用户名: 密码: 验证码:
TEM-MRS联用地下水探测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MRS(Magnetic Resonance Sounding,磁共振测深)方法是目前唯一一种非开挖式的直接地下水探测方法,该方法具有获取信息全面、解释唯一、结果量化等优点,已取得了很好的应用成果。但MRS方法存在探测深度有限、探测分辨率较低、测量速度慢、抗干扰能力较差等缺点;TEM(Transient Electromagnetic Method,瞬变电磁)方法具有探测深度大、分辨率高、测量速度快抗干扰能力强等优点,但作为一种间接地下水探测方法,TEM用于地下水探测时存在测量数据多解、结果不量化等缺点。本文将MRS方法和TEM方法相结合,形成TEM-MRS联用地下水探测的方法(简称:TEM-MTS联用方法)。TEM-MRS联用方法能够使TEM和MRS相互取长补短,共同提高地下水探测效能。此外, TEM仪器和MRS仪器在工作原理、系统结构等方面存在相似性,可以进行一体化设计、研制TEM-MRS联用地下水探测仪器系统(简称:TEM-MRS联用仪)。本文的研究是在国家“十一五”科技支撑计划重大项目《科学仪器设备研制与开发》专题项目、教育部项目、吉林省科技厅项目等多方资助下完成的。
     本文研究了常见的地下水的赋存模型,研究了不同类型地下水的TEM-MRS联用探测方法,研究了TEM和MRS联用探测结果的联合解释方法;以现有的TEM和MRS仪器系统为参考,进行了TEM-MRS联用仪的一体化研究和总体设计;对TEM-MRS联用仪发射子系统、接收子系统和通信子系统的关键技术进行了研究并研制了TEM-MRS联用仪的科研样机;使用TEM-MRS联用仪的科研样机进行了重复性实验和野外对比实验,取得了较好的结果; 2009年7月,TEM-MRS联用仪在内蒙古二连浩特市饮用水源地勘察工程中得到应用,在二连浩特以南70公里的古河道上进行了三十多个测点的探测,确定了12井位,打出了12口水井。2010年4月TEM-MRS联用仪被派往西南进行抗旱,在云南会泽县的进行了5个测点的探测,确定了2个井位,打出了2口水井,为缓解当地的旱情起到了一定作用。
MRS(Magnetic Resonance Sounding)is currently the only type of trenchless detection methods of groundwater exploration, this method has advantages such as obtaining information comprehensive,unique explanation, result quantization, low cost , has achieved very good application results. But the method of MRS also has shortcomings: the probing depth limited, the probing resolution ratio is lower, measurement speed is slow, the ability of anti-interference is relatively poor etc; TEM (transient electromagnetic method) just can remedy these defects, but as an indirect method of groundwater exploration TEM has its inherent disadvantages: the measurement data has multi-solutions, the result can’t quantization, unable to access the hydrogeology information needed in digging a well. In this paper, we combined TEM with MRS forming a new method of TEM-MRS combined to groundwater exploration (for short: TEM-MRS combined method). The new method of TEM-MRS combined to groundwater exploration makes TEM and MRS have complementary advantages and improve detecting speed and efficiency together. In addition, due to the similarity of TEM instrument and MRS instrument systems in principle, component and structure, this paper proceed the job of integrated design and research of the instrumentation systems of TEM-MRS combined to groundwater exploration.(for short: TEM-MRS combined instruments).This paper is accomplished under the common funded by special topic project of National“11th five-year”plan projects“research and development of Scientific instruments and equipment”, project of ministry of Education, project of Palace of Science in Jilin province.
     The mainly technology and results in this paper are as follows:
     (1) Carried out the theory research work in groundwater probing by using MRS and TEM combined technique and improved quantitative interpretation depth of combined detecting. Given TEM-MRS for groundwater detective methods of different types of groundwater, studied the combined interpretative method of TEM-MRS for groundwater detective results, using this interpretation can eliminate multiple solutions and no quantitative of TEM measuring result, which made one-dimensional quantitative interpretation depth of combined groundwater detection reach -300 meters.
