新疆西天山喇嘛苏铜矿床成矿流体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喇嘛苏铜矿位于西天山成矿带西北部的赛里木微陆块内,自发现以来备受关注、不断被认知,已取得大量研究成果,但是对矿床成因类型仍存在分歧,成矿流体研究很少。本文在研究矿床地质的基础上,通过研究矿石组构特征、主要成矿阶段矿物共生组合,利用冷热台和激光拉曼分析技术开展流体包裹体研究,结合同位素、微量元素和稀土元素研究结果,试图对矿床成因特点提供约束。
     喇嘛苏铜矿床与成矿相关的斑岩组合以花岗闪长斑岩和斜长花岗斑岩为主,花岗闪长斑岩可能属于同源岩浆演化晚期侵位产物;斑岩体属于典型钙碱性火山弧花岗岩,形成于大陆弧环境,是洋壳俯冲作用下发生部分熔融,交代原先的地幔楔,并混合了部分下地壳的物质,经历分离结晶作用的产物。
     石英硫化物成矿期是形成有用金属矿物的最重要的时期,又被划分为早期石英硫化物阶段(I)和晚期石英硫化物阶段(II)两个阶段。早期石英硫化物阶段(I)主要发育块状的磁黄铁矿-黄铁矿-黄铜矿矿石和黄铁矿-黄铜矿矿石;晚期石英硫化物阶段(II)主要发育浸染状、脉状以及团斑状的黄铁矿-黄铜矿矿石。流体包裹体和激光拉曼探针分析显示,I阶段成矿流体为H2O-NaCl-CaCl2体系,含少量的CH4,II阶段成矿流体逐渐向H2O-NaCl体系转变,含有大量的CH4。I阶段和II阶段成矿温度分别为271.2℃~ 330.7℃和130.5℃~ 249.7℃,盐度主要范围为6.01 ~ 13.94%(NaCl)和3.2 ~ 13.94%(NaCl),流体密度小于1.00 g/cm3,属于中-低温,中-低盐度、低密度还原性流体。
     C、H、O、S、Pb同位素结果显示成矿流体在I阶段以岩浆水为主,II阶段有大气降水的混入;II阶段含矿方解石中的C来自溶解的围岩库松木切克群灰岩;硫主要来源于岩浆,有部分的地层硫加入;金属成矿物质为地壳和地幔的混合来源,主要是由俯冲带的岩浆作用导致了上地壳源铅与深部来源铅混合;硫化物电子探针和稀土元素地球化学研究表明,成矿温度与流体包裹体的温度一致,成矿过程处于不同强度的还原环境下。
     结合矿床产出背景、矿床地质、控矿构造等因素,喇嘛苏铜矿床是与中酸性岩体密切相关的以斑岩-矽卡岩矿床。
Lamasu copper deposit, located in the micro-continental block of Sailimu,northwest of Tianshan ore-forming belt, has receive much concerned and been studied deeply since discovered. However, considerable differences still exist between genetic type and ore-forming mechanism, apart from which, the ore-forming fluids are rarely studied. In this paper, after fabric and assemblage of the ores were studied based on the geology of the deposit, microthermometry and Laser Raman spectroscopy were used to conduct the study of fluid inclusions, which are the representative samples of ore-forming fluid, as well as the signal of determining the genetic type. Combined with the study of isotope, sulfide-EPM analysis and REE geochemistry, the genetic characteristics of the deposit were tried to be restricted.
     Mineralization-related porphyries are mainly plagioclase porphyry and granodiorite porphyry, and the latter may be the product of the emplacement of the consanguineous igneous magma in the late stage. The porphyries belong to typical calc-alkaline volcanic arc granite, forming in the continental arc environment and are the product of fractional crystallization, which experienced following process: partial melting after ocean crust subduction to the continental crust and replaced the original mantle wedge and mixed some lower crust.
