莱州湾地区海水入侵的影响机制及预警评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受气候变化和人类活动的双重影响,莱州湾地区已成为我国海水入侵灾害最为严重和典型的区域,入侵面积已超过4000km2。海水入侵已严重制约该地区经济社会发展。日益加剧的海水入侵严重污染该地区地下淡水资源,使土壤次生盐渍化面积不断扩大,对海岸区域的工农业生产和生态环境造成严重影响。本文基于1976至2012年莱州湾地区地下水位和水质监测数据以及环境背景等长时间序列资料,系统总结了近40年来该地区海水入侵的演变过程和发展阶段,定量辨识海水入侵与气候变化和人类活动之间的响应机制,建立现状评价、危险性评价和预警的综合预警评价系统。研究成果对于揭示海水入侵受气候变化和人类活动的影响过程和机制、深入认识和评估未来气候变化的影响,以及海水入侵灾害的有效防治,具有重要的理论意义和应用价值。
     近40年来莱州湾沿岸地区的海水入侵灾害经历了初始、发展、恶化、缓解及分化等五个发展阶段。据2010年调查结果,莱州湾地区海水入侵面积已达到4300km2。结合海水入侵特征与水文地质环境背景,可将莱州湾地区海水入侵分为四个类型区:原生海水入侵区、混合海水入侵区、人类活动干扰区和入侵后退区。其中,原生海水入侵区面积为1000km2,混合海水入侵区面积为2500km2,人类活动干扰区面积为800km2,入侵后退区面积为70km2,分别占整个研究区的12%、30%、10%和不足1%。
     研究区海水入侵受气候变化和人类活动的双重影响。其中,气候变化的影响主要体现在年内和年际尺度上,表现为海水入侵的季节性变化(地下水的季节性变咸)和海水入侵的多年变化(枯、丰水年海水入侵的进退)。人类活动的影响表现为海水入侵呈线性增长的趋势。随着经济的不断发展,工农业用水量呈线性增长趋势,水资源量供需失衡,从而导致地下水超采,这是该区域海水入侵恶化的主导因素。综合地下水Cl-浓度、地下水位、入侵面积和负值区面积等海水入侵评判因子与气候变化和人类活动因素,构建海水入侵对气候变化和人类活动响应模式:F(s)=F(w,t)=F(r,e,p,t),其中,F(s)表示海水入侵的变化函数;w为地下水位,反映海水入侵变化特征;r为降雨量,e为蒸发量,二者反映气候变化对海水入侵的影响程度;p为地下水开采量变化,由地下水开采强度和开采系数表示,反映人类活动对海水入侵的影响;t为时间。
     为定量化辨识莱州湾地区海水入侵对气候变化和人类活动的响应机制,对近30年来的地下水位、降雨量、蒸发量和人类活动强度的长时间序列月均数据进行多元回归分析,量化海水入侵对气候变化和人类活动响应模式。综合分析结果表明,人类活动对海水入侵灾害的影响比重占59%,气候变化因素(降雨量与蒸发量)占41%。
     建立海水入侵自动监测网络,定量分析地下水电导率与C1-浓度相关关系:Cl-(mg/L)=-157.26+261.20Ec(ms/cm),以电导率1.56ms/cm作为判断莱州湾地区海水入侵的标准。基于监测网络以及地统计分析方法,对莱州湾南岸潍坊滨海地区进行海水入侵现状评价。评价结果显示,研究区内海水入侵成条带状分布,由北向南依次为严重入侵区、入侵区和无入侵区。其中严重入侵区主要分布在大家洼、央子和下营地区,入侵面积2073km2,占总面积43.7%;入侵区位于台头、昌邑一带,入侵面积547km2,占总面积11.5%,最大入侵距离可达30km;无入侵区主要分布在寿光、潍坊市区以及昌邑市区以南,占总面积44.8%。
     建立5个因子27个变量的海水入侵危险性评价指标体系,根据信息量模型对潍坊滨海地区的海水入侵进行危险性评价,危险性评价结果将潍坊北部滨海地区划分为4个等级:高危险区、较高危险区、低危险区和无危险区。通过计算,高危险区面积为2138km2,占评价总面积45.4%;较高危险区面积为521km2,占评价总面积11.0%;低危险区面积为479km2,占评价总面积10.0%;无危险区面积为1583km2,占评价总面积33.6%。可见,整个潍坊滨海地区约有三分之二的区域处于海水入侵灾害危险区。
     采用序贯指示模拟方法开展莱州湾地区海水入侵预警评价,根据灾害发生概率与危险性评价等级,将海水入侵预警评价等级分为4级,开展莱州湾地区2013海水入侵预警评价。预警结果表明,整个研究区海水入侵预警区域呈带状分布,预警等级由北向南逐渐降低。根据预警评价结果以及海水入侵的成因特征,针对性地从工程技术、生态修复和行政管理三个方面综合提出海水入侵防治对策。
Seawater intrusion is the phenomenon in which seawater or other saltwater travels into the continent along the aquifer. It can be affected by climate change and human activity, both of which alter the hydrodynamic conditions of aquifers in coastal areas. This breaks the equilibrium between seawater and freshwater, causing the salt-fresh interface to move landward. Laizhou Bay suffers the most serious seawater intrusion in China, with an intrusion area of over4000km2. This is has been concretely attributed to climate change and human activity. Seawater intrusion decreases the quality of drinking water by raising salinity to levels exceeding acceptable drinking water standards. This causes environmental contamination and soil secondary salinization. Local economies and social development can be considerably constrained by this increase in seawater intrusion, which affects industry and agriculture. Using data describing groundwater levels, groundwater quality, and the geological environment from1976-2010, this paper discusses the development and variation of the seawater intrusion in the Laizhou Bay over the past40years, quantifies the mechanisms that influence and underlie of seawater intrusion, discusses the involvement of climate change and human activity, and establishes a comprehensive early warning assessment system, which includes a status appraisal model, a risk-assessment model, and a early warning model. The results of the present work may be used to develop an ideal response process and describe the ways in which human activity and climate change affect the mechanism by which seawater intrudes into the Laizhou Bay area.
