用户名: 密码: 验证码:
活塞风作用下地铁火灾发展及顶棚射流火焰特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程加快,交通问题日益严峻,地铁以其方便快捷、高效节能等诸多优点成为解决城市拥堵问题的有效途径,但同时也带来了严重的火灾防治问题。由于车站埋于地下,空间相对封闭,人员高度集中,一旦发生火灾将会蓄积大量有毒有害的高温烟气。在列车活塞风的作用下,站内烟气流动速度增大,分层特性也会遭到破坏,进而影响人员疏散,造成灾难性的后果。统计结果表明,火灾伤亡中有超过85%的人死于烟气中毒。因此,必须控制火灾烟气在地铁站内的蔓延以保障人员安全疏散。
     当火灾发生在区间隧道内时,由于隧道净空较低,火焰很容易形成顶棚射流火焰,这与开放空间下自由扩散火焰的燃烧机理有着本质区别。对于自然扩散火焰,决定其质量燃烧速率的主要因素是火羽流对燃料表面的热反馈,决定其燃烧状态的是羽流竖直上升过程中对空气的卷吸;而对于顶棚射流火焰,决定其燃烧速率的是火羽流及其射流火焰对可燃物表面的热反馈,决定其燃烧状态的是射流火焰对空气的卷吸。然而目前相关实验数据不仅缺乏,而且尚未系统地考虑隧道空间结构和起火高度对火焰特征参数的影响。
     本文采用流体动力学软件FLUENT模拟了列车运动产生的活塞风对地铁车站流场结构的影响,分别将活塞风与站台火灾和站厅火灾相结合,进一步分析车站内的烟气流动状态和分层现象受活塞风影响的变化过程。模拟发现受活塞风的影响现有车站防排烟系统无法将起火站台层或起火站厅层的烟气限制在本层内。为了达到上述目的,本文提出通过增加安全门高度,增大站厅层送风量、降低楼梯口周围挡烟垂壁高度以及增设活塞风竖井和迂回风道等措施,取得了较好的效果。
     针对受限空间下车辆火灾顶棚射流火焰发展特性,设计并开展了小尺寸模型实验。采用了液面恒定的燃料供应装置,研究了不同截面宽度、不同起火高度下隧道内火焰燃烧特性及其特征参数随火源功率的变化关系,建立了相应的无量纲预测模型。研究发现,当考虑火源功率随时间的变化时,开放空间下火焰高度与火源功率呈线性关系;受限空间下在顶棚射流火焰形成之前,火焰高度与火源功率呈二次函数关系,受限空间下当火焰形成顶棚射流状态后,射流长度截断比与火源功率之间呈线性关系。本文选取尺寸L作为单一尺寸油盆下火源功率的无量纲特征尺寸,并建立了火焰振荡频率与特征尺寸之间的预测模型。
With the accelerating of urbanization process, the traffic problem is increasingly serious. Subway, with its advantages of convenient and quick, high efficiency and energy saving, has been becoming an effective way to solve traffic congestion. However, it also caused serious fire safety problems. Due to the station buried underground, space relatively closed and crowd concentrated, a lot of poisonous and high-temperature smoke will be accumulated when a fire starts. Under the influence of piston wind, the smoke flow will be accelerated and distribution will be destroyed and evacuation will be arrested. According to the statistical data, more than85%casualties have died of toxic smoke in fire.
     When a fire breaks out in metro tunnel, the flame will be easy to form the ceiling jet state because of low headroom, which is essentially different from free diffusion flame in the open space. For the free diffusion flame, the thermal feedback of fire plume on the surface of fuel is the main factor to determine the mass burning rate while the air entrainment by vertical rise plume decides the combustion state. For ceiling jet flame, the thermal feedback of fire plume and jet flame on the fuel decide the mass burning rate while the air entrainment by jet flame is the main factor to determine the combustion state. However, the relevant experimental data is scarce.
     The influence of the piston wind produced by train movement on airflow structure of subway station was simulated by fluid dynamics software FLUENT. Piston wind was combined with platform fires and station hall fires separately to analysis the impact on smoke flow state and stratification. Result shows that the existing station smoke control system is not able to confine the smoke in platform or station hall layer. For this purpose, active measures, such as increasing screen door height, enlarging air supply, reducing the height of smoke barrier, adding piston wind shaft and bypass and so on, were taken and achieved good results.
