海洋沉积物中蒽和甲基取代蒽在自然菌群作用下的生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是一类广泛存在于环境中具有“致癌、致畸、致基因突变”作用的有机污染物,由于其毒性、生物蓄积性和半挥发性并能在环境中持久性存在,而被列入典型持久性有机污染物(Persistent Organic Pollutants,POPs),受到国际上科学界的广泛关注。环境中PAHs的来源很广,但大多是人为污染。大气或水环境中PAHs趋向于在颗粒物上富集,最终沉降于地表或者沉积物中,除对人类健康和陆地生态造成危害外,也对水生生物,尤其是底栖生物造成严重影响。PAHs在环境中可以通过多种途径加以去除,主要包括生物降解、化学降解和光降解。在沉积物环境中,生物降解是最主要的降解途径。
     蒽(Anthracene,AC)是低分子量PAHs中一种常见的三环芳香化合物。AC和它的降解产物似乎对人体都不具有毒性,但是由于AC的结构单元在致癌性PAHs如苯并[a]芘(BaP)和苯并[a]蒽(BaA)中同样存在,因此经常被用作模型化合物。蒽的甲基取代物是环境中广泛存在的污染物,其一甲基取代衍生物在微生物致突和致癌性评价中具有生物惰性。但是,9,10-二甲基蒽(9,10-DMA)由于生成了有生物活性的含湾区结构的环氧化物,能够增加肿瘤的突变能力和细胞转变性能。
     本论文选择这三种物质作为模式化合物,以污染较为严重的李村河口区沉积物为培养基质,进行实验室好氧生物微生态培养,以期获得此三种目标污染物的降解速率及其可能中间降解产物。具体内容和结论如下:
     (1)建立了研究沉积物中有机污染物生物降解的实验室微生态培养装置,为整个好氧生物降解研究提供了必要前提条件。
     (2)培养实验前对微生态培养基质下的环境条件(包括上覆海水和沉积物孔隙水的相关指标参数)进行了测定。结果表明,采样区海水pH值为7.46,盐度约31.794,溶解氧含量为4.27mg·L-1;孔隙水中电子受体Fe3+,SO42-和NO3-浓度分别为4.26mg·L-1,1156mg·L-1和2.58mg·L-1;沉积物氧化还原电势为-280.4mv,总有机碳含量达1.54%。这些参数充分表明李村河口沉积环境主要为还原环境,沉积物中的有机碳主要来源于人源有机质。
     (3)优化了气相色谱-氢火焰离子化检测器分析蒽及其取代衍生物的色谱条件。在此最佳条件下,蒽、9-甲基蒽和9,10-二甲基蒽的空白回收率在79.5%~83.79%间,相对标准偏差在4.61%~14.78%之间;基质加标回收率在66.2%~82.95%之间,相对标准偏差在3.34%~6.19%之间。此外还优化了沉积物前处理条件,特别考察了柱色谱净化过程中两种常见淋洗液的净化效率,最终选择了正己烷和甲苯混合溶液,其对目标污染物的洗脱回收率略高于正己烷和二氯甲烷混合溶液。
     (4)测得李村河口沉积物中蒽的本底值为32.88ng·g-1,9-甲基蒽和9,10-二甲基蒽均未检测到。6个月的好氧生物降解实验结果表明,沉积物中本底蒽由32.88ng·g-1降到32.32ng·g-1,降解率仅为1.70%;而在添加了蒽的沉积物样品中其浓度由170.40ng·g-1降到151.36ng·g-1,降解率高达11.17%;加入的9-甲基蒽和9,10-二甲基蒽的浓度也分别由133.84ng·g-1和144.26ng·g-1减少至120.50ng·g-1和135.18ng·g-1,降解率分别达到8.46%和6.33%。根据蒽的高本底值初步推测李村河口区已经受到较为严重的PAHs污染。相同条件下三种有机污染物的不同降解速率表明,9、10位取代使得蒽在沉积环境中更加持久,自然降解速率更慢。
     虽然目前实验条件下未能检出任何蒽和甲基蒽的(中间)降解产物,但本论文结果有助于人们进一步关注PAHs的污染问题,对环境污染治理和环保决策部门具有一定的指导意义和参考价值。
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous contaminants in the environment, known for their carcinogenic, teratogenic and mutagenic properties. Because of their toxicity, bioaccumulation, semi-volatility and persistence, PAHs are recognized as Persistent Organic Pollutants (POPs) and received worldwide scientific concerns. The sources of PAHs are very broad, but are mostly anthropogenic. PAHs in atmosphere and water tend to accumulate on the particles, and finally deposit into ground and sediment. In addition to posing threats to human health and terrestrial ecosystem, PAHs can also seriously affect aquatic and benthic organiams. PAHs in the environment can be eliminated by a variety of ways, such as microbial degradation, chemical degradation and photodegradation. In sedimentary environment, biodegradation is the major one, through which PAHs could be transformed, and ideally, completely mineralized to produce CO2, H2O and other inorganic small-molecular compounds, thus to entirely eliminated the pollution of PAHs.