     The intrusion of seawater into the Laizhou Bay area has shown five stages of development over the past40years:i) initiation, ii) development, iii) deterioration, iv) release, v) differentiation. According to the investigation in2010, the intrusion area in the Laizhou Bay has exceeded4300km2. Based on the characteristics and hydrogeological environment of the seawater intrusion, the seawater intrusion region can be divided into types:1) original seawater intrusion area,2) mixed area,3) human-disrupted area, and4) intrusion-retreated area. The area (areal fraction) of the five sections are approximately1000km2(12%),2500km2(30%),800km2(10%), and70km2(less than1%), respectively.
     Seawater intrusion may occur due to human activity or because of natural events. Over-abstraction is considered the main cause of seawater intrusion. Climate change can speed up seawater intrusion. The effect of climate change is mainly reflected in annual scale and inter-annual scale, which involves seasonal changes in seawater intrusion (seasonal salty groundwater) and changes in seawater intrusion over the course of the year (movement of the interface seaward or landward in a wet and dry seasons). The impact of human activity is shown as seawater intrusion in the linear growth trend. Rapid economic development has increased in abstraction from aquifers, causing a serious imbalance between the seawater and freshwater, and the risk of seawater intrusion has increased. A model incorporating climate change, human activity, and factors that can be used to evaluate seawater intrusion, such as the intensity of Cl-, groundwater height, area of sea water intrusion, and negative equivalent area, was established to assess the correlations among climate, human activity, and the variability in seawater intrusion variability. The model is as follows: F(s)=F(w, t)=F(r, e, p, t). In the present formula, F(s) stands for seawater intrusion, w stands for groundwater level, which is one of the characteristics of seawater intrusion; r stands for rainfall; and e stands for evaporation, both of which can reflect the impact of climate change on seawater intrusion; p stands for groundwater exploitation variations represented by intensity and coefficient of groundwater exploitation, which refers to the effects of human activity on the seawater intrusion; and t is time.
     To determine the mechanism by which human activity and variations in climate influence seawater intrusion, a multi-parameter regression analysis was conducted based on a monthly long time series data of groundwater level,rainfall,evaporation and human activity under the various time scales for nearly30years and on the response of seawater intrusion to these two outside influences. The results show that human activity can account for59%of seawater intrusion, and variations in climate variation can account for41%.
     An automatic monitoring network of seawater intrusion was established to facilitate assessment of seawater intrusion. The relationship between the conductivity of groundwater and Cl" concentration can be quantitatively analyzed:Cl-(mg/L)=157.26+261.20Ec (ms/cm), and take1.56ms/cm as the standard amount of seawater intrusion into the Laizhou Bay area. The current situation with respect to evaluation of seawater intrusion in Laizhou Bay area involves monitoring networks and geostatistical analysis. Seawater intrusion presents a banded distribution in the study area, and the seriousness of the intrusion increases from north to south. The areas with the most serious invasion are mainly distributed in Dajiawa, Yangzi, and Xiaying, covering a total of2073km2. These areas account for43.7%of the total. Invasion areas in Taitou and Changyi cover547km2, accounting for11.5%. The longest single invasion was30km in Shouguang. Areas with no intrusion were mainly distributed around the city of Shouguang in Weifang and the southern parts of Changyi, accounting for44.8%of the total.