     (2) Carried out design and research work of the integration of combined system. Based on JLMRS-I nuclear magnetic resonance groundwater exploration instrument system and ATEM-II transient electromagnetic instrument system, designed and researched TEM-MRS groundwater detection instrumentation system. This instrument is currently the only integration of TEM-MRS combined groundwater detection instrumentation system, with deep detecting depth, high resolution, fast measuring speed unique interpretation, result quantification ,etc.
     (3) Carried out research of correlation technique to improve detecting efficiency of the instrument. Mainly studied fast charging technology, multi-mode separation coil receiving and dispatching technology, low noise and greatly dynamic changes the sampling rate signal gathering technology, bandwidth multiplexing multi-port serial communication technology, etc, these technologies improved detection efficiency of MRS-TEM by increasing running speed, decreasing run time, reducing number of superposition etc.
     (4) Carried out research of correlation technique to improve detecting range and resolution of this instrument. Mainly studied the method of combined interpretation, energy-storage excitation techniques with large capacity and high resolution, small coil receiving technology in multi-mode separation coil receiving and dispatching technology. These methods and technologies can enlarge detecting resolution of TEM-MRS in horizontal and vertical.
     (5) Carried out research of correlation technique to improve anti-interference capability of this instrument. Mainly studied low rectangular coefficient narrowband filter technology, reference de-noising technology and relay smooth transition of“one transmit two receive”. These technologies ameliorated the signal-to-noise ratio of received signal by improving the anti-interference ability of TEM-MRS combined instrument.
     (6) Carried out the field contrast test and actual application of this instrument. Introduced the choice of the field that used as contrast test, given the consistent contrast experiment results of TEM-MRS combined instrument worked in the contrast test field, given transverse comparison test results between TEM-MRS and NUMISplus and results between TEM-MRS and ATEM-II, given contrastive results between TEM-MRS and actual drilling results. Introduced the application of TEM-MRS combined instrument in the project of prospecting drinking water sources at Erenhot of Inner Mongolia and the applied situation for drought resisting in southwest.
     The main innovation points of the paper are as follows:
     (1) Studied the ways of the TEM-MRS for groundwater detecting in different groundwater. Put forward combined interpretative ways of TEM-MRS for groundwater detecting result, which made one-dimensional quantitative interpretation depth of TEM-MRS for groundwater detecting reach -300 meters. The combined interpretative method established the relationship between water content and resistivity by using the measured results overlaps of TEM and MRS, we reversed applied this relationship to explain resistivity distribution achieved from TEM measured results to eliminate multi-solutions and no quantitative of TEM measure.
     (2) Developed the integration of TEM-MRS combined groundwater detection instrumentation system. Based on the comparability of MRS and TEM at system architecture and operational principle etc, this paper studied the correlative technology of incorporate combined instrument system, with the basic design thought of realizing the resource share and modularity realization as far as possible, finally designed and developed the research-prototype of TEM-MRS groundwater testing system, and has adopted the project acceptance of MOST. This instrument supplied a gap for the field of incorporate TEM-MRS combined instrument system.
     (3) Put forward the method of quickly smooth transition to restrain the switching interference of relay and studied the correlation technique. In this paper we have presented a way to eliminate interference when the relay switching by adding a parallel controlled absorbing circuit between relay and signal disposal circuit; studied a technique to realize relay fast smooth transition, relay switching time shorten from 30ms to 8ms by using this technique. Shorten switching time has two main effects: First, ameliorated the signal-to-noise ratio of received signal and improved the anti-interference capability of TEM-MRS. Second, received the MRS-FID signal produced by bound water, which made TEM-MRS combined instrument has the ability of detecting bound water.
     (4) Put forward the way to improve the longitudinal resolution of MRS measuring by increasing the number of excitation layers and studied correlation techniques. In this paper we presented a method of improving MRS measuring longitudinal detecting resolution through increasing the capacity of reserved capacitance to add the number of excitation layers; studied the technology of power parallel work which can doubled increase MRS measuring no overlap excitation layers, using this technique we can enable multiple power box parallel work, which can doubled increase the capacity of reserved capacitance and no overlap the number of excitation layers under the circumstance of keeping the original charging rate unchanged, so as to improve longitudinal detecting resolution of MRS measure. The improving longitudinal resolution can make TEM-MRS with more broad application prospect.