     In allusion to the study on development characteristics of ceiling jet flame of tain, the model experiments were designed and carried out. A fuel supply device with a constant Liquid level was adopted to study the flame characteristic parameters changed with the fire power under different cross section and fire source location. The dimensionless prediction models were established. The study found that, considering fire power changes over time, the relationship between flame height and fire power in open space is linear. Before the ceiling jet flame has been formed in the limited space, the relationship between flame height and fire power is of a quadratic function. After the ceiling jet flame has been formed in the limited space, the relationship between the jet length and fire power is linear. The feature size Lwas taken as the dimensionless parameter of fire power. The prediction models between flame oscillation frequency and feature size were established.
引文
[1]杜宝玲.国外地铁火灾事故案例统计分析[J].消防科学与技术,2007,26(2):214~217
    [2]钟委.地铁站火灾烟气流动特性及控制方法研究[D].[博士学位论文].合肥:中国科学技术大学,2007
    [3]Schafer Andreas, Victor David G.The future mobility of the world population.Transportation Reasearch part A:Policy and Practice,2000,34(3):171-205
    [4]周飒民.城市轨道交通的发展趋势及其动因分析百家论坛,2001,2:1~4
    [5]刘钊,余才高,周振强.地铁工程设计与施工[M].北京:人民交通出版社,2004
    [6]叶俊麒.影响烟气在典型建筑结构中迁移传播规律的参数研究[D].[硕士学位论文].合肥:中国科技大学,2008
    [7]顾正红,程远平,周世宁.交通隧道火灾时车辆临界安全距离的研究[J].中国矿业大学学报,2004,4(33):523~526
    [8]史聪灵,钟茂华,涂旭炜等.深埋地铁岛式站点火灾模型实验研究(2)——列车火灾[J].中国安全生产科学技术,2006,2(2):14-18
    [9]史聪灵,钟茂华,涂旭炜等.深埋地铁岛式站点火灾模型实验研究(3)——站台火灾[J].中国安全生产科学技术,2006,2(3):33-38
    [10]纪杰.地铁站火灾烟气流动及通风控制模式研究[D].[博士学位论文].合肥:中国科学技术大学,2008
    [11]Dong-Ho Rie etc. A study of optimal vent mode for the smoke control of subway station fire[J].Tunnelling and Underground Space Technology,2006,21(3-4)
    [12]朱伟,卢平,廖光煊.地铁车站出入口火灾烟气特性的模拟研究[J].中国工程科学,2005,7(2):91-96
    [13]顾正洪,程远平,周世宁.地铁排烟风亭与出入口合理的相对位置[J].西南交通大学学报,2005,40(5):591-594
    [14]那艳玲,涂光备,黄桂兴.地铁火灾的盐水实验与计算机数值模拟[J].天津大学学报,2006,39(4):480-485
    [15]Simcox, Wilkes, Jones.Computer simulation of the flows of hot gases from the fire at King's cross underground station[J]. Fire Safety Journal,1992,18(1):49-73
    [16]Abu-Zaid, Sameer A Analyzing a transit subway station during fire emergency using computational fluid dynamics[J]. Transportation research record,1996,15(21):159
    [17]Abu-Zaid, Bendelius, Santoianni, McCleery. Using Computational Fluid Dynamics to design an emergency ventilation system for a transit subway station[J]. Safety Engineering and Risk Analysis Division, ASME,1995,4:75-87
    [18]Falin Chen. Stack effects on smoke propagation in subway stations [J]. Continuum Mechanics and Thermodynamics,2003,1(15):425-440
    [19]Falin Chen. Smoke Control of Fires in Subway Stations [J]. Theoretical and Computational Fluid Dynamics,2003,16 (5):349-368
    [20]WHPark, D.H.Kim, HC.Chang. Numerical predictions of smoke movement in a subway station under ventilation[J]. Tunnelling and Underground Space Technology,2006