     The risk evaluation index system for seawater intrusion is established. This system incorporates5factors and27variables. The risk evaluation of seawater intrusion in the Weifang coastal area is performed according to the information model, and the results divide the area in northern Weifang area into four levels:a high danger zone, a moderate danger zone, a low danger zone, and danger-free zone. The high danger zone was calculated to cover an area of2138km2, accounting for45.4%of the total evaluation area; the moderate danger zone covered an area of521km2,11.0%of the total; the low danger zone covered479km2,10.0%of the total; and the danger-free zone covered1583km2,33.6%of the total. Two-thirds of the Weifang coastal area are in a potential disaster zone with respect to seawater intrusion.
     According to the probability of disaster and level of risk assessment, the Laizhou Bay area early warning level can be divided into4using a sequential indicator simulation that was performed in2013. The early warning result shows that the early warning area of seawater intrusion in Laizhou Bay has a zonal distribution and the danger level gradually decreases from north to south. Based on the early warning result and the characteristic of seawater intrusion, three prevention and controlling measure of seawater intrusion from engineering technology, ecological restoration and administrative management are put forward.
引文
1. Abd-Elhamid HF, Javadi AA. A density-dependant finite element model for analysis of saltwater intrusionin coastal aquifers. Journal of Hydrology,2011,401 (3-4):259-271.
    2. Ataie-Ashtiani B,Volker RE and Lockington DA. Tidal effects on sea water intrusion in unconfined aquifers. Journal of Hydrology,1999,216(1-2):17-31.
    3. Barlow PM and Reichard EG. Saltwater intrusion in coastal regions of North America. Hydrogeology Journal,2010,18:247-260.
    4. Barnett TP, Pierce DW, Hidalgo HG,et al.Human-induced changes in the hydrology of the western United States. Science,2008,319(22):1080-1083.
    5. Bear J. and Dagan G. Some exact solutions of interface problems by means of hodograph method. Journal of GeoPhysical Research,1964,69(8):1563-1572.
    6. Bobba G. Numerical modeling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta. Indian Hydrological Sciences,2002,8:67-80.
    7. Cabanes C, Cazenave A, Ppovost R. Sea level Rise during past 40 years determined from satellite and in situ observations. Science,2001,294:840-842.
    8. Carrera J, Hidalgo JJ, Slooten LJ, Enric Vazquez-Sune. Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeology Journal,2010,18:131-145.
    9. Cochran WG. Sampling Techniques(3rd ed.). New York:John Wiley and Sons, Ine.1977.
    10. Dasgupta S, Laplante B, Meisner C. The impact of sea level rise on developing countries:a comparative analysis. Climatic Change,2009,93:379-388.
    11. Galeati G, Gambolati G, Neuman SP. Coupled and partially coupled Eulerian-Lagrangian model of fresh water-saltwater mixing. Water Resources Researeh,1992,28(1):149-165.
    12. Glover RE. The Pattern of fresh water flow in a coastal aquifer. Journal of GeoPhysical Research,1959,64:457-459.
    13. Gordon AL,and Giulivi CF. Pacific decadal oscillation and sea level in the Japan/East Sea. Deep Sea Research,2004,51:653-663.
    14. Gornitz V. Mean sea level changes in the recent past.1993.
    15. Heinrich JC, Huyakorn PS, Zienkiewiez OC, Mitchell AR. An 'upwind' finite element scheme for two dimensional convcetive transport equition. International journal for numerical methods inengineering.1977,11:131-143.
    16. Houghton JT,Ding YH,Griggs DG,et al.Climate change 2001:The science basis. Contribution of working group I to the third assessment report of international panel on climate change. Cambridge, UK:Cambridge University Press,2001.
    17. Huyakorn PS, Anderson PE, Mereer JW et al. Saltwater intrusion in aquifers:development and testing of a three-dimensional finite element model. Water Resources Researeh,1987, 23(2):293-312.
    18. IPCC TAR.Land-ocean interactions and climate change-insights from the ELOISE projects,2001.
    19. IPCC.Climate change 2007:Impacts, Adaptation and vulnerability. Contribution of working group Ⅱ to the fourth assessment report of the intergovernmental panel on climate change.Cambridge, UK and New York, USA:Cambridge University Press,2007.