     Anthracene(AC) is a common three-ring low-molecular-weight PAH. AC and its degradation products usually are nontoxic to human, but due to its structural resemblance to moieties of carcinogenic PAHs, such as BaP and BaA, it is often selected as a model compound. Methyl-substituted anthracene is a widely existing pollutant in the envirnment. Methyl-substituted anthracene is believed to be biologically inactive for mutagenicity and carcinogenicity, while dimethyl-substituted derivative, 9,10-dimethyl anthracene,can be transformed to epoxide with“bay area”structure, which is bioactive for tumor mutation and cell aberrance.
     In this thesis, AC, 9-methyl anthracene (9-MA) and 9,10-dimethyl anthracene (9,10-DMA) were selected as model compounds, and LiCun esturary sediment, the incubation substrate, to investigate the aerobic biodegradation of these anthracenes using a labotory microcosm system. The aims were to obtain the degradation rates and to determin the possible degradation products (intermediates). Major results and conclusions are as follows:
     (1) A laboratory microcosm system with controlled oxic or anoxic conditions was set up for investigation of biodegradation of organic pollutants in sediment.
     (2) The environmental parameters, including those of overlaying seawater and sediment porewater, were determined before incubation experiment. It was shown that pH, salinity and dissolved oxygen concentration of seawater were 7.46, 31.794 and 4.27mg·L-1, respectively, and concentrations of potential electron acceptors such as Fe3+, SO42-and NO3- , in sediment porewater were severally 4.26mg·L-1, 1156mg·L-1and 2.58mg·L-1. The redox potential and the content of total organic carbon in sediment were -280.4mV and 1.54%. These parameters indicated that, LiCun estuary sediment was principally in a reduced environment and the organic matter in this region was chiefly anthropogenic.
     (3) Gas chromatography-hydrogen flame ionization detection (GC-FID) was chosen to detect targeted pollutants and their possible degradation products in sediment samples. The chromatography conditions were optimized, under which the recoveries of AC, 9-MA and 9,10-DMA for spiked blanks were 79.5~83.79%, with RSD ranged from 4.61 to 14.78%; and the recoveries of AC, 9-MA and 9,10-DMA for spiked matrices were 66.20~82.95%, with RSD ranged from 3.34% to 6.19%. Meanwhile the pretreatment process of the sediment samples was optimized, and the recoveries for column chromatographic purification eluted by hexane/toluene and hexane/dichloromethane were compared with special attention. Mixture of hexane/toluene with equal volume was selected for its higher recovery, although it has a lower volatility and thus harder for solvent replacement.
     (4) The background value of AC was determined to be 32.88ng·g-1, while no 9-MA and 9,10-DMA was detected. It was shown, from a 6-month aerobic incubation experiment, that the concentration of AC decreased from 32.88ng·g-1 to 32.32ng·g-1 in the control experiment, corresponding to a degradation percentage of 1.70%. However, the degradation percentage of the spiked AC was 11.17%, with concentration reduced from 170.40 ng·g-1 to 151.36 ng·g-1. For spiked 9-MA and 9,10-DMA samples, the concentration were declined from the initial values of 133.84 and 144.26ng·g-1 to 120.50 and 135.18ng·g-1, respectively, accounting for degradation percentages of 8.46% and 6.33% separately. According to the high background of AC, it was inferred that LiCun estuary might has been severely polluted by PAHs. Different degradation percentages of the three targeted pollutants under the same condition indicated that methyl-substitution resulted in higher persistence of AC in sedimentary environment with lower natural attenuation rate.
     Even though no degradation product or intermediate was detected, the results of this work are helpful for raising awareness to the pollution of PAHs, and may also provide guidance and reference for pollution combating and decision-making for environmental agency.
