用户名: 密码: 验证码:
孟加拉湾上新世以来沉积记录及古气候演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北印度洋孟加拉湾位于世界屋脊—喜马拉雅山之南,是喜马拉雅山和青藏高原剥蚀物的主要承载区,因此二者之间在物质的剥蚀、输送和沉积过程中存在密切的关联。孟加拉扇的沉积以浊流作用为主,沉积速率相对较高,可对其进行短尺度、高精度古气候变化研究;东经90°海岭的沉积以远洋—半远洋沉积为主,沉积速率较低,但雄踞扇底的海岭较少受浊流、等深流活动的改造,保存了沉积过程的原始信息,是进行长尺度古海洋学研究的理想场所。
     本文通过对孟加拉湾扇区的MD77190和MD81345以及岭区的DSDP217、DSDP216、OPD758和MD813496支岩芯上新世以来长短两个尺度的稳定同位素地层、碳酸盐地层、磁化率地层、陆源物质粒度等的深入研究,探讨了该区沉积记录对5.2MaB.P.来喜马拉雅山加速隆升的响应以及与“中更新世转型”、“中布容溶解”事件和末次冰期中的D-O旋回、海应事件等全球性或区域性古海洋、古气候变化之间的耦合关系。也对研究区30万年来印度季风的演化、表层海水古生产力、海水古化学、陆源物质输入量和沉积速率等的变化做了深入细致的研究,探讨了这些变化之间的联系及相互作用,并与高纬度冰川—气候旋回及低纬度日照量的变化做了对比分析。通过海陆气候对比和远程气候对比揭示出高纬度地区不稳定快速气候变化在该区存在积极响应,二者之间存在气候变化的遥相关说明该区气候变化具有全球性。另外,该区气候变化与低纬度日照量变化的一致性说明该区气候变化也具有区域性。
     通过对各指标的理论分析和相互对比印证,探明其气候环境指代意义后对研究区上新世以来的古气候、古环境变化进行了探讨。从ODP758磁化率、碳酸钙沉积通量和非碳酸钙沉积通量变化反映出研究区在5.1、3.9-3.4、1.7和0.8MaB.P.附近陆源物质的输入量增加,这可同现有资料表明的喜马拉雅山上新世以来的隆升历史。其中后两次隆升较为强烈,表现在三项指标同期快速增加且增幅较大。后三次隆升分别与青藏高原隆升过程的青藏运动A幕(3.6MaB.P.)、青藏运动C幕(1.7MaB.P.)和昆仑—黄河运动(1.2-0.6MaB.P.)的时间一致。对印度季风和轨道变化的相位关系分析发现2.6、1.7、1.2-0.6MaB.P.是印度季风的重要转型时期,后两次转型与该区沉积记录反映的喜马拉雅山和青藏高原隆升完全对应,说明研究区沉积记录和古气候演化对高原隆升信号的响应是存在的,可作为高原隆升的远程监视器。
     ODP758的碳酸钙含量、>150μm的粗组分含量以及浮游有孔虫生物地层揭示出在0.55-0.4MaB.P.研究区深海碳酸盐遭受强烈溶解。碳酸钙含量明显降低;>150μm的粗组分减少;浮游有孔虫中易溶种比例减少,抗溶种比例增加。此事件与大西洋、太平洋、印度洋其他海区及南沙海区沉积记录中的“中布容溶解”事件一致,反映了其存
    
    东北印度洋中霎带i山以来沉积记录及古气候淡化 张报并
     在的广泛性。对>150 p m 的粗组分含量进一步分析发现,深海碳酸盐的溶解存在
     0.6-0.4M。的长周期震荡,“中布容溶解”事件是其中最后一次,可能与人洋长期CaZ十
     通量变化和/或深水碳循环有关。
     ODP758浮游和底栖有孔虫氧同位素曲线记录了发生在中更新世0.85MaB.厂附近
     的主导周期转型事件。对二者进行 100ha滤波分析发现偏心率周期在 1.ZMaB里突显,
     之后在1.10.gMaBP.这一周期一度减弱,在0.85MaBP再度增强并趋于主导周期。转
     型事件发生的时间与最后一次高原强烈隆升的时间一致,推测二者之间可能有某种关
     w。
     对海岭L的三支岩芯 DSDPZ16、DSDP27和 ODP758陆源物质粒度分析发现,菲
     南面的 ZI6的中值粒径和平均粒径均人于靠北面的 2 7,这与海岭上陆原物质的原厂。
     搬运的水动力条件及海岭与扇底的相对高程矛盾,由此推测有另外的非碳酸盐物质来
     源。进一步分析发现这个来源是Sunda岛弧的火山灰物质,虽然这部分物质的景相对
     极少,但其粒度较粗,从而使整体粒度出现卜述反粒序。由于控制两个物源亚区供应
     量的因素不同,据此可判别古气候变化。
     对孟加拉湾30万年来多岩芯、多指标综合研究发现研究区气候变化既受冰川一气
     候旋问的控制又受低纬度日照量变化的影响。冰期时陆源物质沉积通量增加、碳酸钙
     含量减少、磁化率升高、>150Vm 的粗组分含量增加、底栖有孔虫6门C降低,说明
     冰期时由于海平面下降,岸线向海推进,陆源物质输入量增加,一方面导致磁化率升
     高,另一方面刺激表层生物生产力增加。陆源物质输入量和表层生物生产力增加共同
     作用使冰期时沉积速率增大,相对较高的沉积速率和陆源物质的稀释作用使深海碳酸
     盐的保存增加,问冰期情况相反。另外在扇区的**7刀叨岩芯中发现了一套颜色深浅
     相间的韵律层沉积,对其进行多指标研究发现它反映了末次冰期以来的快速气候变化,
     可与阿拉伯海区、圣巴巴拉盆地以及格陵兰冰芯记录的rO旋回和海应事件对比,反
     映了研究区气候变化与高纬度气候不稳定的遥相关。从孟加拉扇区沉积的粘土矿物组
     合及盐度变化说明低纬度日照量变化对研究区古气候变化有?