    20. Journel A G, Huijbregis C. Mining geostatistics. Academic Press, London, UK.1978.
    21. Journel A G. The deterministic side of geostatistics. Mathematical Geology.1985.17:1-15.
    22. Kerrou J, Renard P. A numerical analysis of dimensionality and heterogeneity effects on advective dispersive seawater intrusion processes. Hydrogeology Journal,2010,18:55-72.
    23. Kundzewicz ZW Graczyk D Maurer T, et al. Trend detection in river flow series:1. Annual maximum flow. Hydrological Sciences Journal,2005,50(5):797-810.
    24. Kysely J and Beranova R. Climate-change effects on extreme precipitation in central Europe: uncertainties of scenarios basedon regional climate models. Theor Appl Climatol (2009) 95:361-374.
    25. Labat D, Godderis Y, Probst JL, et al. Evidence for global runoff increase related to climate warming. Advances in Water Resources,2004,27(6):631-642.
    26. Mahesha A and Nagaraja SH. Effect of natural recharge on sea water intrusion in coastal aquifers. Journal of Hydrology 1996,174:211-220.
    27. Masterson JP and Garabedian SP. Effect of sea-level rise on ground water flow in a coastal aquifer system. Ground Water,2007,45(2):209-217.
    28. Matheron G.1963. Principles of geostatistics. Economic Geology. J.,58:1246-1266.
    29. Michael JA. Episodic flooding and the cost of sea-level rise. Ecological Economias.2007, 63(1):149-159.
    30. Milly PCD, Wetherald PT, Dunne KA and Delworth TL. Increasing risk of great floods in a changing climate. Nature,2002,415:514-517.
    31. Milnes E. Process-based groundwater salinisation risk assessment methodology:Application to the Akrotiri aquifer (Southern Cyprus). Journal of Hydrology,2011,399:29-47.
    32. Moujabber ME, Samra BB, Darwish T and Atallah T. Comparison of Different Indicators for Groundwater Contamination by Seawater Intrusion on the Lebanese Coast. Water Resources Management,2006,20:161-180.
    33. Nakadam M, Inoue H. Rates and causes of recent global sea level rise inferred from long tide gauge data records.Quaternary Science Reviews,2005, (24):1217-1222.
    34. Nicholls RJ, Hoozemans FMJ, Marchand M. Increasing flood risk and wetland losses due to global sea-level rise:regional and global analyses. Global Environmental Change.1999, (9)1:69-87.
    35. Nicholls RJ. Analysis of global impacts of sea-level rise:a case study of flooding. Physics and Chemistry of the Earth,2002,27:1455-1466.
    36. Pendrel J, Leggett M, and Mesdag P. Geostatistical simulation for reservoir characterization. CSEG,2004.
    37. Reilly TE and Goodman AS. Quantitative analysis of saltwater-freshwater relationships in groundwater systems-A historical perspective. Journal of Hydrology,1985,80(1-2):125-160.
    38. Richard R and Heim JR. A review of twentieth-century drought index used in the United States. Bulletin of American Meteorological Society.2002,83:1149-1165.
    39. Sadeg S and Karahanoglu N. Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environmental Geology,2001,40:1151-1168.
    40. Sakr SA.Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeology Journal,1999,7:155-160.
    41. Sanford WE, Pope JP. Current challenges using models to forecast seawater intrusion:lessons from the Eastern Shore of Virginia, USA. Hydrogeology Journal,2010,18:73-93.
    42. Segol G, Pinder GF, Gray WG. A Galerkin finite element technique for calculating the transient Position of the saltwater front. Water Resources Researeh,1975,11(2):343-347.
    43. Shamir U and Dagan G. Motion of the sea water interface in coastal aquifers:A numerical solution. Water Resources Research,1971,7:644-657.
    44. Sherif MM and Singh VP. Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process.1999,13:1277-1287.
    45. Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society,1998,79(1):61-78.
    46. Trangmar BB, Yost RS, Uehara G. Application of geostatistics to spatial studies of soil properties. Advances in Agronomy,1986,38:45-94.
    47. Turgay P. Wavelet transform-based analysis of periodicities and trends of Sakarya basin (Turkey) streamflow data.Rver Research and Applications,2010,26(6):695-711.
    48. Voss CI, Suoza WR. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Research, 1987,23:1581-1866.
    49. Voss CI. SUTAR(Saturated-Unsaturated Transport) A finite element simulation for saturated-unsaturated, fluid density dependent groundwater flow with energy transport or chemical reactive single-species solute transport. USGS Water Resources Investigation Report,1984,4:369-409.