     After research of this paper, we designed and developed an integrative TEM-MRS combined instrument, it filled in a gap in the integrative TEM-MRS groundwater detecting instrument. Through the field experiment and practical application, we can see that TEM-MRS has excellent properities, such as low cost, the amount of work is small when working in the field, large detecting depth, high speed of detection, high resolution of detection, strong anti-interference ability, result quantification, unique interpretation etc. It has a good application prospect in many fields like deep groundwater exploration, groundwater resource survey, environmental monitoring, archaeology etc.
引文
[1] United Nations. UN Human Development Report[R]. United Nations Development Plan Department.2005.
    [2]中华人民共和国.中国水资源公报[R].中华人民共和国水利部.2007.
    [3]国宾.水危机四伏[J].水利天地,2003,3:25.
    [4]胡国田,邱卫东.水危机警示录[J].城乡建设,2003,1:57-59.
    [5]中国工程院.中国可持续发展水资源战略研究综合报告[R].中国工程院“21世纪中国可持续发展水资源战略研究”项目组.2000.
    [6]张霞.亚洲城市水危机[J].世界知识,1989,15:21.
    [7]傅菊辉,刘安平.水危机与中亚安全分析[J].水文地质工程地质,2006,138(1):75-78.
    [8]梁胜.二十一世纪中国面临的水危机[J].社会观察,2001,7:44-45.
    [9]杨速炎.水危机考验中国[J].社会观察,2007,10:30-32.
    [10]王菊翠,曹明明.二十一世纪西北地区水资源合理开发利用研究[J].干旱区资源与环境,2003,3:70-74.
    [11]孟晓军.西部半干旱单体绿洲城市经济增长中的水资源约束研究[D].新疆:新疆大学.2008.
    [12]陈家琦.全球变化和水资源的可持续开发[J].水科学进展,1996,3:4-9.
    [13]耿瑞伦.应用节水型钻进技术探采西北地区地下水[J].探矿工程,2003,4:50-52.
    [14]唐慧杰,陈冬君,黄海玲.物探找水方法综述[J].黑龙江水利科技. 2004, (01).
    [15]李琼,罗志才.地下水探测中的地球物理方法探讨[J].测绘信息与工程. 2009, 34(2):.42-44.
    [16] M.GOLDMAN, F.M.NEUBAUER. Groundwater exploration using integrated geophysical techniques l[J]. Surveys in Geophysics, 1994, 15: 331-361.
    [17]蒋文,胡文贤.瞬变电磁法在甘肃省寻找地下含水构造中的应用[J].物探与化探. 2004,01:35-37.
    [18]张保祥,刘春华.瞬变电磁法在地下水勘查工作中的应用综述[J].地球物理学进展. 2004, 03:56-61.
    [19]唐新功,胡文宝,严良俊.瞬变电磁法找水研究[J].工程地球物理学报. 2005, 03:17-20.
    [20]唐新功,胡文宝,严良俊.利用瞬变电磁技术进行地下水资源勘察[J].工程勘察. 2005, 06:66-69.
    [21] M.Schirov, A.Legchenko, G.Creer. New direct non-invasive ground water detection technology for Australia. Exploration Geophysics[J]. 1991, 22: 333–338.
    [22]耿瑞伦.我国的水资源与西部地下水钻探技术[J].地质装备,2001,02:4-8.
    [23]潘玉玲,张昌达.地面核磁共振找水理论和方法[M].北京:中国地质大学出版社,2000.08.
    [24] Anatoly Legchenko, Jean-Michel Baltassat, Nuclear magnetic resonance as a geophysical tool for hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50(1-2): 21-46.
    [25]孙淑琴.地面核磁共振探测地下水数值模拟与影响因素分析[D].吉林:吉林大学.2005.
    [26]王中兴.核磁共振地下水探测仪关键技术研究[D].吉林:吉林大学.2009.
    [27] David O. Walsh, Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations[J]. Journal of Applied Geophysics, 2008, 66(3-4): 140-150.