引文
[1]毕超,王林弟,等.人类的第二生存空间-海洋.北京:中国海洋环境科学出版社,2002. 1~3
    [2]毛文永.全球环境问题与对策.北京:中国科学技术出版社,1993. 260~268
    [3]程家丽,黄启飞,魏世强,等.我国环境介质中多环芳烃的分布及其生态风险[J].环境工程学报,2007,1(4):138~144
    [4]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2):68~72
    [5]葛成军,俞花美.多环芳烃在土壤中的环境行为研究进展[J].中国生态农业学报,2006,14(1):162~165
    [6] Bruce P, Dunn David R, Young. Baseline levels of benzo[a]pyrene in southern California mussels [J]. Marine Pollution Bulletin, 1976, 7(12):231~234
    [7] Simoneit B R T. A review of biomarker compounds as source indicators and tracers for air pollution [J]. Environmental Science and Pollution Research, 1999, 6: 159~169
    [8] Connell D W, G J Miller. Petroleum hydrocarbons in aquatic ecosystems behavior and effects of sublethat concentrations: part I, CRC Critical Reviews in Environmental Control, 1981, 11:37~104
    [9]余顺.全球海洋-大气环境中污染物的迁移及其行为[J].海洋环境科学,1989,8(3):55~63
    [10] Countway R E, Dickhut R M, Canuel E A. Polycylic Aromatic Hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA estuary [J]. Organische Geochemie, 2003, 34: 209~224
    [11] Dickhut R M, Canual E A, Gustafson K E, et al. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region [J]. Environmental Science & Technology, 2000, 34:4635~4640
    [12] Tsai P, Hoenicke R, Yee D, et al. Atmospheric concentrations and fluxes of organic compounds in the northern San Francisco Estuary [J]. Environmental Science & Technology, 2002, 36: 4741~4747
    [13] Witt, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea [J]. Marine Pollution Bulletin, 1995, 31: 237~248
    [14]江锦花,董官.海洋环境中多环芳烃的污染状况及源解析[J].水资源保护,2008,24(5): 48~54
    [15]杨毅,刘敏,侯立军,等.海岸带水环境中多环芳烃的归宿研究[J].海洋环境科学,2003,22(1):69~74
    [16] Simoneit B R T, Mazurek M A. Air pollution: the organic components, CRC Critical Reviews in Environmental Control, 1981, 11: 219~276
    [17]刘敏,侯立军,邹惠仙等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学,2001, 21(4):343-346.
    [18]许士奋,蒋新,王连生等.长江和辽河沉积物中的多环芳烃类污染物[J].中国环境科学,2000, 20(2):128-131.
    [19]王文兴,束勇辉,李金花.煤烟粒子中PAHs光化学降解的动力学[J].中国环境科学,1997,17(2):97~102
    [20] Mekenyan O G, Ankley G T, Ueith G D, et a1. QSARS for phototoxicity I: Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna[J]. Chemosphere, 1994, 28: 567~583
    [21] Mitra S, Dellapenna T M, Dickhut R M. Polycyclic aromatic hydrocarbon distribution within lower Hudson River estuary sediments: physical mixing vs sediment geochemistry [J] Estuarine, Coastal and Shelf Science, 1999, 49: 311~326
    [22] Grimmer G, Hilderbrandt A. Content of polycyclic hydrocarbons in crude vegetable oils, Chemistry and Industry, 1967, 2000~2002.
    [23]Bell P F, James B R,Chaney R L, Heavy metal extraetability in long term sevage sludge and metal salt amended-soils[J]. Journal of Environmental Quality,1991,20:481~486
    [24] Gibson D T, Mahadevan V, Jerina R M, et al. Oxidation of the carcinogens benzo[a]pyrene and dibenzo[a,h]anthracene to dihydrodiols by a bacterium [J]. Science, 1975, 189: 295~297
    [25] Guo C L, Zheng T L, Hong H S. Biodegradation and bioremediation of polycyclic aromatic hydrocarbons [J]. Marine Environment & Science, 2000, 19(3): 24~29
    [26] Harayama S. Polycyclic aromatic hydrocarbon bioremediation design [J]. Current Opinion in Biotechnology, 1997, 8: 268~273
    [27] Wilson S C, Jones K C. Bioremediation of soils contaminated with polynuclear aromatichydrocarbons (PAHs) : a review[J] . Environmental Pollutant ,1993, 81: 229~249
    [28]崔玉霞,金洪钧.微生物降解多环芳烃有机污染物分子遗传学研究进展[J].环境污染治理技术与设备,2001,2(6):16~23
    [29]陈双雅,郑天凌,胡忠.若干新技术研究海洋多环芳烃生物降解的进展[J].台湾海峡, 2002,21(4):504~515
    [30] Sisler F D, ZoBell C E. Microbial utilization of carcinogenic hydrocarbons [J]. Science, 1947,106: 521~522
    [31] Evans W C, Fernley H N, Griffiths E. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads [J]. Biochemistry, 1965, 95: 819~831
    [32] Husain S. Literature overview: Microbial metabolism of high molecular weight polycyclic aromatic hydrocarbons [J]. Remediation, 2008, 18(2): 131~161
    [33] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons [J], Biodegradation, 1992, 3: 351~368
    [34]田蕴,郑天凌.海洋环境中降解多环芳烃的微生物[J].海洋科学,2004,28(9):50~55
    [35] Leahy J, Colwell R R. Microbial degradation of hydrocarbons in the environment [J], Microbiology Review, 1990, 54: 305~315
    [36] Rueter P, Rabus R, Wilkest H, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria [J]. Nature, 1994, 372: 455~458
    [37] Coates J D, Woodward J, Allen J, et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments [J]. Applied and Environmental Microbiology, 1997, 63: 3589~3593.
