微生物浸出过程中裂隙岩块损伤试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿岩所处环境对其力学性能的影响至关重要,现已有大量学者进行了普通溶液对矿岩损伤的相关研究,但以微生物溶浸采矿做为背景进行的研究还尚未看到。本文首次以这一领域做为研究背景,初步探讨了含菌溶浸液对裂隙矿岩损伤的机理和主要影响因素。
     论文结合“973”国家重点基础研究发展规划项目“微生物浸出体系多因素强关联”(2004CB619205)、国家杰出青年科学基金项目“散体多相介质中多级渗流传质的动力学研究”(50325415)和国家自然科学基金项目“应力波作用下溶浸液在堆浸散体介质中的流动机理研究”(50574099)等项目的部分研究内容,在前人的研究基础上,以促进矿岩中目的金属的高效浸出和地下破碎浸出采场的安全生产为目的,以含菌溶浸液对裂隙矿岩单轴抗压强度的降低作为研究主线,通过理论分析、室内试验、数值模拟等方法主要完成了以下几个方面研究工作:
     ①研究了溶浸液在裂隙岩块中的渗流规律,分析探讨了单一裂隙在不同渗流状态下的渗流特征以及现有的岩体渗流模型;
     ②简述了浸矿用微生物的生物学基础,并通过选育试验找到了适合本次浸出试验的细菌菌种;
     ③分析探讨了溶浸液与裂隙岩块的反应机理;总结了微生物在浸出这一过程中的作用机理;简要介绍了由粒间薄流体层扩散控制的锯齿状颗粒边缘滑动的岩块损伤模型;
     ④通过溶浸液对裂隙岩块损伤的试验研究,得出了中粒含铜磁黄铁矿(A组)、含铜矽卡岩矿石(S组)两组试件在含菌溶浸液影响下损伤因子与试验设计因素之间的定量关系;定性分析了在这一过程中试件初始弹模、切线弹模以及泊松比的变化规律;并对浸出前后试件表面形貌变化做了简要分析;
     ⑤利用COMSOL Mutiphysics软件模拟了溶浸液在边长为1m,内部含有一贯通裂隙岩块中的渗流。
The influences of surrounding environment of mine rock on its mechanical property are significant.Many scholars have done some research works in the field of rock damage in ordinarily solution.But the research works which take the microbe solution mining as study background has not been carried on so far.
     With this research background,the paper carried on some preliminary study on the damage mechanism and the effect laws of solution with bacterium to the fracture mine rock for the first time.
     The research work is supported by The National Key Fundamental Research and Development Program(2004CB619205):"The Multi-Factor Strong Relating in Leaching System",The National Science Fund for Distinguished Young Scholars of China(50325415):"The Study on Multilevel and Mass transfer in Multiphase Granular Media" and The National Natural Science Found of China(50574099):"The Study on Solution Seepage Mechanics in The Heap Leaching Process With The Stress Wave Effect" etc.Combining with portion research contents of these programs,the paper takes promotion of the valued metal leaching out from the mine rock and safety production of in suit crushed leaching stope as goals.Clutching the research main line tightly,that is the damage of solution with bacterium to fracture mine rock,through using theoretical analysis,indoor experiments,numerical simulation methods etc.the paper mainly has carried on research works as follows:
     ①Studied the solution seepage regulation of leaching solution in the fracture mine rock;Analyzed solution seepage regulation in the rock with single fracture under different seepage states and the present seepage models.
     ②Briefly introduced the biology foundation of leaching microbe, and found the proper bacterium to this leaching testing by seed selection testing.
     ③Analyzed the reaction mechanism of leaching solution and fracture rock mass damage;Summarized the action mechanism in the process of microbe leaching;briefly introduced the serration granule edge slip model that controlled by tenuity fluid layer in granule separate space diffusion.
     ④Through the experiment of fracture rock damage caused by leaching solution,the definite quantity relationship between A&S sample group's damage facts and experimental design factor has concluded under the effect of leaching solution;Qualitatively analysed the variation laws of the initial elastic ration,tangent elastic ration and the poisson ratio in the microbe leaching process;compared the surface topography of rock sample before and after leaching.
