服务模型设计与应用[J].计算机应用与软件,2012,29(8):90-94.
    [130]9月11日-12日全国地质灾害气象预警预报结果[EB/OL]. http://www.mlr.gov.cn/zwgk/ zqyj/201309/t20130912_1269980.htm,2013.
    [131]9月11日-9月12日贵州地质灾害气象预警预报结果[EB/OL]. http://www.mlr.gov.cn/ zwgk/zqyj/201309/t20130912_1269968.htm,2013.
    [132]赵春江.农业智能系统[M].北京:科学出版社,2009.
    [133]谭月辉,肖冰,陈建泗等.Jena推理机制及应用研究[J].河北省科学院学报,2009,26(4):14-17.
    [134]Getting started with Apache Jena[EB/OL]. https://jena.apache.org/getting_started/ index.html.
    [135]Reasoners and rule engines:Jena inference support[EB/OL]. http://jena.apache.org/ documentation/inference/.
    [136]Kuba M. OWL 2 and SWRL Tutorial[EB/OL]. http://dior.ics.muni.cz/-makub/owl/,2012.
    [137]Sirin E, Parsia B, Grau B C, et al. Pellet:A practical owl-dl reasoner[J]. Web Semantics: science, services and agents on the World Wide Web,2007,5(2):51-53.
    [138]纪兆辉.本体的推理研究[J].南京师范大学学报(工程技术版),2012,12(3):54-59.
    [139]Does Pellet support rules? SWRL? Which Builtins?[EB/OL]. http://clarkparsia.com/ pellet/faq/rules.
    [140]基于本体的推理技术的相关研究[EB/OL]中国科技论文在线,http://www.paper.edu.cn/.
    [141]吴信才,刘修国,周顺平等.MapGIS IGServer原理与方法[M].北京:电子工业出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700