Situated in south of Himalayas-the loftiest mountain ranges in the world, Bay of Bengal hosted most of erosion products from Himalayan and Tibetan Plateau. As the result, an enormous submarine sedimentary fan, as so called "Bengal Fan" has been deposited in the floor of Bay of Bengal. There is a clear relationship between Bengal Fan and Himalayas-Tibetan Plateau in the cause of terrigenous deposits erosion, delivery and sedimentation. During the formation of Bengal Fan, the greatest turbidite body in the world, turbidity currents sedimentation is the main dynamics to build the sedimentary framework. So the sedimentation rate of the fan is relatively high and it can be regarded as an ideal subject
    to carry out short-term and high-resolution paleoclimatic research. Ninetyest (90°E) Ridge is a submarine mountains of the Bay of Bengal. It is mainly documented by pelagic and himipelagic sedimentation. So the sedimentation rate of the ridge area is relatively low. On the other hand, this area is minor reformed by turbidity and bottom currents activity, so it contains some initial information of the sedimentary process. As such, it can be served as an ideal situation to so some long-term research on paleoceanography.
    Many proxy records have been developed to define the change of paleoclimate and paleocanograpphy. Here we present the stable isotope, weight content of CaCO3, magnetic susceptibility and grain size records of MD77190, MD81345 from the Bengal deep sea fan and DSDP216, DSDP217, ODP758, MD81349 from the Ninetyest Ridge to discuss the response of the sedimentary records to the rapid uplift of Himalayas and Tibetan Plateau. The coupling relationship of the global or regional paleoclimatic and paleoceanographic changes, such as mid-Plestocene Transition, mid-Brunhes Dissolution Event and the rapid climate
    variability during the last glaciation have also been discussed. The results shoe that the sedimentary records of the studied region have well documented not only the rapid uplift of Himalayas and Tibetan Plateau over the past 5.2Ma, but also the mid-plestocene transition and mid-Brunhes dissolution event, The results also suggest that the climatic changes in the low latitudes have a good response not only to the glacial-interglacial cycles and climatic instability in the high latitudes, but also to insolation of summer in the low latitudes.