    50. Webster R and Oliver MA. Geostatistics for environmental scientists. John Wiley& Sons, Ltd. England.2001
    51. Webster R. Quantitative spatial analysis of soil in the field. Advances in soil sciences,1985, 3:1-70.
    52. Werner AD. A review of seawater intrusion and its management in Australia. Hydrogeology Journal,2010,18:281-285.
    53. Yakirevich A, Melloul S, Sorek S, et al. Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeology Journal,1998,6:549-559.
    54. Yin YX, Xu YP, Chen Y. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin. China. Quaternary International,2009,208:93-101.
    55. Zhang XB, Harrey KD, Hogg WD. Trends in Canadian stream flow. Water Resources Research,2001,37(4):987-998.
    56.908专项课题组.海水入侵现状评价与防治对策研究报告.2010.
    57.蔡祖煌,马凤山.海水入侵的基本理论及其在海水入侵发展预测中的应用.中国地质灾害与防治学报,1996,7(3):1-9.
    58.曹建荣,陈子燊,于洪军等.广东省沿海月均海面变化研究.海洋通报2010,29(3):257-263.
    59.曹建荣,刘衍君.海水入侵基本理论研究进展.南海研究与开发,2003,1:52-57.
    60.陈崇希,李国敏.地下水溶质运移理论及模型.武汉:中国地质大学出版社,1996.
    61.陈鸿汉,王新民,张永祥,任仲宇.潍河下游地区海咸水入侵动态三维数值模拟分析.地学前缘(中国地质大学,北京),2000,7:297-304
    62.陈吉余,程和琴,戴志军.河口过程中第三驱动力的作用和响应.自然科学进展,2008,18(9):994-1000.
    63.陈淑芬,李爱贞.莱州湾地区30年来的旱涝特征.(赵德三主编).海水入侵灾害防治研究.济南:山东科技出版社,1996:105-111.
    64.陈宗镛,周天华,于宜法等.中国沿海平均海平面变化/海平面上升对中国三角洲地区的影响及对策.北京:科学出版社,1994.
    65.成建梅,陈崇希,吉孟瑞,孙桂明.山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究.地学前缘(中国地质大学,北京),2001,8:179-184
    66.邓慧平,赵明华.气候变化对莱州湾地区水资源脆弱性的影响.自然资源学报,2001,16(1):9-15.
    67.丁玲,李碧英,张树深.海岸带海水入侵的研究进展.海洋通报,2004,23(2):82-87.
    68.董锁成,陶澍,陈旺舟等.气候变化对中国沿海地区城市群的影响.气候变化进展,2010,6(4):284-289.
    69.董晓军,黄城.利用TOPEX/POSEIDON卫星测高资料监测全球海平面变化.测绘学报,2000,29(3):266-272.
    70.杜国云,王庆,孙祝友等.莱州湾东岸陆海相互作用与海岸缓冲区.地理研究2006,25(5):853-864.
    71.丰爱平,谷东起,夏东兴.莱州湾南岸海水入侵发展的动态和原因.海洋工程,2006,25(3):7-13.
    72.冯永军,陈介福,李永昌,东野光亮.适宜海水入侵区小麦品种的选定研究.(赵德三主编)海水入侵灾害防治研究.济南:山东科技出版社,1996:258-261.
    73.郭占荣,黄奕普.海水入侵问题研究综述.水文,2003,23(3):10-16.
    74.国家海洋局.2012年中国海平面公报2012:http://www.coi.gov.cn/gongbao/haipingmian/20 1303/120130308 26217.html.
    75.国家海洋局.海洋灾害调查技术规程.北京:海洋出版社.2006:51-54.
    76.国家海洋局.海洋灾害调查规范第2部分:海岸带地质灾害调查.2010.
    77.国家海洋局第一海洋研究所.我国大河三角洲的脆弱性调查及灾害评估技术研究报告, 2011.
    78.韩非,薛禹群,吴吉春,叶淑君,张永祥.莱州湾南岸咸水入侵条件下地下水的水化学特征与卤水形成.地质评论,2001,47:102-108
    79.韩美.莱州湾沿岸海水入侵发生的环境背景及其对资源与环境的影响.经济地理,1997,17(1):17-20.
    80.韩美.莱州湾地区海水入侵与地貌的关系.海洋与湖沼,1996,27(4):414-420.
    81.韩有松,孟广兰,王少青.中国北方沿海第四纪地下卤水.北京:科学出版社,1996.
    82.黄磊,郭占荣.中国沿海地区海水入侵机理及防治措施研究.中国地质灾害与防治学报,2008,19(2):118-123.
    83.黄镇国,张伟强,陈奇礼等.海平面上升对广东沿海工程设计参数的影响.地理科学,2003,23(1):39-41.