    [28]邓靖武,潘玉玲,熊玉珍.探查地下水的新方法-地面核磁共振找水方法的应用研究[J].现代地质, 2004 18(1):121-126.
    [29] A.Guillen, A.Legchenko, Application of linear programming techniques to the inversion of proton magnetic resonance measurements for water prospecting from the surface[J]. Journal of Applied Geophysics. 2002, 50(1-2):149-162.
    [30]尹成勇,潘玉玲.核磁共振技术在找水中的应用[J].地下水,1996,18(4):158-160.
    [31]万乐,袁照令,潘玉玲.地面核磁共振感应系统(NUMIS)及其在找水中的应用[J].物探与化探,1999,10:330-334.
    [32] J.M. Vouillamoz, G. Favreau, S. Massuel, M. Boucher, Y. Nazoumou, A. Legchenko. Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger[J]. Journal of Applied Geophysics, 2008, 64: 99–108.
    [33]李振宇,唐辉明,潘玉玲.地面核磁共振方法在地质工程中的应用[M].武汉:地质大学出版社.2006.
    [34] Roy, J., Lubczynski, M., The magnetic resonance sounding technique and its use for groundwater investigations[J]. Hydrogeology Journal , 2003,11: 455–465.
    [35]潘玉玲,Jean BERNARD,李振宇,熊玉珍,甘涛.轻便新型核磁共振找水仪及其在堤坝监测中的应用[J].大坝与安全, 2004,(01).
    [36]李振宇,潘玉玲,张兵等.利用核磁共振方法研究水文地质问题及应用实例[J].水文地质工程地质,2003,4:50-54.
    [37] Weichman, P.B., Lavely, E.M., Ritzwoller, M.H., Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems[J]. Physical Review E, 2000, 62 (1, Part B): 1290–1312.
    [38]王应吉,孙淑琴,李伟等.核磁共振技术在煤矿突水监测中的应用设想[J].煤矿安全.2007,38(9):66-69.
    [39]潘玉玲,李振宇,张兵,顾涛.核磁共振技术在秦始皇陵考古中的应用效果[J].工程地球物理学报[J],2004,1(4):299-303.
    [40]习晓红.地面核磁共振与瞬变电磁联用找水的可行性研究.吉林:吉林大学.2009.
    [41] Goldman M, Rabinovich B,Rabinovich M, et al, Application of the integrated NMR-TDEM method in groundwater exploration in Israel[J]. Journal of Applied Geophysics, 1994, 31: 27-52.
    [42] Jared D. Abraham, Anatoly Legchenko, Dr. Aldo Mazzella. TDEM and Numisplus Soundings at the ASH Meadows National Wildlife Refuge: A Case Study[C]. Proceedings of MRS 2nd international workshop on the Magnetic Resonance Sounding method applied to non-invasive groundwater investigations, France, Orleans, 2003,11:5-8.
    [43]陈邈,李振宇,王鹏.用SNMR和TEM方法探测地下水的研究与实践[J].CT理论与应用研究[J],2006,15(2):6-12.
    [44] Eaton, P.A, Hohmann, G.W . A rapid inversion technique for transient electromagnetic sounding, physics of the Earth and Planetary Interiors, 1989, 53.
    [45] Nabighian, M.N edal. Electromagnetic methods in applied Geophysics-Theory Volume,Socicty of Exploration Geophysicsts 1988,313-503
    [46]嵇艳鞠.浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究[D].吉林:吉林大学.2004.
    [47]邓靖武,潘玉玲,熊玉珍.探查地下水的新方法-地面核磁共振找水方法的应用研究[J].现代地质, 2004 18(1):121-126.
    [48] Varian, R.H., Ground liquid prospecting method and apparatus[P]: US, 3019383.
    [49] Legchenko, A.V., Semenov, A.G., Shirov, M.D., A device for measurement of subsurfacewater saturated layers parameters[P]: USSR, 1540515.
    [50] Semenov, A.G., Schirov, M.D., Legchenko, A.V., Burshtein, A.I., Pusep, A.Ju., Device for measuring parameters of an underground mineral deposit[P]: GB, 2198540.