    Firstly, basted on the theory analysis and comparison, we make a discussion about the climatic implications that the proxy indicators bear and the regional evolution concerned. Then we argue the Paleoclimatic and paleoenvironmental changes of the studied region since Pliocene time. The changes of magnetic susceptibility, mass accumulation rate (MAR) of CaCO3 and non-CaCO3 MAR form ODP site758 indicate that the loaded terrigenous sediments increased at 5.1MaB.R, 3.9-3.4 MaB.R, 1.7MaB.P. and 0.8MaB. P. These accompanied the rapid uplift of Himalayas since Pliocene. Among the four changes, the last two changes were relatively obvious; they indicate that the two uplifts were relatively significant. The last three changes coincided with the uplifts of Tibetan Plateau, so called "Episode A of Qinghai-Tibet Movement (3.6MaB.P.)", "Episode A of Qinghai-Tibet Movement (1.7MaB.P.)" and "Kunlun-Huanghe Movement (1.2-0.6MaB.P.) and the
    
    
    
    
    last two changes coincided with the main period transition of the Indian monsoon. These suggest that the sedimentary records of the studied area have response to the uplifts of Himalayas and Tibetan Plateau and changes of paleoclimate. It can be regarded as a "watch" of the uplift. The changes of the CaCO3 content, coarse fraction (>150nm) content and planktonic foraminifer faunal variations from ODP site758 show that the dissolution of CaCO3 was great during 0.55-0.4MaB.P.. Because the first two proxy indicators clearly decreased and the amount of dissolution-sensitive species reduced, in the same time, the amount of dissolution-resistant species increased in this period. The event has been found in Atlantic Ocean, Pacific Ocean, the oth
引文
1. makawa H, Alibo D S, Nozaki Y Nd isotopic and REE pattern in the surface waters of the eastern Indian Ocean and its adjacent seas. Geochim. Cosmochim. Acta, 2000, 64 (10) : 1715-1727
    2. Amano K, Taira A Tow-phase uplift of Higher-Himalayas since 17Ma. Geology, 1992, 20: 391
    3. An Z S, Kutzbach J E, Prell W L et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocece times. Nature, 2001, 411:62-66
    4. Arnold E, Leinen M, King J Pa;eoenvironmental variation based in the mineralogy and rock-magnetic properties of sediment from sites 885 and 886. In: Rea D K et al. (eds.) Proc. OOP Sci. Results, 1995, 145:231-245
    5. Bassinot F C, Beaufort L, Vincent E et al. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500 kyr record of carbonate dissolution. Paleoceanolography, 1994, 9(4) : 579-600
    6. Berger W H Planktonic foraminifera: selective solution and the lysocline. Mar. Geol., 1970, 8: 111-138
    7. Berger W H, Bonneau M C, Parker F L. Foraminifera on the deep-se floor: lysocline and dissolution rate. Oceanol. Acta, 1982, 5: 249-258
    8. Berger W H, Jansen E Mid-Pleistocene climate shift-the Nansen connection. In Johannessen O M et al. (eds.) The polar oceans and their role in shaping the global environment. Geophys. Monogr. Ser., 1994, 18: 295-311
    9. Berger W H, Yasuda M K, Bickert T et al. Quaternary time scale for the Ontong Java Plateau: Milankovitch Template for Ocean Drilling Program. Geology, 1994, 22: 463-467
    10. Birger S Barium, equatorial high productivity, and the northward wandering of the Indian Continent. Paleoceanography, 1987,2 (1) : 63-77
    11. Bond G C, Broecker W S, Johnsen S J et al. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature, 1993, 365:143-147
    12. Broccoli A J, Manabe S The effects of orography on midlatitude northern hemisphere dry climates. J.Clim., 1992,5:1181-1201
    13. Broecker W S Massive iceberg discharges as triggers for global climate change. Nature, 1994, 372: 421-424
    14. Burton K W, Ling H F, O'Nions R K Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature, 1997, 386: 382-385
    15. Burton K W, Vance D Glacial-interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth Planet. Sci. Lett., 2000, 176: 425-441
    16. Burton K W, Vance D Glacial-interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Ear. Plan. Sci. Lett., 2000, 176: 425-441
    17. Cande S C, Haxby W F, Kent D V Synchronous changes in plate motion in the Late Neogene. EOS, 1991,72: 99
    18. Cane M A, Molnar P Closing of the Inodenesian seaway as a precursor to East African aridification around 3-4 million years ago. Nature, 2001, 411:157-162
    19. Carroll J, Falkner K K, Brown E T et al. The role of the Ganges-Brahmaputra mixing zone in supplying barium and 226Ra to the Bay of Bengal. Geochim. Cosmochim. Acta, 1993, 57: 2981-2990
    20. Chen F H, Bloemendal J, Wang J M et al. High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75kyr B.P.. Palaeogeogr., palaeoclimatol., palaeoecol., 1997, 130: 323-335
    21. Chen J Benthic foraminifera; isotope composition: Implications for late Negene-Qualernary paleoceanography of the Indian Ocean. Ph.D. thesis, 1994, 492pp, Brown Univ. Providence, R.I.
    22. Chen J, Farrell J W, Murray D W et al. Timescale and paleoceanographic implications of a 3. 6 m. y.
    
    
    oxygen isotope record from the northeast Indian Ocean (ODP Site 758 ). Paleoceanography, 1995, 10 (1) : 21-47
    23. Chen M T, Farrel J. Planktonic foraminifer faunal variations in the Northeastern Indian Ocean: A high-resolution record of the past 800,000 years from Site758. In: Weissel J, Peirce J et al. (eds.) Proc. ODP Sci. Results. 1991, 121: 125-140
    24. Christian F-L, Derry LA 6 13C of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim. Cosmochim. Acta, 1994, 58 (21) : 4809-4814
    25. Clemens S C. Murray D w, Prell W L Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science, 1996, 274:943-948
    26. Clemens S C, Prell W L Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography, 1990,5: 109-145
    27. Clemens S C, Prell W L, Murray D w et al. Forcing mechanisms of the Indian Ocean monsoon. Nature, 1991,353:720-725
    28. Cochran J R Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP Leg 116 Sites. In: Cochran J R, Stow D AA V et al. (eds.) Proc. ODP Sci. Results, 1990, 116: 397-414