     Quartz-sulfide mineralization stage is the most important stage for metal mineral formation, and divided into two sub-stages, early(I) and late(II) stages. The early stage of quartz sulfide (I) mainly develops massive pyrrhotite-pyrite- chalcopyrite ore and pyrite-chalcopyrite ores while the latter mainly disseminated, vein and patchy pyrite-chalcopyrite ores. Based on the observation and microthermometry, the system of the ore-forming fluids in I phase is H2O-NaCl-CaCl2 with a little CH4 while the latter changes into H2O-NaCl system, containing much CH4. The homogenization temperature in I-stage and II-stage is 271.2℃~ 330.7℃and 130.5℃~ 249.7℃, respectively while corresponding salinity is 6.01 ~ 13.94%(NaCl)and 3.2 ~ 13.94%(NaCl), respectively, with the density less than 1.00 g/cm3. Therefore, the ore-forming fluids in quartz-sulfide stage are low-dense, relatively reduced, medium to low temperature and salinity fluids.
     The study of C, H, O, S and Pb isotope shows that the ore-forming fluids in the I phase are mainly magmatic water while in the II phase were mixed with quantity of precipitation, C in in the II phase deprived from the solution of the limestone, S mainly originated from magma with part of strata mixed, and the ore-forming sources are derived from the mixture of the mantle and crust, resulting from the magmatism in the subduction belt. The EPM of the sulfide and REE geochemistry illustrate that the homogenization temperature is correct, and the reduce condition of ore-forming process is different.
     The factors of geologic background, ore-forming sources and ore-controlling structure lead to the conclusion that Lamasu copper deposit is a skarn-dominated porphyry - skarn deposit,closely related to the intermediate to acidic rocks.
引文
Clyton R N, Rex R W, SYERS J K. Oxygen isotope abundance in quartz from Pacific Ocean sediments. Geophysical Research, 1972, 77(21): 3907-3915.
    Doe B R, Zartman R E. Plumbotectonics. the Phanerozoic. Barnes HL. Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. Wilev Interscience, 1979.
    Guen M L, Leseuyer J L, Marcoux E. Lead-isotope evidence for a Hercynian origin of the Salsigne gold deposit (Southern Massif Central, France). Mineral Deposita, 1992, 27: 129-136.
    Hall D L. Freezing point depression of NaCl-KCl-H2O soluton. Econ. Geology, 1988.83: 197-202.
    Henderson P. Rare-Earth Element Geochemistry. Amsterdam:Elsevier Science Publishers,1984.
    Kamona AF, Lévêque J, Friedrich G, et al. Lead isotopes of the carbonate-hosted
    Kabwe ,Tsumeb,and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian Fold Belt of Central Africa. Mineralium Deposita, 1999, 34;273-283.
    Lawrence D. Meinert, Gregory M. Dipple and Stefan Nicolescu. World skarn Deposits. Economical Geology, 2005, 99-336.
    Oaks CS, Budnar RJ and Simonson JM. 1990. The system NaCl-CaCl2-H2O: The ice liquids at 1 atm total pressure. Geochim. Cosmochim. Acta, 54: 603-610.
    Qin K Z, Shu S, LI J L, et al. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: epochs, features, tectonic linkage and exploration significance. Resource Geology, 2002, 52(4): 291-300.
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 1975, 26:207-221.
    Tang G J, Wang Q, Derk A. Wyman et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, orthwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting. Lithos, 2010, 119:393-411.
    Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol, 1974, 69(6): 843-883。
    Taylor SR, Mclennan SM. The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985, 1-372.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 1972, 67: 551-578.
    Ohmoto H, Goldhaber M B. Sulfur and carbon isotopes. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York: Wiley, 1997
    Rye RO, Ohmoto H. Sulfur and carbon isotope and ore genesis. Economic Geology, 1974, 69: 902-909.
    Sun S S, McDonoung WF. Chemical and isotopic systematics of oceanic basalts: Implications formantle composition and processes. In: Saunders AD and Norry MJ (eds.) Magamtism in ocean basins. London: Geological Society Special Publications, 1989, 42: 313-345.
    Winter JD. An introduction to igneous and metamorphic petrology. New Jersey: Prince Hall, 2001, 1- 697
    Zartman R E, Doe B R. Plumbotectonics-the model. Tectonophysics, 1981, 75:135-162.
    Zhang Z H, Wang Z L, Wang L S, et al. Metallogenic epoch and ore-forming environment of the Lamasu. skarn-porphyritic Cu-Zn deposit, western Tianshan, Xinjiang, NW China. Acta Geologica Sinica, 2008, 82(4): 731-740.
    Zheng YF, Hoefs J. Carbon and oxygen isotopic covaiations in hydrothermal calcites. Mineralium Deposita, 1993, 28:79-89.