    [51] M.Schirov, A.Legchenko, G.Creer, New direct non-invasive ground water detection technology for Australia. Exploration Geophysics[J]. 1991, 22: 333–338.
    [52] Konstantinos Chalikakis, Mette Ryom Nielsen, Anatoly Legchenko, MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark[J]. Journal of Applied Geophysics, 2008, 66(3-4): 176-187.
    [53] G. Lange, R. Meyer, M. Di Battista and M. Muller, Loop configurations experiments on multiple layered primary aquifers in South Africa and Germany[C], Proc. of the 3rd Magnetic Resonance Sounding International Workshop, October 2006 (2006), pp. 69–72.
    [54] Yaramanci, U., Lange, G., Knodel, K., Surface NMR within a geophysical study of an aquifer at Haldensleben (Germany)[J]. Geophysical Prospecting, 1999, 47: 923–943.
    [55] Goldman M, Rabinovich B,Rabinovich M, et al, Application of the integrated NMR-TDEM method in groundwater exploration in Israel[J]. Journal of Applied Geophysics, 1994, 31: 27-52.
    [56]林君,段清明,王应吉,王中兴,孙叔琴,荣亮亮.核磁共振与瞬变电磁联用仪及其方法[P]:中国,CN200610017226.8.
    [57] Abragam, A., The Principles of Nuclear Magnetism[M]. Oxford University. Press, 1961,648 pp.
    [58] Kristina Keating, Rosemary Knight, A laboratory study of the effect of magnetite on NMR relaxation rates[J]. Journal of Applied Geophysics, 2008, 66(3-4): 188-196.
    [59]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,2004.
    [60]楼仁海,电磁场理论[M].成都:电子科技大学出版社,1996.
    [61]张建中,孙存谱,磁共振教程[M].中国科学技术大学出版社,1996,10.
    [62] Weichman, P.B., Lavely, E.M., Ritzwoller, M.H., Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems[J]. Physical Review E, 2000, 62 (1, Part B): 1290–1312.
    [63] Anatoly Legchenko, Pierre Valla, A review of the basic principles for proton magnetic resonance sounding measurements[J]. Journal of Applied Geophysics, 2002, 50(1-2):3-19.
    [64] M.Hertrich, Imaging of groundwater with nuclear magnetic resonance[J]. Progress in Nuclear Magnetic Resonance Spetroscopy. 2008, 53(4): 227-248.
    [65]米萨克N纳米吉安主编,赵经祥等译.勘查地球物理电磁法:第一卷理论[M].地质出版社, 1992.
    [66]王鹏.均匀地电条件下地面核磁共振三维正演[D].武汉:中国地质大学. 2007年.
    [67]翁爱华,李舟波,王雪秋.层状导电介质中地面核磁共振响应特征理论研究[J].地球物理学报,2004, 47(1):156-163.
    [68] Lubczynski, M.W., Roy, J., MRS contribution to hydrogeological system arameterization[J]. Near Surface Geophysics, 2005, 3: 131–139.
    [69]静恩杰,李志珃.瞬变电磁法基本原理[J].中国煤田地质,1995, 7(2):83-87.
    [70]牛之琏.时间域电磁法原理[M].中南工业大学出版社,1992.
    [71]李貅.瞬变电磁测深的理论与应用[M].陕西科学技术出版社,2002
    [72] (澳)布塞利G等人编著将邦远译.瞬变场法野外工作方法和数据处理解释手册[M].地质出版社,1992
    [73] McNeill, J.D, Edwards,R.N, Thorborn.M. Approximate calculation of the transient electromagnetic response from buried conductive half-space Geophysics, 1984, 49 (7).
    [74] Gallagher, P.R, Ward, S.H and Hohmann, G.W. A model study of a thin plate in free space for the EM37 transient electromagnetic system, Geophysics 1985, 50 (6).
    [75]陈戴林,黄临平,陈玉梁.我国瞬变电磁应用综述[J].铀矿地质,2010, 26(1):51-54.
    [76]陈卫,杨生,王有霖,刘涛.时间域电磁法在地质勘查中的应用[J].矿产与地质,2006,Z1:215-219.
    [77]吴有信.瞬变电磁法及其在煤矿水文物探中的应用[J].西部探矿工程,2006,01:136-138.