    29. Cochran J R, Stow D A v et al. Proc. ODP Init. Rep., 1989, 116, 388pp.
    30. Coleman M Evidence for Tibetan uplift before 14Myr ago from a new minimum age for east-west extension. Nature, 1995, 374: 49-52
    31. Colin C, Kissel C, Blamart D et al. Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon. Ear. Plan. Sci. Lett., 1998, 160: 623-635
    32. Colin C, Turpin L, Bertaux J et al. Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Ear. Plan. Sci. Lett., 1999, 171: 647-660
    33. Cronin T M, Dowsett H J Warm climates of the Pliocene. Geotimes, 1993, (11) : 17-19
    34. Crowley T J Late Quatenary carbonate changes in the north Atlantic, and Atlantic-Pacific comparisons. In: Sundquist E T, Broecker W S (eds.) The carbont cycle and atmospheric CO2: Natural Variations, Archaen to Present. 1985, Am. Geophys. Union Monogr, 32: 271-284
    35. Cullen J L Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20 000 years. Palaeogeogr., palaeoclimatol., palaeoecol., 1981, 35: 315-356
    36. Curray J R, Emmel J F, Moore D G et al. Structure tectonics and geological history of the Northeastern Indian Ocean. In: Nairn A E M, Stehli F G (eds.) The Ocean Basins and Margins New York (Plenum), 1982,6:399-450
    37. Curray J R, Moore D G Growth of the Bengal Deep-Sea Fan and denudation in the Himalayas. Geol. Soci. Ame. Bull., 1971, 82:563-572
    38. Curray J R, Moore D G Sedimentary and tectonic processes in the Bengal deep-sea fan and geosyncline. In: Burk C A, Drake C L (eds.) The Geology of Continenntal Margins. Springer, New York, 1974, pp617-639
    39. Dehn J, Parrel J W, Schmindke H U Neogene tephrochronotogy from site758 on northern Ninetyeast Ridge: Indonesian Arc volcanism of the past 5Ma. In: Peirce J et al. (eds.) Proc. ODP Sci. Results, 1991, 121:273-293
    40. DeMenocal P B Plio-Pleistocene African climate. Science, 1995, 270:55-59
    41. Dietz R S Possible deep-sea turbidity-current channels in the Indian Ocean: Geol. Soc. Amer. Bull., 1953,64: 375-378
    42. Ding Z L, Rutter N W, Liu T S et al. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess. Palaeoclimates, 1997, 4: 1-11
    43. Ding Z L, Yu Z, Rutter N W et al. Towards an orbital time scale from Chinese loess deposits. Quat. Sci. Rev., 1994, 13: 39-40
    44 Dodson J R,Ramrath A澳大利亚的第三纪-第四纪过渡期。第四纪研究,2000,20(5) :397-407
    
    
    45. Dowsett H J, Barren J, Poore R Middle Pliocene sea surface temperatures: A global reconstruction. Marine Micropa;eontology, 1996, 27: 13-25
    46. Duplessy J C Glacial to interglacial contrasts in the northern Indian Ocean. Nature, 1982, 295: 494-498
    47. Emmel F J The Bengal submarine fan, northeastern Indian Ocean. Geo-Mar. Lett., 1984, 3: 119-124
    48. England P, Molnar P Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18: 1173-1177
    49. Fagel N, Debraban P, Andre L Clay supplies in the Central Indian Basin since the Late Miocene: Climatic or tectonic control? Mar. Geol., 1994, 122: 151-172
    50. Fang N Q, Chen X F, Hu C Y et al. Rapid climate change during past 60Ka recorded in NE Indian Ocean and its correspondence from South China land. J. China Univ. Geosci., 2000, 11(3) :252-258
    51. Farrell J W, Janecek T R. Late Neogene paleoceanography and paleoclimatology of the Northeast Indian Ocean (Site758) . In: Weissel J, Peirce J et al. (eds.) Proc. ODP Sci. Results. 1991 , 121: 297-315
    52. Flower B P, Kennett J P The Younger Dryas cool episode in the Gulf of Mexico. Paleoceanography, 1990, 5(5) :949-961
    53. Folk R M, Ward W C A study in significance of grain size parameters. Jour. Sed. Petro., 1975, 27: 3-27
    54. France-Lanord C Derry L A Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 1997,390: 65-67