    [38] Zhang X , Young L Y. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia [J]. Applied and Environmental Microbiology, 1997, 63: 4759~4764
    [39] Meckenstock R U, Annweiler E, Michaelis W, et al. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture [J]. Applied and Environmental Microbiology, 2000, 66: 2743~2747
    [40] Rockne K J, Chee-Sanford J C, Sanford R A, et al. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions [J]. Applied and Environmental Microbiology, 2000, 66: 1595~1601
    [41] Coates J D, Anderson R T, Woodward J C, et al. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions [J]. Environmental Science & Technology, 1996, 30: 2784~2789
    [42] Langenhoff A A M, Zehnder A J B, Schraa G. Behavior of toluene, benzene, and naphthalene under anaerobic conditions in sediment columns [J]. Biodegradation, 1996, 7: 267~274.
    [43] Ward J A M, Ahad J M E, Lacrampe-Couloume G, et al. Hydrogen isotope fractionation during methanogenic degradation of toluene: potential for direct verification of bioremediation [J]. Environmental Science & Technology, 2000, 34: 4577~4581
    [44] Safinowski M, Griebler C, Meckenstock R U. Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies [J]. Environmental Science & Technology, 2006, 40: 4165~4173
    [45] Rothermich M M, Hayes L A, Lovley D R. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment[J]. Environmental Science & Technology, 2002, 36: 4811~4817
    [46] Ambrosoli R, Petruzzelli L, Minati J L, et al. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions [J]. Chemosphere, 2005, 60: 1231~1236
    [47] Yuan S Y, Chang B V. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan [J]. Journal of Environmental Science Health-Part B, 2007, 42: 63~69
    [48] Safinowski M, Meckenstock R U. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulphate-reducing enrichment culture [J]. Environmental Microbiology, 2006, 8: 347~352
    [49] Annweiler E, Michaelis W, Meckenstock R U. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetraline indicate a new metabolic pathway [J]. Applied and Environmental Microbiology, 2002, 68: 852~858
    [50] Ye D, Siddiqi M A, Maccubbin, et al. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis [J]. Environmental Science and Technology. 1996, 30, 136~142
    [51] Juhasz A L, Britz M L, Stanley G A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia[J]. Journal of Applied Microbiology, 1997, 83: 189~198
    [52]巩宗强,李培军,王新.污染土壤中多环芳烃的共代谢降解过程[J].生态学杂志,2000,19(6):40~45
    [53]田蕴,郑天凌,胡忠.海洋环境中多环芳烃的微生物降解研究进展[J].应用与环境生物学报,2003,9 (4):439~443
    [54]Jeong-Dong Kim, Choul-Gyun Lee. Microbial Degradation of Polycyclic Aromatic Hydrocarbons in Soil by Bacterium-Fungus Co-cultures [J]. Biotechnology and Bioprocess Engineering, 2007, 12: 410~416
    [55]Natalie M L, Leen Bastiaens, Willy Verstraete. Influence of the carbon/nitrogen/phosphotus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil [J].Applied Microbiology and Biotechnology, 2005, 67: 275~285 [56 ] Bossert I, Bartha R. The fate of petroleum in soil ecosystems [M]. Petroleum microbiology. 1984: 434~476
    [57] Walter U. Degradation of pyrene by Rhodococcus sp.UWl [J], Microbial Biotechnology, 1991, 34: 671~676
    [58]Law A T. Oil degradation in the Straits of Malacca: Phenanthrene degradation by AR-3 [J].Biotechnology, 1997, 5: 162 ~167
    [59] Kerr R P, Capone D G. The effect of salinity on the microbial mineralization of two polycy clic aromatic hydrocarbons in estuarine Sediments [J]. Marine Environmental Research, 1988, 26:181~198
    [60]刘淑琴,王鹏.环境中的多环芳烃与致癌性[J].山东师范大学学报,1995,10(4):435~440
    [61]匡少平,孙东亚.多环芳烃的毒理学特征与生物标记物研究[J].世界科技研究与发展,2007,29:41~47
    [62] Sepic E, Bricelj M, Leskovsek H. Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms [J]. Chemosphere, 2003, 52: 1125~1133
    [63]臧淑艳,李培军,周启星,等.苯并[a]芘及其代谢产物的连续降解研究[J].环境科学,2006,27(12):2531~2535
    [64] Parikha S J, Chorovera J, Burgos W D. Interaction of phenanthrene and its primary metabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions [J]. Journal of Contaminant Hydrology, 2004, 72: 1~22
    [65] Carney M W, Erwin K, Hardman R, et al. Differential developmental toxicity of naphthoicacid isomers in medaka(Oryziaslatipes) embryos [J] Marine Pollution Bulletin, 2008, 57: 255~266
    [66]张金丽,郑天凌. SS6菌对菲的降解和发光菌对菲及其降解产物毒性的反应[J].集美大学学报:自然科学版,2004,9:193~199
    [67]张金丽,郑天凌.利用发光菌评价多环芳烃及其降解产物的生物毒性[J].集美大学学报:自然科学版,2004,9:294~299