    [78]代刚,漆秦岳,谭代明.全空间瞬变电磁法在地下工程探水中的应用[J].四川建筑,2006,02:73-74.
    [79]杨迪琨,胡祥云.地下水电磁法探测技术进展综述[J].工程地球物理学报,2007,05:103-108.
    [80]王荣.华北平原地下水数值模拟研究[D].北京:中国地质大学. 2006.
    [81]马庆章.地下水的形成与寻找[J].地址与勘探,1972,04:30-31.
    [82]范高功.岩溶地下水系统研究[D].陕西:西安科技大学. 2008.
    [83]刘向君,周改英,陈杰,戴岑璞.基于岩石电阻率参数研究致密砂岩孔隙结构[J].天然气工业,2007,01:41-43.
    [84]武毅,郭建强,强建科.用电阻率评价孔隙类地下水矿化度的方法技术[C].地下水勘查与监测技术方法经验交流会,2003.
    [85]张小华.核磁共振找水仪原理样机的设计与实现[D].吉林:吉林大学. 2006.
    [86]蒋川东.核磁共振地下水探测系统数据处理软件的设计与应用[D].吉林:吉林大学. 2009.
    [87]王远.一种便携式多通道瞬变电磁探测系统的设计与实现[D].吉林:吉林大学. 2010.
    [88]姜艳秋.地面核磁共振找水仪发射机的研制[D].吉林:吉林大学. 2006.
    [89]许立忠.基于ATEM-II的改进型电磁法发射系统设计与实现[D].吉林:吉林大学. 2007.
    [90]刘汉北.基于恒流源的核磁共振地下水探测仪电源设计[D].吉林:吉林大学. 2010.
    [91]高东旭.核磁共振找水仪弱信号放大器设计[D].吉林:吉林大学.2008.
    [92]荣亮亮.核磁共振多匝线圈找水技术研究[D].吉林:吉林大学.2009.
    [93]任鹏飞.基于对消的核磁共振找水仪工频谐波干扰滤除模块的设计[D].吉林:吉林大学. 2009.
    [94]田瑜娟.核磁共振地下水探测仪科研样机调理电路设计[D].吉林:吉林大学. 2010.
    [95]郑升灵,李宏军.一种高矩形平延时带通滤波器的设计[J].半导体技术,2009,07:98-101.
    [96]田宝凤,段清明.核磁共振信号工频谐波的自适应滤除方法[J].吉林大学学报信息科学版,2009,03:3-8.
    [97]巩萍,潘东明.过采样Σ-ΔA/D转换器的研究与仿真[J].广东工业大学学报,2005,22(3):64-75.
    [98]张亮,孟庆昌,华正权.数模转换基本原理[J].模拟器件天地,1997,01:14-16.
    [99]张静,罗丁利.Σ-ΔADC原理及应用[J].火控雷达技术,2006,09:10-13.
    [100]顾江.自动量程切换电压测量系统设计[J].现代电子技术,2009,21:155-159.
    [101]辛勇. PC机串行通信[J].江西科技,2005,0586-88.
    [102]徐云,杨川,王超,黄璐.基于串行通信的虚拟仪器数据采集器[J].仪表技术与传感器,2002,01:50-54.
    [103]陈铁军,谢春萍. PC机与RS485总线多机串行通信的软硬件设计[J].现代电子技术,2007,05:110-112.
    [104]余理富. USB接口技术研究及应用[D].湖南:中国人民解放军国防科技大学. 2002.
    [105]宋兵跃,吴军辉,黄斌.单片机高效串行通信研究[J].单片机与嵌入式系统应用,2010,01:30-32.
    [106]徐怡如,袁本钧. BCC码检错机制理论分析[J].航空精密制造技术,1994,05:29-31.
    [107]马玉春.数据包的校验技术[J].电脑编程技巧与维护,2007,02:34-39.
    [108]邢天虎.运用CRC校验提高信息的可靠性[J].电子科技杂志,1994,02:18-20.
    [109]田振清. CRC校验在PC机异步串口通信中的应用[J].内蒙古师大学报自然科学汉文版,1996,03:28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700