    55. France-Lanord C Derry LA 8 13C of organic carbon in the Bengal Fan: Source evolution and transport C3 and C4 plant carbon to marine sediments. Geo. Cos. Acta, 1994, 58 (21 ) : 4809-4814
    56. Fronval T, Jansen E, Bloemendal J et al. Oceanic evidence for coherent fluctuations in Fennoscandian and Laurentide ice sheets on millennium timescales. Nature, 1995, 347: 443-446
    57. Gingele F X, Deckker P D, Hillenbrand C D Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Mar. Geol., 2001, 179: 135-146
    58. Glasiter R P, Nelson H W Grain size distributions and aid in facies identification. Bull. Can. Petro. Geol., 1975,22(3) : 203-240
    59. GRIP member Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 1993, 364:203-207
    60. Harison T M, Copeland P, Kidd W S F et al. Raising Tibet. Science, 1992, 255:1663-1667
    61. Haug G H, Tiedemann R Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 1998, 393: 673-676
    62. Heezen B C, Tharp M Physiographic diagram of the India Ocean, the Red Sea, the South China Sea, the Sulu Sea, and the Celebes Sea. Water Resources Res., 1964, 4:787-77
    63. Heinrich H Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 1 30000 year. Quat. Res., 1988,29:142-152
    64. Holeman J N The sediment yield of major rivers of the world. Water Resources Res., 1968, 4: 787-797
    65. Hoorn C, Ohja T, Quade J Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal) . Palaeogeogr., palaeoclimatol., palaeoecol., 2000, 163: 133-161
    66. Hovan S A, Rea D K The Cenozoic record of continental mineral deposition on Broken and Ninetyeast Ridges, Indian Ocean: southern African aridity and sediment delivery from the Himalayas. Paleoceanography, 1992, 7(6) : 833-860
    67. Hovan S A, Rea D K The Cenozoic record of continental mineral deposition on Broken and Ninetyeast Ridges. Indian Ocean: southern African aridity and sediment delivery from the Himalayas. Paleoceanography, 1992, 7(6) : 833-860
    68. Hutson W H, Prell W L A paleoecological transfer function, FI-2, for Indian Ocean planktonic foraminifers. J. Paleontol., 1980, 54: 381-399
    69. Imbrie J. Berger A, Boyle E A et al. On the structure and origin of major glaciation cycles, 2: The 100 000-year chronostratigraphy. Paleoceanolography, 1993, 8: 699-735
    
    
    70. Imbrie J, Hays J D, Martison D G et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ180 record. In: Berger A, Imbrie J, Hays J D et al. (eds. ) Milankovitch and Climate. 1984, pp. 263-305, D. Riedel, Norwell, Mass.
    71. Klootwijk C T, Gee J S, Peirce J W et al. Neogene evolution of the Himalayan-Tibetan region: constraints from ODP758, northern Ninetyesst Ridge; bearing on climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 95: 95-110
    72. Kolla V, Coumes F Morphology, internal structure, seismic stratigraphy, and sedimentation of the Indus Fan. Am. Assoc. Petrol. Geol. Bull., 1987, 71: 650-677
    73. Kolla V, Moore D C, Curray J R Recent bottom-current activity in the deep western Bay of Bengal. Mar. Geol., 1976, 21:255-270
    74. Kolla V, Pierre E B Clay mineralogy and sedimentation in the eastern Indian Ocean. Deep-Sea Research, 1973,20:727-738
    75. Kroon D, Ganssen G Northern Ocean upwelling cells and the stable isotope. Deep-sea Res., 1989, 36: 1219-1236
    76. Kroon D, Steens T N F, Troelstra S R Onset of moosoonal related upwelling in the western Arabian Sea. Proc. ODP Sci. Results, 1991, 17: 257-263
    77. Kutzbach J E, Guetter P J, Ruddiman W F Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. Journal of Geophysical Research, 1989, 94:18393-18407
    78. Kutzbach J E, Prell W L, Ruddiman W F Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol., 1993, 101:177-190
    79. Maasch K A Statistical detection of the mid-Pleistocene transition. Climate Dyn., 1988, 2: 133-143