    84.海水入侵“八五”科技攻关课题组.莱州湾东、南沿岸地区海(咸)水入侵与第四纪地质和水文地质条件关系的研究报告.1995.
    85.姜文明,李新运.莱州湾地区海水入侵与相关因子研究.山东师范大学报(自然科学版),1994,9(4):58-61.
    86.雷坤,孟伟,郑丙辉等.渤海湾海岸带生境退化诊断方.环境科学研究,2009,32(12):1361-1365.
    87.李爱贞,张桂芹,刘厚风.莱州湾地区蒸散量研究.中国农业气象,1997,18(5):35-39
    88.李爱贞,张雪芹.莱州湾地区500年来旱涝灾害指数系列的建立.气象,1996,22(7):17-20.
    89.李爱贞,张富强.莱州湾地区空气中水气资源利用前景研究.(赵德三主编)海水入侵灾害防治研究.济南:山东科技出版社,1996 119-125.
    90.李道高,赵明华,白立仑等.山东省莱州湾东、南沿岸地区水文地质环境条件及其与海(咸)水入侵关系研究.莱州湾地区东、南沿岸地区海(咸)水入侵现状与规律研究论文集,1995:1-10.
    91.李道高,赵明华,韩美,姜爱霞等.莱州湾南岸平原浅埋古河道研究.海洋地质与第四纪地质,2000,20(1):23-29.
    92.李道真,李呈义,刘培民等.滨海平原地下建库供水开源防止海水入侵技术研究.水利水电技术,1997,28(8):15-17.
    93.李福林.莱州湾东岸滨海平原海水入侵的动态监测与数值模拟研究.中国海洋大学博士学位论文,2005.
    94.李福林,赵德三,陈学群,王永吉.海水入侵防治研究与实践进展.海岸带地质环境与城市发展研讨会论文集,天津,2004:50-56.
    95.李福林,张保祥.水化学与电法在海水入侵监测中的应用.物探与化探,1999,23(5):376-379.
    96.李国敏,陈崇希,沈照理,蒋同根.涸洲岛海水入侵模拟.文地质工程地质,1995,(5):1-5.
    97.李哈斌,王政权,王庆成.空间异质性定量研究理论与方法.应用生态学报,1998,9(6):651-657.
    98.李培英,杜军,刘乐军等.中国海岸带灾害地质特征及评价.北京:海洋出版社,2007:207-218.
    99.李新运,姜文明,张乃兴.莱州湾东南岸海水入侵相关分析和趋势预测.中国地质灾害与防治学报,1994,5(4):33-39.
    100.李艳,史舟,李洪义等.滨海盐土盐分空间分布的条件模拟和不确定性研究.土壤通报,2008,39(1):9-15.
    101.李艳.基于空间变异特性的滨海盐土采用及管理分区研究.浙江大学博士学位论文,2006.
    102.刘典鹏,季曙光,周小丽.莱州市海水入侵的防治措施及效果分析.水文与水资源,2011,1:34-35.
    103.刘东雁,庄振业,邱汉学.莱州海水入侵与地下水位负值区的演变模式.海洋湖沼通报,1999,(2):18-23.
    104.刘杜娟.中国沿海地区海水入侵现状与分析.地质灾害与环境保护,2004,15(1):31-37.
    105.刘青勇,董广清,耿树德等.淡水帷幕防治海(咸)水入侵的物理模拟试验研究,水利学报,1998,2:30-33.
    106.刘青勇,董广清.电阻率法在防治莱州湾地区海水入侵中的应用.物探与化学,1999,23(5):369-373.
    107.刘冀闽,师莎莎,韩涛.电导率法在海水入侵监测中的应用.中国环境管理干部学院学报,2009,1:77-79.
    108.卢薇,朱照宇,刘卫平.基于FEFLOW的海水入侵数值模拟.地下水,2010,32(3):19-22.
    109.雷霁霖,门强,王印庚,王秉新.大菱鲆“温室大棚+深海水井”工厂化养殖模式.海洋水产研究,2002,23(4):1-7.
    110.马凤山,蔡祖煌,宋维华.海水入侵机理及其防治措施.中国地质灾害与防报,1997,8(4):16-23.
    111.马凤山,蔡祖煌.论海水入侵综合防治应用技术.中国地质灾害与防治学报,2000,11(3):74-78.
    112.马继瑞,田素珍,郑文振等.太平洋月平均水位周期变化和线性升降趋势[J].海洋通报,1994,13(6):1-16.
    113.马柱国,魏和林,符淙斌.中国东部区域土壤湿度的变化及其与气候变率的关系.气象学报,2000,3:278-287.