     ⑤Simulating the seepage process in the rock whose length of side is 1m and in which has a breakthrough fracture by using the COMSOL MUTIPHYSICS software.
引文
[1]郭刚,赵武壮,陈维胜.积极开发和有效利用再生资源促进有色金属工业可持续发展[J].世界有色金属,2004,4:4-8
    [2]王东军,祝顺义,陈立军.我国有色金属矿产资源需求及政策建议[J].有色矿冶,2004,20(1):1-2
    [3]徐传华.中国再生有色金属生产现状及前景[J].世界有色金属,2004,(4):9-15
    [4]杨长华.铜市场2003年述评及2004年展望[J].江西有色金属,2004,18(1):12-15
    [5]魏鹏,龚文琪,雷绍民.微生物技术在低品位矿物资源开发与综合回收中的应用[J].有色金属,2000,52(4):188-190
    [6]浸矿技术编委会.浸矿技术[M].北京:原子能出版社,1994
    [7]Henry L.Ehrlich.Past,present and future of biohydrometallurgy.In:Antonio Ballester,Ricardo Amils,eds.Biohydrometallurgy and environment toward the mining of 21st century[J].The Netherlands:Elsevier Science B.V.,1999.3-12
    [8]A.R.Colmer and M.E.Hinkle.The role of microorganisms in acid mine drainage[J].A Preliminary Report,Science,1947,106:253-256
    [9]Silverman M.P.Mechanism of bacterial pyrite oxidation[J].Bacterioi.,1967,94:1046-1051
    [10]James A.Brierley.Expanding Role of Microbiology in Metallurgical Processes[J].Mining Engineering,2000,52(11):49-53
    [11]Mitsubishi.Copper expected to improve in 2001[J].Mining Engineering.2001,54(4):13-17
    [12]J.A.Brierley,C.L.Brierley.Present and future commercial application of biohydrometallurgy.In:R.Amils,A.Ballester eds.Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,Part A[J].Amsterdam Lausanne New York.Oxford.Shannon.Singapore.Tokyp:Elsevier,1999:81-89
    [13]M.L.Nicol Fellow.Hydrometallurgy into next millennium[J].The AusIMM Proceedings,2001,(1):65-69
    [14]Corale L.Brierley.Mining biothechnology:research to commercial development and beyond.In:Douglas E.Rawling eds.Biomining:Theory,Microbes and Industrial Processes[M].Springer-Verlarg and Landes Bioscience,1997
    [15]Dunning,J.D.and Miller,M.E.1984.Effect of pore fluid chemistry on stable sliding of Berea sandstone[J].Pageoph,122(1984/1985):447-462
    [16]Wiederhorn,S.M.,and H.Jonson,Effect of electrolyte PH on crack propagation in glass[J].J.Am.Ceram.Soc.,1973,(56),192-197,
    [17]B.K.Atkinson,P.G.Meredith.Stress Corrosion Cracking of Quartz:A Note on the influence of Chemical Environment[J].Tectonophysics.1981,77,T1-T11
    [18]Michalske,T.A.,and S.W.Freiman,A molecular interpretation of stress corrosion in silica[J].Nature.1982,(295):511-512
    [19]Atkinson,B.K.,A Fracture mechanics study of subcritical cracking of quartz in wet environments[J].Pure appl.Geophys..117,1011-1024
    [20]Matin,R.J.,Ⅲ,Time-dependent crack growth in quartz and its application to the creep of rocks[J].J.Geophy.Res.,77,1405-1419
    [21]B.K.,Atkinson,Subcritical Crack Growth in Geological Materials[J].J.Geophys.,1984,89(B6):4077-4114
    [22]Charles,R.J.,Staticfatigueofglass[J].J.Appl.Phys.,29,1549-1560
    [23]S.W.Freiman,Effects of Chemical Environments on Slow Crack Growth in Glasses and Ceramics[J].J.Geophys.Res.,1984,89(B6):4072-4076
    [24]J.R.Bulau,B.R.Tittmann,M.Abdel-Gawad,and C.Salvado,The role of Aqueous fluids in the internal friction of rock[J].J.Geophys,Res.,1984,89(B6):4207-4212