    [68] Pagnout C, Rast C, Veber A M, et al. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. Strain SNP11 [J]. Ecotoxicology and Environmental Safety, 2006, 65: 151~158
    [69] Huang X D, Dixon D G, Greenberg B M. Impacts of UV-radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (Duckweed) [J]. Environmental Toxicology and Chemistry, 1993, 12: 1067~1077
    [70] Mallakin A, McConkey B J, Miao G B. Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products [J]. Ecotoxicology and Environmental Safety, 1999, 43: 204~212
    [71] McConkey B J, Duxbury C L, Dixon D G. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone [J]. Environmental Toxicology and Chemistry, 1997, 16: 892~899
    [72] Mallakin A, McConkey B J, Miao G B. Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products [J]. Ecotoxicology and Environmental Safety, 1999, 43: 204~212
    [73] Moller M, Hagen I, Ramdahl T. Mutagenicity of polycyclic aromatic compounds (PAC) identified in source emissions and ambient air [J]. Mutation Research/Genetic Toxicology, 1985, 157: 149~156
    [74] Pitts J N, Lokensgard D M, Harger W, et al. Mutagens in diesel exhaust particulate. Identification and direct activities of 6-nitrobenzo[a]pyrene, 9-nitroanthracene, 1-nitropyrene and 5H-phenanthro [4,5-bcd]pyran-5-one [J]. Mutation Research Letters, 1982, 103: 241~249
    [75] Chesis P L, Levin D E, Smith M T. Mutagenicity of quinones: Pathways of metabolic activation and detoxification [J]. Proceedings of the National Academy of Sciences , 1984, 81: 1696~1700
    [76] Jamroz T, Ledakowicz S, Miller J S, et al. Microbiological evaluation of toxicity of three polycyclic aromatic hydrocarbons and their decomposition products formed by advanced oxidation processes [J]. Environmental Toxicology, 2003, 18(3): 187~191
    [77] Alsberg T, Stenberg U, Westerholm R, et al. Chemical and biological characterization of organic material from gasoline exhaust particles [J]. Environmental Science & Technology, 1985, 19: 43~50
    [78] Casellas M, Fernandez P, Bayona J M, et al. Bioassay-directed chemical analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain) [J]. Chemosphere, 1995, 30: 725~740
    [79] Fernandez P, Grifoll M, Solanas A M, et al. Bioassay-directed chemical analysis of genotoxic components in coastal sediments [J]. Environmental Science and Technology, 1992, 26: 817~829
    [80] Wischmann H, Steinhart H, Hupe K, et al. Degradation of selected PAHs in soil/compost and identification of intermediates [J]. International Journal of Environmental and Analytical Chemistry, 1996, 64: 247~255
    [81] Arias L, Bauza J, Tobella J, et al. A microcosm system and an analytical protocol to assess PAH degradation and metabolite formation in soils [J]. Biodegradation, 2008, 19(3): 425~434
    [82] Scow K M, Johnson C R. Effect of sorption on biodegradation of soil pollutants [J]. Advances in Agronomy, 1997, 58: 1~56
    [83] Kelley I, Freeman J P, Evans F E, et al. Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1 [J]. Applied and Environmental Microbiology, 1993, 59: 800~806
    [84] Sack U, Heinze T M, Deck J. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger [J]. Applied and Environmental Microbiology, 1997, 63: 2906~2909
    [85] Moody J D, James P, Freeman D R, et al. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1[J]. Applied and Environmental Microbiology, 2001, 67: 1476~1483
    [86] Schneider J, Grosser R, Jayasimhulu K, et al. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site [J]. Applied and Environmental Microbiology, 1996, 62: 13~19
    [87] Rehmann K, Noll H P., Christian E W, et al. Pyrene degradation by Mycobacterium sp. strainKR2 [J]. Chemosphere, 1998, 36: 2977~2992
    [88] Eriksson M, Dalhammar G, Borg-Karlson A K. Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site [J]. Applied Microbiology and Biotechnology, 2000, 53: 619~626
    [89] Wischmann H, Steinhart H. The formation of PAH oxidation products in soils and soil /compost mixtures [J]. Chemosphere, 1997, 35: 1681~1698
    [90] Luan T G, Yu K S H, Zhong Y, et al. Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments [J]. Chemosphere, 2006, 65: 2289~2296
    [91] Smith C J, Walcott C J, Huang W L. Determination of selected monohydroxy metabolites of 2-, 3- and 4-ring polycyclic aromatic hydrocarbons in urine by solid-phase microextraction and isotope dilution gas chromatography–mass spectrometry [J]. Journal of Chromatography B, 2002, 778: 157~164.