    80. Manabe S, Terpstra T B The efffects of mountains on the general circulation of the atmosphere as identified by numeral experiment. J. Atomos. Sci., 1974, 31:3-42
    81. Marcantonio F, Anderson R F, Higgins S et al. Abrupt intensification of the SW Indian Ocean monsoon during the last deglaceation: constraints from Th, Pa, and He isotopes. Eart. Plan. Sci. Lett., 2001, 184: 505-514
    82. Martin P A, Lea D W Comparison of water mass changes in the deep tropical Atlantic derived from Cd/Ca and carbon isotope records: Implications for changing Ba composition of deep Atlantic water masses. Paleoceanolography, 1998, 13(6) : 572-585
    83. Martinson D G, Pisias W G, Hays J D et al. Age dating and the orbital theory of the ice age development of a high resolution to 300,000 year chronstratihraphy. Quat. Res., 1987, 27(1) : 1-29
    84. Miller K G, Fairbanks R G, Mountain G S Tertiary oxygen isotope synthesis, sea-level history, and continental margin erosion. Paleoceanography, 1987, 2: 1-19
    85. Millman J, Meade R H World-wide delivery of river sediment to the oceans. J. Geology, 1983, 91:1-21
    86. Molnar P, England P Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 1990, 346: 29-34
    87. Molnar P. England P, Martiod J Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development. Rev. Geophys., 1993,34:357-396
    88. Molnar P, Tapponnier P Cenozoic tectonics of Asia: effects of a continental collision. Science, 1975, 189:419-426
    89. Naidu P D, Malmgren B A Monaoon upwelling effects on test size of some planktonic foraminiferal species from the Oman Margin, Arabian Sea. Paleoceanolography, 1995, 10(1) : 117-122
    90. Olausson E Quaternary correlation and the geochemistry of oozes. In: Funnel B M and Riedee W R (eds.) Micropaleontology of the Ocean. Cambridge University Press, 1971, 375-398
    91. Otto J, Hermelin R Impact of productivity events on the benthic foraminiferal fauns in the Arabian Sea over the last 150 000 years. Paleoceanolography, 1995, 10(1) : 85-116
    92. Peterson L C, Backman J Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial India Ocean. In: Duncan G A, Backman J, Peterson L C et
    
    
    al. (eds.) Proc. ODP Sci. Results, 1990, 115: 467-507
    93. Peterson L C, Prell W L Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: preservation patterns and carbonate loss above the lysocline. Mar. Geol., 1985, 64: 259-290
    94. Pettke T, Rea D K, Halliday A N Changes in late Cenozoic weathering of central Asia as recorded in the Nd and Sr isotopic compositions of Pacific eolian dust. Eos Trans. AGU, 1997, 78(46) ,Fall Meet. Suppl., F358
    95. Pierson-Wickmann A-C, Reisberg L, France-Lanord C et al. Os-Sr-Nd results from sediments in the Bay of Bengal: Implications for sediment transport and the marine Os record. Paleoceanography, 2001, 16 (4) : 435-444
    96. Porter S C, An Z S Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 1995, 375:305-308
    97. Prell W L, Hutson W H, Willliams D F et al. Surface circulation of the Indian Ocean during the last glacial maximum, approximately 18,000yr B.P.. Quat. Res., 1980,14:309-336
    98. Prell W L, Kutzbach J E Monsoon variability over the past 15,000years. J. Geophys. Res., 1987, 92: 8411-8425
    99. Prell W L, Kutzbach J E Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360:647-652
    100. 100. Prell W L, Niitsuma N et al. Proc. ODP Sci. Results, 1989, 117: College Station, TX(ODP)
    101. 101. Prentice M L, Matthews R K Tertiary ice sheet dynamics: The snow gun hypothesis. J Geophys. Res., 1991,96: 6811-6827
    102. Quade J, Cerling T E Expansion of C4 grasses in the late Miocene of northern Pakistan: Evidence from stable isotopes in paleosols. Palaeogeogr., palaeoclimatol., palaeoecol., 1995, 115: 91-116