    [25]Simmons,C.J.,and S.W.Freiman,Effect of corrosion processes on subcritical crack growth in glasses[J],J.Am.Ceram.Sco.,1981,(64):683-686,
    [26]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的试验研究[J].地球物理学报,1991,34(3):335-342
    [27]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[J].大自然探索,1999,18(2):34-38
    [28]Wiederhorn,S.M.,Effect of environment on the fracture of glass,in A.R.Westwood and S.stoloff ed.,Envirnment-Sensitive Mechanical Behavior[M],Gordon and Break.New York
    [29]John R.Liste and Ross C.Kerr,Fluid-mechanical models of crack propagation and their application to magma transport in Dykers[J].J.Geophys.Res.,1991,96(B6)
    [30]荀晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护[J].滑动地质学院,1994,17(4):389-394
    [31]T.Ishido and O.Nishizawa,Effects of zeta potential on micro-crack growth in rock under relatively low uniaxial compres-sion[J].J.Geophys.Res.,1984,89(B6)
    [32]于寿文,冯西桥.损伤力学[M],北京:清华大学出版社,1997
    [33]谭凯旋,戴塔根,非线性地球化学动力学[J].地球科学进展.1988,13(2):145-150
    [34]苏根利,谢鸿森,丁东业等.临界水的物理化学性质及意义[J].地质地球化学,1998,26(2):83-89
    [35]杨天鸿,岩行破裂过程的渗流特性[M].北京:科学出版社,2004
    [36]张有天,岩石水利学与工程[M].北京:中国水利水电出版社,2005
    [37]Louis C.,1969.Grounderwater flow in rock masses and its influence on stability.Rock Mech. Res.Report 10.Imperial College.UK.
    [38]Barton N.,Bandis S.and Bankhtar K.,1985.Strength,deformation and conductivity coupling of rock joints[J].Int.J.Rock Mech.Min.Sci.& Gemech.Abstr.3.121-140
    [39]Witherspoon P.A.,Wang J.S.Y.,Iwai K.,Gale J.E.,1980.Validity of cubic law for fluid flow in a deformable rock fracture[J].Water Resour.Res.6,1016-1024
    [40]张金才.采动岩体破坏与渗流特征研究[D].煤炭科学研究院,1998
    [41]Jing L.Tsang C.F.Stephansson O.,1995.DECOVALEX-An international co-operative research project on mathematical models of couopled THM processes for safty analysis of radioactive waste respositories[J].Int.J.Roch Mech.Min.Sci.& Geometh Asbtr.,389-398
    [42]Priest S.D.,Discontinuity analysis for rock engineering[J].Chapam & Hall.1993
    [43]童雄.微生物浸矿理论与实践[M].北京:冶金工业出版社,1997
    [44]Douglas E Rawlings.Biomining:Theory,Microbes and Industrial Processes[M].Springer-Verlag and Landes Bioscience.1997
    [45]冯树,张忠泽.混合类-类值得重视的微生物资源[J].世界科技研究与发展.2000,22(3):4-7
    [46]Grudev S.Oxidation of arsenopyrite by pure an mixed cultures of Thobaciilus thiooxidans[J].Dokl.Bolg.Nauk.1981,34(8):1139-1142
    [47]Nemati M,Harrison S.T.L.,Hansford G.S.,et al.Biological oxidans of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects[J].Biochemical Engineering Journal,1998(1):171-190
    [48]傅建华.硫化铜浸矿细菌超微结构与吸附机理及SFORase的纯化[D].长沙:中南大学,2004
    [49]Douglas E Rawlings.Biomining:Theory,Microbes and Industrial Processes[M].Springer-Verlag and Landes Bioscience.1997
    [50]Jack Barret,M.N.Hughes,G.L.Karavaiko and P.A.Spence.Metal Extraction by Bacterial Oxidation of Minerals[M].New York.London.Toronto.Sydney.Tokyo.Singapore:Ellis Horwood,1993
    [51]Golovacheva R S,Karavaiko G Ⅰ.Second International Symposium on Microbial Grouth on C1 Compounds.Pushchino[M],USSR Academy of Science,1997,108