    [92] Smith C J, Huang W L, Walcott C J, et a1. Quantification of monohydroxy-PAH metabolites in urine by solid-phase extraction with isotope dilution-GC-MS [J]. Analytical and Bioanalytical Chemistry, 2002, 372: 216~220
    [93] Cmeiner G, Krassing C, Schmid E, et a1.Fast screening method for the profile analysis of polycyclie aromatic hydrocarbon metabolites in urine using derivatisation solid-phase microextraction[J]. Journal of Chromatography B, l998, 705: l32~138
    [94] Schantz M M. Pressurized liquid extraction in environmental analysis [J]. Analytical and Bioanalytical Chemistry, 2006, 386: 1043~1047
    [95] Lundsted S, Haglund P, Oberg L. Degradation and formation of polycyclic aromatic compounds during biodegradation bioslurry treatment of an aged gasworks soil J]. Environmental Toxicology and Chemistry, 2003, 22(7): 1413~1420
    [96] Meyer S, Cartellieri S, Steinhart H. Simultaneous determination of PAHs, hetero-PAHs (N,S,O), and their degradation products in creosote-contaminated soils: Method development, validation, and application to hazardous waste sites [J]. Analytical Chemistry, 1999, 71: 4023~4029
    [97] Moyano E, Galceran M T. Determination of oxy-, nitro- and hydroxyl- polycyclic aromatic hydrocarbons in atmospheric aerosol samples [J]. Quim Anal (Barcelona), 1997, 16: 159~164
    [98] Arno L, Steinhart H. Determination of organic acids and ketones in contaminated soils [J]. High Resolution Chromatography, 1994, 17: 293~298
    [99] Meyer S, Steinhart H. Fate of PAHs and hetero-PAHs during biodegradation in a model soil/compost-system: formation of extractable metabolites [J]. Water, Air, Soil Pollution, 2001, 132: 215~231
    [100] Mazéas O, Budzinsk I H. Solid-phase extraction and purification for the quantification of polycyclic aromatic hydrocarbon metabolites in fish bile [J]. Analytical and Bioanalytical Chemistry, 2005, 383: 985~990
    [101] Schedl M, Wilharm G, Achatz S , et al. Monitoring polycyclic aromatic hydrocarbon metabolites in human urine: extraction and purification with a sol-gel glass immunosorbent [J]. Analytical Chemistry, 2001, 73: 5669~5676
    [102] Luan T, Fang S, Zhong Y, et al. Determination of hydroxy metabolites of polycyclic aromatic hydrocarbons by fully automated solid-phase microextraction derivatization and gas chromatography–mass spectrometry[J]. Journal of Chromatography A, 2007, 1173: 37~43
    [103] Zheng L, Romanof L C, Trinidad D A. Measurement of urinary monohydroxy polycyclic aromatic hydrocarbons using automated liquid-liquid extraction and gas chromatography/ isotope dilution high-resolution mass spectrometry [J]. Analytical Chemistry, 2006, 78: 5744~5751
    [104] Johnson R B, Olivero V J, Lu S, et al. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia [J]. Environmental Pollution, 2008, 151: 452~459
    [105]刘琳琳,谢虹,吴志刚,等.苯并[a]芘代谢产物高效液相法测定[J].中国公共卫生,2008,24(6):761~762
    [106] Guerin W F, Jones G E. Two-stage mineralization of phenanthrene by estuarine enrichment cultures [J]. Applied and Environmental Microbiology, 1988, 54: 929~936
    [107] Kazunga C, Aitken M D, Gold A, et al. Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene [J]. Environmental Science andTechnology, 2001, 35: 917~922
    [108]段小丽,杨洪彪,张林,等.尿液中多环芳烃羟基代谢产物分析方法研究[J].环境科学研究,2004,7:62~65
    [109]王宇,董玉莲,范瑞芳等.尿中多种多环芳烃代谢物同时测定的高效液相色谱-荧光检测法[J].环境与健康杂志,2006,23:76~78
    [110] Langbehn A, Steinhart H. Biodegradation studies of hydrocarbons in soils by analyzing metabolites formed [J]. Chemosphere, 1995, 30: 855~868