    103. Quade J, Cerling T E, Bowman J R Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342:163-166
    104. Quade J, Ros L, DeCelles P G et al. The Late Neogene 87Sr/86Sr record of Lowland Himalayan rivers. Science, 1997, 276: 1828-1831
    105. Ramstein G, Fluteau F, Besse J et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386: 788-795
    106. Raymo M E, Ruddiman W F Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122
    107. Raymo M E, Ruddiman W F, Backman J et al. Late Pliocene variation in northern hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography, 1989, 4: 413-446
    108. Raymo M E, Ruddiman W F, Froelich P N Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 1988,16:649-653
    109. Rea D K Delivery of Himalayan sediment to the northern Indian Ocean and its relation to global climate, sea level, uplift, and seawater strontium. In: Duncan R, Rea D K, Kidd R B et al. (eds.) The Indian Ocean : A synthesis of results from the Ocean Drilling Program, geophysical monograph 70. Am. Geophys. Union, Washington, D C., in press, 1992
    110. Rea D K The paleoclimate record provided by eolian deposition in the deep sea: the geologic history of wind. Reviewa of Geophysics, 1994, 32: 159-195
    111. Rea D K, Hovan S A Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific. Paleoceanography, 1995, 10: 251-258
    112. Rea D K, Snoeck H, Jodeph L H Late Cenozoic eolian deposition in the North Pacific Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 1998, 13: 215-224
    113. Reichart G J, Lourens L J, Zacheriasse W J Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225 000 years. Paleoceanolography, 1998, 13(6) : 607-621
    114. Rose W L Chesner C A Dispersal of ash in the great Toba eruption, 75Ka. Geology, 1987, 15: 913-917
    115. Ruddiman W F Tectonic Uplift and Climate Change. New York: Plenum Press, 1997, 1-50
    116. Ruddiman W F, Kutzbach J E Forcing of late Cenozoic northern hemisphere climate by plateau uplift in Southern Asia and the American West. J. Reophys. Res., 1989, 94:18409-18427
    
    
    117. Ruddiman W F, Mclntyre A, Raymo M E Matuyama 41000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet. Sci. Lett., 1986, 80: 1 17-129
    118. Ruddiman W F, Prell W L, Raymo M E Late Cenozoic uplift in Southern Asia and American West: Rationale for genera! circulation modeling experiments. J. Geophy. Res., 1989, 94 (D15) : 18379-18391
    119. Ruddiman W F, Raymo M E, Martison D G et al. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 1989, 4: 353-412
    120. Schmitz B Barium, equatorial high productivity, and the northward of the Indian Continent. Paleoceanography, 1987, 2(1) : 63-77
    121. Schulz H, Rad U, Erlenkeuser H Correlation between Arabian Sea and Greenland clamate oscillations of the past 1 10000 year. Nature, 1998, 393:54-57
    122. Searle M P et al. The closing of the Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull., 1987, 98: 678-701
    123. Shackleton N J, Berger A, Peltier W R An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Trans. R. Soc. Edinbrugh Earth Sci., 1990, 81: 251-261
    124. Shi N Aldahan A A, Ye H et al. 10Be in continental sediments from North China: Probing into the past 5. 4 Ma. Quat. Sci. Rev., 1994, 13: 127-136
    125. Shi N, Cao J X, Konigsson L K Late Cenozoic vegetational history and the Plio-Pleistocene boundary in the Yushe basin, S. E. Shanxi, China. Grana, 1993, 32: 260-271
    126. Shipboard scientific party in: ODP initrial report 1989, 121:p359-453
    127. Shipboard scientific party in: ODP initrial report 1989, 121:p517-536
    128. Sirocko F, Garbe-Schonberg D, Mclntyre ct al. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglacition. Science, 1996, 272:526-529