    114.苗青,陈广泉,刘文全,徐兴永,苏乔,于洪军.莱州湾地区海水入侵灾害演化过程及成因.海岸工程,2013,32(2):69-78.
    115.聂小红,刘恩峰,张祖陆.潍河下游地区浅埋古河道沉积与第四系地层划分.海洋地质与第四纪地质,2001,21(4):89-93.
    116.齐善忠,蔡文华.莱州湾滨海地区土地利用变化及环境灾害研究.人民黄河,2008,30(8):10-11.
    117.秦大河,丁一汇,苏纪兰等.中国气候与环境变化及未来趋势.气候变化进展,2005,1(1):4-9.
    118.秦大河,罗勇,陈振林等.中国气候科学的最新进展IPCC第四次评估综合报告解析.气候变化进展,2007,3(6):311-314.
    119.邱志高,丰爱平,谷东起,吴桑云.近50年来莱州湾南岸气候变化及环境效应.海岸工程 ,2006,25(2):55-60.
    120.曲士松,张新华.咸水入侵区冬暖式大棚黄瓜膜下微灌技术研究.海水入侵灾害防治研究.济南:山东科技出版社,1996,
    121.任美锷,张刃顺.最近80年来中国的相对海平面变化.海洋学报,1993,15(3):21-29.
    122.任纪舜.中国大地构造及其演化.北京:科学出版社,1980.
    123.施雅风.气候变化对西北华北水资源的影响.济南:山东科学技术出版社,1995.
    124.史舟,李艳,程街亮.水稻土重金属空间分布的随机模拟和不确定评价.环境科学,2007,28(1):209-214
    125.苏明峰,王会军.中国气候干湿变率与ENSO的关系及其稳定性.中国科学D辑 地球科学,2006,36(10):951-958.
    126.苏乔,徐兴永,于洪军等.莱州湾南岸海水入侵现状评价.海岸工程,2009a,28(1):9-15.
    127.苏乔.莱州湾南岸地形卤水水化学特征及成因探讨.青岛:国家海洋局第一海洋研究所,2009b.
    128.孙晓明,徐建国,杨齐青,施佩歆等.环渤海地区海(成)水入侵特征与防治对策.地质调查与研究,2006,29(3):203-211.
    129.孙云华,张安定,王庆,衣华鹏等.最近30年来人类活动对莱州湾南岸地貌过程及海水入侵的影响.海洋地质与第四纪地质,2011,31(5):43-50.
    130.寿光市水利局.21世纪初期寿光市水资源可持续利用规划.2001.
    131.山东省物化探勘查院.高密度电法调查与评价报告.2009.
    132.王潘平,王兵,刘典鹏.莱州市海水入侵探讨及防治措施.2008,水利论坛:60-62.
    133.王凤和,孙洪梅.电导仪法在海水入侵监测分析中的应用.吉利水利,2007,12(307):30-31.
    134.王秋贤,任志远,孙根劳.莱州湾东南沿岸地区海水入侵灾害研究.海洋环境科学,2002,21(3):10-13.
    135.王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社,2005.
    136.王颖,王腊春,朱大奎.长江三角洲水资源现状与环境问题.科学通报,2010,26(2):171-179.
    137.王玉广,刘娟,张永华,杨新梅.辽东湾西部滨海地区海水入侵研究.海洋工程,2010,28(1):83-87.
    138.王震.海水人侵数值模拟的特征块中心差分法.中国海洋大学学报,2006,29(4):633-645.
    139.王政权.地统计学及在生态学中的应用.北京:科学出版社,1999。
    140.吴吉春,刘培民,姜清波,王建基.莱州湾地区的海水入侵.江苏地质,1993,17(1):27-30.
    141.吴吉春,薛禹群,谢春红等.海水入侵过程中水—岩间的阳离子交换.水文地质工程地质,1996,(3):18-19.
    142.夏东兴,吴桂秋,杨鸣.山东海洋灾害研究.北京:海洋出版社,1999.
    143.肖笃宁,韩慕康,李晓文等.环渤海海平面上升与三角洲湿地保护.第四纪研究,2003,23(3):237-246.
    144.许多,庄振业,牟信侃,刘冬雁等.莱州湾南岸平原第四纪沉积地层与咸水入侵.(赵德三主编)海水入侵灾害防治研究.济南:山东科学技术出版社,1996:53-61.
    145.徐兴永,李萍.莱州湾海水入侵演变过程与原因分析(丁平兴主编).近50年我国典型海 岸带演变过程与原因分析.北京:科学出版社,2013:133-170.