    [111] Meyer S, Steinhart H. Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture [J]. Chemosphere, 2000, 40: 359~367
    [112] St Ferrari, Mandel F, Berset J D. Quantitative determination of 1-hydroxypyrene in bovine urine samples using high performance liquid chromatography with ?uorescence and mass spectrometric detection [J]. Chemosphere, 2002, 47: 173~182
    [113] Doerge D R, Clayton J, Fua P P, et al. Analysis of polycyclic aromatic hydrocarbons using liquid chromatography-particle beam mass spectrometry [J]. Biological Mass Spectrometry, 1993, 22: 654~660
    [114] Gremm T J, Frimmel F H. Application of liquid chromatography-particle beam mass spectrometry and gas chromatography-mass spectrometry for the identification of metabolites of polycyclic aromatic hydrocarbons [J]. Chromatographia, 1994, 38: 781~788
    [115] Pojana G, Marcomini A. Determination of monohydroxylated metabolites of Polycyclic Aromatic Hydrocarbons (OH-PAHs) from wastewater-treatment plants [J]. International Journal of Environmental Analytial Chemistry, 2007, 87(9,10): 627~636
    [116] Alumbaugh R E, Gieg L M, Field J A. Determination of alkylbenzene metabolites in groundwater by solid-phase extraction and liquid chromatography–tandem mass spectrometry [J]. Journal of Chromatography A, 2004, 1042: 89~97
    [117] Ohlenbusch G, Zwiener C, Meckenstock R U, et al. Identification and quantification of polar naphthalene derivatives in contaminated groundwater of a former gas plant site by liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography A, 2002, 967: 201~207
    [118] Li Y, Li A C, Shi H. The use of chemical derivatization to enhance liquid chromatography /tandem mass spectrometric determination of 1-hydroxypyrene, a biomarker for polycyclic aromatic hydrocarbons in human urine [J]. Rapid Commun Mass Spectrom.2005, 19: 3331~3338
    [119] Xu X, Zhang J, Zhang L. Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2004, 18: 2299~2308
    [120]张丽洁,王贵,姚德.胶州湾李村河口沉积物重金属污染特征研究[J].山东理工大学学报:自然科学版,2003,17(1):8~14
    [121]刘福寿,王揆洋.胶州湾沿岸河流及其地质作用[J].海洋科学,1992,1:25~28
    [122]丁日堂.李村河污水处理厂生物除磷脱氮工艺的运[J].中国给水排水,2000,16(4): 49~51
    [123]牛青山,亓靓.影响胶州湾海域海水水质的主要污染源分析-李村河及其主要支流流域水质现状评价[J].海岸工程,2006,25(3):50~59
    [124] Heitkamp M A , Cerniglia C E. Effects of chemical structure and exposure on the microbial degradation of PAHs in fresh water and estuarine ecosystems [J]. Environmental Toxicology and Chemistry, 1987, 6: 535~546
    [125] Wang X, Bartha R. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil [J]. Environmental Science & Technology, 1990,24:1086~1089
    [126] Herbes S E, Schwall L R. Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments [J]. Applied and Environmental microbiology, 1978, 35: 306~316
    [127]国家海洋局. GB 17378.1~1998.中华人民共和国国家标准-海洋监测规范[S].北京:中国标准出版社.
    [128] Stephan A, Ryba R M B. Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur, and oxygen concentrations in marine sediments [J]. Chemosphere, 2002, 48: l39~147
    [129] Tung J W T, Tanner P A. Instrumental determination of organic carbon in marine sediments [J]. Marine Chemistry, 2003, 80(2-3): l6l~l70
    [130] Usui T, Nagao S, Yamamoto M, et al. Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios [J]. Marine Chemistry, 2006, 98: 241~259
    [131]于雯泉,钟少军.海洋沉积物有机碳分析方法中干燥预处理过程人为误差的发现及意义[J].环境科学学报,2007,27(5):861~867
    [132]虢新运.黄河三角洲地区土壤中多环芳烃的污染状况及源解析研究:[硕士学位论文].青岛:中国海洋大学海洋化学系,2008年.