    129. Spencer D, Broecker W S, Graig H et al. Geosecs-Indian Ocean Expedition. Section and Profiles, National Science Foundation, Washington, D.C., 1982, 140pp
    130. Stow D A V, Amano K, Balson P S et al. Sediment facies and processes on the distal Bengal Fan, Leg 116. In: Cochran J R, Stow D AA V et al. (eds.) Proc. ODP Sci. Results, 1990, 116: 377-396
    131. Volat J L, Pastouret L, Vergnaud-Grazzini C Dissolution and carbonate fluctuation in Pleistocene deep-sea cores: a review. Mar. Geol., 1980, 34: 1-28
    132. Von der Borch C C, Sclater J G et al. Init. Repts. DSDP, 1974, Leg22, Washington (U.S. Govt. Printing Office)
    133. Wyrtki K Oceanography Atlas of the international Indian Ocean Expedition, New Delhi (Amerind), 1988
    134. Wyrtki K Physical oceanography of the Indian Ocean. In: Zeitzschel B, Gerlach S A (eds.) The biology of the international Indian Ocean Vol.3, New York (Springer Verlag), 1973, 18-36
    135. Xiao J L, Porter S C, An Z S et al. Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130kyr. Quat. Res., 1995, 43: 22-29
    136. Zonneveld K A F, Ganssen G, Troelstra S et al. Mechanisms forcing abrupt fluctuations of the Indian Ocean summer monsoon during the last deglaciation. Quat. See. Rev., 1997, 16: 187-201
    137 卞云华,汪品先,郑连福南海北部晚第四纪浮游有孔虫的溶解作用旋回。见:叶之铮汪品先编南 海晚第四纪古海洋学研究。青岛:青岛海洋大学出版社,1992,261-273
    138. 陈隆勋,刘骥平,周秀骥等 青藏高原隆起及海陆分布变化对亚洲大陆气候的影响。第四纪研究, 1999(4) :314-329
    139. 陈学方 孟加拉湾古海洋学研究。中国地质大学(北京)博士学位论文,2001
    140丁旋 孟加拉湾十五万年来的古海洋学。中国地质火学(北京)博士学位论文,1998
    141丁旋,方念乔,万晓樵 孟加拉晚第四纪冰期和间冰期古生产力演变研究。海洋地质与第四纪地质, 1999,19(3) :49-57
    142. 丁仲礼,任剑璋,刘东生等晚史新世季风-沙漠系统千年尺度的不规则变化及其机制问题。中国
    
    科学(D),1996,26:385-391
    143.丁仲礼,孙继敏,杨石岭等 灵台黄土—红粘土序列磁性地层及粒度记录。第四纪研究,1998(1):86-92
    144.丁仲礼,孙继敏,朱日祥等 黄土高原红粘土成因及上新世北方干旱化问题。第四纪研究,1997(2):147-157
    145.方念乔 Rivière 粒度资料解释法在孟加拉深水扇积物流体动力分析中的应用。地质论评,1992,38(4):344-351
    146.方念乔 恒河深海扇东北区域晚第四纪气候和海平面变化对沉积作用的控制。现代地质,1990,4(1):10-21
    147.方念乔,陈学方,胡超勇等 东北印度洋深海记录基本特征及共对青藏高原隆升的响应。第四纪研究,2001,21(6):490-499
    148.方念乔,丁旋,陈学方等 孟加拉湾 MD77190 柱状样第3期的韵律沉积记录及快速气候变化。第四纪研究,1999,(11):511-517
    149.高由禧,郭其蕴 东亚季风气候形成问题的讨论。见:高由禧等 东亚季风的若干问题。北京:科学出版社,1962,12-17
    150.黄宝琦,翦知(氵民日) 越南岸外晚第四纪上升流与东亚夏季风变迁。第四纪研究,1999,6:518-525
    151.李保华,赵泉鸿,陈民本等 南海中更新世以来的碳酸盐溶解作用变化与深水古海洋学特征。科学通报,2001,46(13):1128-1132
    152.李吉均 青藏高原的地貌演化与亚洲季风。海洋地质与第四纪地质,1999,19(1):1-10
    153.李吉均,方小敏 青藏高原隆起与环境变化研究。科学通报,1998,43(15):1569-1574
    154.李吉均,方小敏,潘保田等 新生代晚期青藏高原强烈隆起及其对周边环境的影响。第四纪研究,2001,21(5):381-390
    155.李吉均,刘世宣 张青松等青藏高原隆起的时代、幅度和形式的探讨。中国科学(D),1979,6:608-616
    156.李力,安芷生 过去600万年黄土高原季风周期的阶段性演化及共强迫因子初探。第四纪研究,2001,21(2):134-144
    157.刘东升 郑绵平 郭正堂 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性。第四纪研究,1998,3:194-204
    158.刘东生,丁仲礼 季风区古环境演化的相似性与人类演化。第四纪研究,1999,(4):289-297
    159.刘东生等编译 第四纪环境 北京 科学出版社 1997,25-26
    160.刘嘉麒,倪云燕,储国强 第四纪的主要事件。第四纪研究,2001,21(3):239-248
    161.刘晓东,李力,安芷生 青藏高原隆生与欧亚内陆西北非的干旱化。第四纪研究,2001,21(2):114-120
    162.卢演,丁国瑜 与亚洲古季风有关的中国及邻区新生代构造演化的几个问题。第四纪研究,1998,3:205-210
    163.吕厚远,郭正堂,吴乃琴 黄土高原和南海陆架古季风演变的生物记录与Heinrich事件。第四纪研究,1996,(1):11-20
    164.孙东怀,陈明扬,John Shaw 等 晚新生代黄土高原风砂堆积序列的磁性地层年代与古气候记录。中国科学(D),1998,28(1):79-84
    165.孙东怀,刘东生,陈明扬等 中国黄土高原红粘土系列的磁性地层年代与气候记录。中国科学(D),1997,27(3):265-270
    166.汤懋苍,柳艳香 青藏高原隆升的深层原因及其环境后果。第四纪研究,2001,21(6):500-507
    167.同济大学海洋地质系编著 古海洋学概论 同济大学出版社,1989
    168.汪品先 西太平洋边缘海的冰期碳酸盐旋回。海洋地质与第四纪地质,1998,18(1):1-11
    
    
    169.王富葆,李升峰,申旭辉等 吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起。中国科学(D辑),1996,26(4):329-335
    170.王惠中,赵泉鸿,俞立中等 晚第四纪西北太平洋风尘记录与冰起旋回比较。中国科学(D辑),1998,28(1):7-12
    171.王汝建,Abelmann A,李保华等 南沙海区放射虫组合在中更新世气候转型时的突然变化。科学通报,2000,45(3):314-318
    172.王苏民,薛滨 中更新世以来若尔盖盆地环境演化与黄土高原比较研究。中国科学(D辑),1996,26(4):323-328
    173.徐裕华主编 西南气候。北京:气象出版社,1991,17-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700