    146.薛显武,陈喜,魏玲娜等.基于GIS的海水入侵可视化数值模拟系统.地下水,2007,29(1):35-39.
    147.薛禹群,吴吉春,谢春红,张永祥.莱州湾沿岸海水入侵与咸水入侵研究.科学通报,1997,42(22):230-238
    148.薛禹群,谢春红,吴吉春.海水入侵、咸淡水界面运移规律研究.南京:南京大学出版社,1991.
    149.杨清书,沈焕庭,刘新成.应用数字滤波消除潮位短周期波动对确定海平面变化趋势的响应.水科学进展,1998,9(4):356-360
    150.杨清书,吴超羽.低通数字滤波在确定海平面变化趋势中的应用.海洋通报,1996,15(1):7-14.
    151.姚荣江,杨劲松,韩建均.海涂围垦区土壤盐分空间变异性随机模拟与不确定性评价.中国生态农业学报,2011,19(3):485-490
    152.衣华鹏,陈吉余,程和琴,戴志军.河口过程中第三驱动力的作用和响应.自然科学进展,2008,18(9):994-1000.
    153.尹泽生,林文盘,杨小军.海水入侵研究的现状与问题.地理研究,1991,10(3):85-91.
    154.尹泽生.莱州市滨海区域海水入侵研究.北京:海洋出版社,1992.
    155.于洪军,韩得亮,初有风.晚更新世末期北方陆架区沙漠-黄土堆积群的初步研究.地质力学学报,1997,3(4):33-38
    156.于洪军,崔高嵩,刘选,单秋美.“冰冻成卤”理论的地质意义.海洋科学,1998,6:52-54.
    157.袁益让,梁栋,芮洪兴.三维海水入侵及防治工程的渗流力学数值模拟及分析[J].中国科学G辑:2009,39(2):222-236.
    158.袁益让,梁栋.海水入侵及防治工程的后效预测.应用数学和力学,2001,22(11):163-171.
    159.詹金刚,王勇,程永寿.中国近海海平面变化特征分析.地球物理学报,2009,52(7):1725-1733.
    160.张明.区域土地利用结构及其驱动因子的统计分析.自然资源学报,1999,4(4):381-384.
    161.张铭汉,于洪军,单秋美.莱州湾地区海水入侵通道研究.海洋科学集刊,1999,41:33-39.
    162.张乃兴,郑新奇,李新运.莱州湾东南沿岸海水入侵发展规律与趋势预测.山东师大学报(自然科学版),1996,11(4):72-77.
    163.张仁铎.空间变异理论及应用.北京:科学出版社。2005.
    164.张胜平,徐振山,王军等.莱州湾温带风暴潮预报研究.海洋预报,2002,19(1):64-72.
    165.张祖陆,彭利民.莱州湾东、南沿岸海(咸)水入侵的地下水水化学特征.中国环境科学,1998,18(2):121-125.
    166.张祖陆,齐永华,聂晓红.莱州湾南岸咸水入侵区生态环境分区与生态恢复研究.中国人口资源与环境,2001,11(4):102-105.
    167.张祖陆,王琳.莱州湾南岸咸水入侵区土地利用/覆被变化驱动机理研究.地理科学,2007,27(1):40-44.
    168.赵德三.海水入侵灾害防治研究.济南:山东科技出版社,1996a.
    169.赵德三.咸水入侵综合防治寿光示示范区建设研究.济南:山东科学技术出版社,1996b.
    170.赵健.海水入侵水化学指标及侵染程度评价研究.地理科学,1998,18(1):16-24.
    171.赵松龄,于洪军,刘敬圃.晚更新世末期陆架沙漠化环境演化模式的探讨.中国科学(D辑),1996,26(2):142-146.
    172.赵松龄.陆架沙漠化.北京:海洋出版社.1995.
    173.郑新奇,张乃兴,李新运.莱州湾东南沿岸地下水位动态与海水入侵相关规律研究.水文地质工程地质,1997,3:6-9.
    174.周琴,赵进平,何宜军.利用TOPEX/POSEIDON高度计数据研究南极绕极流流域海面高度的低频变化.海洋与湖沼,2003,34(3):256-266.
    175.朱学明,丁广佳,鲍献文,张婕.环日本岛沿岸海平面长期变化特征与机制的研究.海洋学报,2009,31(6):22-30.
    176.庄振业,刘东雁,杨鸣等.莱州湾沿岸平原海水入侵灾害的发展进程.青岛海洋大学学报,1999,29(1):141-147.
    177.左军成,于宜法,陈宗镛.中国沿岸海平面变化原因的探讨.地球科学进展,1994,9(5):48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700