    [133] Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(III)oxide duringdissimilatory Fe(III) reduction by Geothrix fermentans [J]. Applied and Environmental microbiology, 2002, 68(5): 2294~2299
    [134] Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J] .Marine Geology, 1999, 159: 131~154
    [135] Jorgensen B B. The sulfur cycle of freshwater sediments: role of thiosulfate [J]. Limnol Oceanography, 1990, 35(6): 1329~1342
    [136] Howard D E, Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial change in sediment AVS [J]. Environmental Toxicology and Chemistry, 1993, 12(6): 1051~1057
    [137]朱纯,潘建明,卢冰.长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J].海洋学报,2005,27(4):59~66
    [138]蓝先洪.中国主要河口沉积有机地球化学研究[J].海洋地质动态,2003,19(9):1~4
    [139]郭志刚,杨作升,陈致林.东海陆架泥质区沉积有机质的物源分析[J].地球化学,2001,30(5):416~424
    [140] Renato S C, Angela L R W, James W R, et al. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach [J]. Marine Chemistry, 2002, 79: 207~227.
    [141] Zimmermana A R, Canuel E A, Bulk Organic Matter and Lipid Biomarker Composition of Chesapeake Bay Surficial Sedimentsas Indicators of Environmental Processes [J]. Estuarine, Coastal and Shelf Science, 2001, 53: 319~341
    [142] Brwchert V, Pratt L M, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA [J]. Geochimicaet Cosmochimica Acta, 1996, 60(13): 2325~2332
    [143]卢博,张福生,黄韶健,等.大亚湾表层沉积物性质及其对海水养殖的影响[J].台湾海峡,2002,21(4):489~495
    [144]于雯泉,钟少军,蒲晓强,等.胶州湾李村河口区沉积物酸可挥发硫化物的环境响应[J].中国石油大学学报:自然科学版,2007,31(6):27~39
    [145]朱文峰.广东省沿海表层沉积物中多环芳烃研究:[硕士学位论文].广州:中国科学院广州地球化学研究所,2007年
    [146]江锦花.台州湾海域表层沉积物中多环芳烃的浓度水平、富集规律及来源[J].海洋通报,2007,26(4):85~89
    [147] Hardik Pathak, Pankaj.Jain, D P Jaroli. Technical Note: degradation of Phenanthrene and Anthracene by Pseudomonas Strain, isolated from coastal area [J]. Bioremediation, 2008, 12(1):111~116
    [148]殷波,顾继东.环境污染物萘、蒽、菲、芘的好氧微生物降解[J].热带海洋学报,2005,24(4):14~21
    [149] Evans B W C, Fernley H N, Griffiths E. Oxidative Metabolism of Phenanthrene and Anthracen by Soil Pseudomonads(The ring-fission mechanism)[J]. Biochemistry, 1965, 95: 819~831
    [150] Herwijnen R, Springael D, Slot P. Degradation of Anthracene by Mycobacterium sp. Strain LB501T Proceeds via a Novel Pathway, through o-Phthalic Acid. Applied and Environmental Microbiology, 2003, 69(1): 186~190
    [151] Pathak H, Jain P K, Jaroli D P, et al. Technical Note: Degradation of Phenanthrene and Anthracene by Pseudomonas Strain, Isolated From Coastal Area [J]. Bioremediation, 2008, 12(1):111~116
    [152] Krivobok S, Miriouchkine E, Murandi F S. Biodegradation of Anthracene by Soil Fungi [J]. Chemosphere, 1998, 31(3): 523~530.
    [153] Hammel K E, Green B, Gai W Z. Ring fission of anthracene by a eukaryote [J]. Biochemistry, 1991,88: 10605~10608
    [154] Field J A, de Jong E, Feijoo C G, et al. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi [J]. Applied and Environmental Microbiology, 1992, 58: 2219~2226
    [155] Vyas B R M, Bakowski S, Sasek V. Degradation of anthracene by selected white rot fungi [J]. FEMS Microbiology Ecology,1994,14: 65~70.
    [156] Haines J R, Atlas R M. Biodegradation of Petroleum Hydrocarbons in Continental Shelf Regions of the Bering Sea [J]. Biodegradation of Petrolum.1983, 1(2): 85~96
    [157] Cerniglia C E, Campbell W, Freeman J P, Stereoselective Fungal Metabolism of Methylated Anthracenes [J]. Applied and Environmental Microbiology, 1990, 56(3): 661~668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700