    Zheng YF. Carbon-oxygen isotopic covaiations in hydrothermal calcite during degassing of CO2: A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineralium Deposita, 1990, 25: 246-250. 毕献武,胡瑞忠.哀牢山金矿带成矿流体稀土元素地球化学.地质论评, 1998, 44(3): 264-269.
    蔡宏渊,郑跃鹏,邓贵安.喇嘛苏铜矿床斑岩体地质地球化学特征及含矿性评价.矿产与地质, 1998, 12(6):27-33.
    陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学.重庆出版社,1987:321-343.
    陈毓川,刘德权,唐延龄,等.中国天山矿产及成矿体系.北京:地质出版社, 2008, 347-352.
    池国祥,赖健清.流体包裹体在矿床学中的应用.矿床地质, 2009, 28(6): 850-855.
    池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报, 2008, 24(9): 1945-1953.
    陈骏,王鹤年.成矿流体作用过程的REE示踪研究.南京大学学报(自然科学版,流体地质专辑), 1997, 33(3): 28-35.
    陈衍景.造山型矿床、成矿模式及找矿潜力.中国地质, 2006, 33: 1181-1196.
    戴自希,吴初国.我国西部铜、金资源的分布与天山地区铜、金矿产的勘查潜力[J].国外地质科技,1999(4): 1-4.
    丁乾俊,吴文奎,黄世乾,等.博罗科洛远景成矿区地物综合研究及找矿靶区圈定.国家305项目,(编号Ⅳ7-1)(中文未出版),1990.
    关明珍,曾宪仁,戴玉林,等.喇嘛苏铜多金属地区地物化综合研究及靶区优选.三○五项目报告, 1990.
    韩吟文,马振东.地球化学.北京:地质出版社, 2003, 248-250.
    何明勤,刘家军,李朝阳,等.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制——以白秧坪铜钴多金属地区为例.北京:地质出版社, 2004.
    隗合明.西天山喇嘛萨依铜矿地质特征及成因.西安地质学院学报, 1992, 14(1): 14-21.
    隗合明,吴文奎,薛春纪.新疆西天山金属矿床成矿系列和形成演化规律.地质学报,1999,73(3):29~40
    毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氢氧同位素证据.矿床地质, 2002, 21(2): 121-128.
    赖健清,彭省临.喇嘛苏铜多金属矿床成矿作用研究.有色金属矿产与勘查, 1999, 18(6): 662-663.
    赖健清,彭省临,王核,等.喇嘛苏铜矿区铅同位素特征及其意义—铅同位素年龄计算的一种新思路.中南工业大学学报(自然科学版), 1999, 30(4): 37-40.
    李锦轶,王克卓,李文铅,等.东天山晚古生代以来大地构造与矿产勘查.新疆地质, 2002, 20(4):295-301.
    李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变.地质论评, 2004, 50(3):304-322.
    刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报, 1987, 7(4): 345-352.
    刘斌,沈昆.流体包裹体热力学.北京:北京地质出版社, 1999, 1-290.
    李华芹,陈富文.中国新疆区域成矿作用年代学.北京:地质出版社, 2004:202-205.
    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平. 2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 23(1): 1-10.
    刘建明,刘家军,郑明华,等. 1998.微细浸染型金矿床的稳定同位素特征与成因探讨.地球化学, 27(6): 585-591.
    廖启林,赖建清.新疆北部喇嘛苏铜矿区有关岩石的稀土元素地球化学.地质找矿论丛, 2002, 17(3):145-151.
    廖启林,王京彬,赖建清.新疆北部中—大型金、铜矿床的基本成矿特征.地质论评,2001, 47(6):625-636.
    刘英俊.元素地球化学.北京:科学出版社, 1984, 308.
    刘德权,唐延龄,周汝洪.新疆斑岩铜矿的成矿条件和远景.新疆地质,2001,19(1):43-48.
    卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社, 2004, 200-210.
    卢焕章.成矿流体.北京:北京科学技术出版社, 1997.
    邱家骧.应用岩浆岩岩石学.武汉:中国地质大学出版社, 1991, 225-248
    邵洁连.金矿找矿矿物学.武汉:中国地质大学出版社, 1988, 38-45
    沈渭州,同位素地质学教程.北京:原子能出版社,1997,211-245.