    [52]Hallberg K B,Linstrom E B.Characterization of Thiobactillus caldus sp.nov.a moderately thermophilic acidophile[J].Microbiology,1994(140):3451-3456
    [53]邹平,杨家明,周兴龙等.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J].有色金属,2003,55(2):21-24
    [54]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理[D].长沙:中南大学,2002
    [55]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996,(1):14-27
    [56]汤连生.水-岩反应的力学与环境效应研究[D].武汉,中国科学院地质与地球物理研究所,2000
    [57]汤连生,周萃英.渗透与水化学作用之受力岩体的破坏机理[J].中山大学学报(自然科学版),1996,35(6):95-100
    [58]沈照理,朱宛华等.水文地球化学基础[M].北京:地质出版社,1993
    [59]晏同珍.滑坡预测预报的基础及我国主要滑坡岩组特征的确定[J].地球科学,1985,10(1):9-19
    [60]丁抗.水岩作用的地球化学动力学[J].地质地球化学,1989,6:29-38
    [61]A.C.Lasaga,and R.J.Kirpatrick.Lasaga A C.Rate laws of chemical reactions,in Kinetics of Geochemical Processes[J].Mineralogical society of America,Mineral.,1981(8):1-67
    [62]厥为民,谭亚辉,曾毅君等.原地浸出采铀反应动力学和物质迁移[M].北京:原子能出版社,2002
    [63]尹升华,低品位矿石生物浸出过程溶质迁移规律研究[D].长沙,中南大学,2006
    [64]王军.低品位铜矿细菌浸出理论与工艺研究[D].长沙,中南工业大学,1999
    [65]Escoba,B.J.,Jedlicki,E.& Vargas,T.A method for evaluating the proportion of free and attached bacteria in the bioleaching of chalcopyrite with thiobacillus ferrooxidans[J].Hydrometallurgy.1996,40:1-10
    [66]Poglazova,M.N.,Mitskevich,I.N.& Kuzhinovsky,V.A A spectroflurimetric method for determination of total bacterial counts in environmental samples[J].Journal of microbiological methods,1996,24:211-218
    [67]Fernandez,M.G.M.Mustin,C.et al.Occurences at mineralbacteria interface during oxidation of arsenopyrite by thiobacillus ferrooxidans[J].Biotechnology and Bioengineering.1995,48:13-21
    [68]Carlos A.Jerez,Renato Arredondo.A Sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans[J].FEMS Microbiology Letters.1991,78(1):99-102
    [69]Brierley,J.A.,Thermophilic iron-oxidizing bacteria found in copper leaching dumps[J].Aool,Environ.Microbiol.1978,36:52325
    [70]McDonald,G.W.et al.Equilibria associated with cupric chloride leaching of chalcopyrite concentrate[J],Hydrometallurgy.1984,13:125-35
    [71]Dutrizac,J.E.Elemental sulphur formation during the ferric chloride leaching of chalcopyrite[J].Hydrometallurgy.1990,23:153-176
    [72]Dutrizac,J.E.The dissolution of sphalerite in ferric chloride solutions[J].Metall.Trans.1987,9:543-51
    [73]Dutrizac,J.E.The kinetics of dissolution of chalcopyrite in ferricion media[J].Metall.Trans.1978,9:431-439
    [74]荀晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护[J].华东地质学报,1994,17(4):389-394
    [75]谭凯旋,王清良,伍衡山等.溶浸采矿热力学和动力学[M].长沙:中南大学出版社.2003
    [76]Robert W.Bartleet.Solution Mining[M].USA.GORDON AND BREACH SCIENCE PUBLISHERS.1998
    [77]林杰斌,陈湘,刘明德.SPSS11统计分析实务设计宝典[M].北京:中国铁道出版社,2002
    [78]刘文卿.实验设计[M].北京:清华大学出版社,2005
    [79]王洪江,大型铜矿排土场细菌强化浸出机理及新工艺研究[D].长沙,中南大学,2005
    [80]吉兆宁,铜矿峪矿地下溶浸制液系统[J].有色金属,2002,54(2):87-89
    [81]水利水电工程岩石试验规程(SL264-2001)中华人民共和国水利部发布
    [82]COMSOL Multiphysics Model Libaray[M].COMSOL A B,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700