    唐功建,王强,赵振华,等.西天山喇嘛苏成矿斑岩年代学、地球化学特征与成因初探.矿物岩石地球化学通报, 2008, 27(Z1): 269-271.
    童潜明.铁、铜、铅、锌硫化物微量元素分配系数地质温度计.地质与勘探,1983,(5):25-32
    童潜明.闪锌矿-方铅矿镉分配系数地质温度计应用实例.地质与勘探, 1986,(7): 24-27.
    王春山.喇嘛苏铜矿床控矿因素及矿床成因浅析.新疆有色金属, 2003, (S1): 1-5.
    王核.西天山北部地区铜、金等多金属成矿学研究及矿床定位预测:[博士学位论文].长沙:中南工业大学, 2001.
    王核,彭省临,赖健清.论新疆喇嘛苏铜矿床的多因复成成矿作用.大地构造与成矿学, 2001, 25(2):149-154.
    王核,夏斌,彭省临,等.西天山北部地区成矿规律初探.大地构造与成矿学, 2002, 26(4): 363-369.
    王奎仁.地球与宇宙成因矿物学.合肥,安徽教育出版社, 1989, 100-105.
    王玉水.新疆温泉县北达巴特斑岩铜钼矿地质特征及成因初探.矿产与地质, 2008a, 22(1): 10-14.
    王玉水.新疆温泉县北达巴特斑岩铜钼矿岩体蚀变特征.新疆有色金属, 2008b, (3):12-16.
    王永新.新疆喇嘛苏铜矿成矿地质条件.矿产与地质,1994(5): 369-372.
    王志良,毛景文,张作衡,等.西天山古生代铜金多金属矿床类型、特征及其成矿地球动力
    学演化.地质学报,2004,78(6):836-847.
    王志良,毛景文,张作衡,等.新疆天山斑岩铜钼矿地质特征、时空分布及其成矿地球动力学演化.地质学报,2006,80(7):943-955.
    王昭辉,周耀明,刘钢.瞬变电磁法在喇嘛苏铜矿的应用效果.岩土工程界, 1997, 6(6): 360-363.
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述.地质地球化学,2002,30(3): 73-81.
    肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民.新疆北部及其邻区大地构造.北京:地质出版社, 1992, 1-169.
    姚春亮,陆建军,郭维民,等.斑岩铜矿若干问题研究的最新进展.矿床地质,26(2),221-229.
    杨学明,杨晓勇,陈双喜,等.岩石地球化学.合肥:中国科学技术大学出版社, 2000.
    杨军臣,崔彬,李天福.新疆博乐喇嘛苏铜矿床地质特征和成因研究.地质论评,1998,44(1):23-30.
    尹意求,陈维民,王见蓶,等.新疆温泉县北达巴特斑岩铜钼矿的蚀变带划分.新疆地质, 2005, 23(4): 359-364.
    尹意求,谢昕,王见蓶.新疆温泉县北达巴特岩体的地质地球化学特征.桂林工学院学报, 2006, 26(4): 449-455.
    张长青,毛景文,余金杰,等.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨.岩石学报, 2007, 23(10): 2541-1552.
    张东阳,张招崇,薛春纪,等.西天山喇嘛苏铜矿成矿斑岩的岩石学、地球化学特征及成因探讨.岩石学报, 2010, 26(3): 680-694.
    张良臣,刘德权.中国新疆优势金属矿产成矿规律.北京:地质出版社,2006.
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社, 2000: 50-58, 193-247.
    郑永飞.稳定同位素体系理论模型及其矿床地球化学应用.矿床地质, 2001, 20(1): 57-70.
    庄道泽,姜云辉,张红喜.新疆斑岩铜矿成矿特征与综合找矿方法.新疆地质,2007,25(1): 40-48.
    朱上庆,黄华盛.层控矿床地质学.北京:冶金工业出版, 1988: 334~338.
    朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.北京:科学出版社,1998: 224-226
    左国朝,梁广林,陈俊,等.东天山觉罗塔格地区夹白山一带晚古生代构造格局及演化.地质通报, 2006, 25(1-2): 48-57.
    左国朝,张作衡,王志良,等.新疆西天山地区构造单元划分、地层系统及其构造演化.地质论评, 2008, 54 (6): 748-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700