    [21]周汝,何嘉鹏,谢娟.地铁站火灾时空气幕防烟的数值模拟与分析[J].中国安全科学学报,2006,16(3):27~31
    [22]顾正洪,程远平,周世宁.地铁车站站台与站厅间临界通风速度的研究[J].中国矿业大学学报,2006,35(1):7-10
    [23]顾正洪,程远平,倪照鹏.地铁车站火灾时事故通风量的研究[J].消防科学与技术,2005,24(3):298~300
    [24]王丽慧,吴喜平,宋洁.地铁活塞风对车站环控速度场影响结果的实测研究[C].上海市制冷学会,2007:336-339
    [25]沈翔.地下铁道活塞风特性的研究[D].[硕士学位论文].上海:同济大学,2004
    [26]李涛.活塞风对地铁站台内环境的影响[D].[硕士学位论文].天津:天津大学,2005
    [27]张璐璐.迂回风道及安全门对地铁车站热环境的影响[D].[硕士学位论文].天津:天津大学,2007
    [28]Bettis R J, Jagger S F, Wu Y Interim validation of fire consequence models; summary of phase 2 tests[R]. The Health and Safety Laboratory Report IR/L/FR/93/11, The Health and Safety Executive, UK,1993
    [29]Bettis R J, Jagger S F, Macmillan AJ R, Hambleton R T. Interim validation of tunnel fire consequence models; summary of phase 1 tests[R]. The Health and Safety Laboratory Report IR/L/FR/94/2, The Health and Safety Executive, UK,1994
    [30]Yasushi Oka, Graham T Atkinason. Control of smoke flow in tunnels [J]. Fire Safety Journal, 1995,25(4):305-322
    [31]Wu Y, Bakar M Z A, Control of smoke flow in tunnel fires using longitudinal ventilation system-a study of cirtical velocity [J]. Fire Safety Journal,2000,35(4):363-390
    [32]Jae Seong Roha, Seung Shin Yanga, Hong Sun Ryou, et aL An experimental study on theeffect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case[J]. Building and Environment,2008,43(7):1225-1231
    [33]Hitoshi Kurioka, Yasushi Oka, Hiroomi Satoh, Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J].Fire Safety Journal,2003,38(4):319-340.
    [34]Vauquelin O., Megret O. Smoke extraction experiments in case of fire in a tunnel[J]. Fire Safety Journal,2002,37(5):525-533
    [35]Cauquelin O., Wu Y Influence of tunnel width on longitudinal smoke control[J]. Fire Safety Journal,2006,41(6):420-426
    [36]徐志胜,周庆,徐或.运行旅客列车隧道火灾模型实验及数值模拟[J].铁道学报,2004,6(1):124~128
    [37]彭伟.公路隧道火灾中纵向风对燃烧及烟气流动影响的研究[D].[博士学位论文].合肥:中国科学技术大学,2008
    [38]卢平,丛北华,廖光煊,范维澄,厉培德.纵向通风水平隧道火灾烟气流动特性研究[J].中国工程科学,2004,6(10):59-64
    [39]W.KChow. Simulation of Tunnel Fires Using a Zone Model[J]. Tunneling and Underground Space. Technology,1996,11(2):221-236
    [40]李元洲,霍然,易亮,史聪灵,周允基.隧道火灾烟气发展的模拟计算研究[J].中国工程科学,2004,6(2):67~72
    [41]Li Xianting, Yan Qisen. Numerical analysis of smoke movement in subway [J]. Fire Safety Science,1993,2(2):6-13.
    [42]周孝清,赵相相,丁云飞,郑志敏.火灾时隧道截面形状对临界风速和烟气分布影响的数值研究[J].广州大学学报,2006,5(2):54~58
    [431赵相相,周孝清,张燕,郑志敏.地铁隧道火灾烟气特性和临界风速的数值模拟[J].暖通空调,2005,35(12):68~72
    [44]中华人民共和国国家标准GB 50157~2003《地铁设计规范》.北京:中国计划出版社
    [45]王丽慧.地铁活塞风与地铁环控节能[D].[博士学位论文].上海:同济大学,2007
    [46]Soonil Nam. Numerical simulation of smoke movement in clean room environments [J]. Fire Safety Journal,2000,34:169-189
    [47]甘甜,王伟,赵耀华,智艳生,王峰,华高英.地铁活塞风Fluent动网格模型的建立与验证[J].建筑科学,2011,27(8):75-81
    [48]Heskestad Q. Physical Modeling of Fire, Journal of Fire and Flammability[J].1975,6:253-273
    [49]Drysdale D.D, Macmillan AJ.R., Shilitto, D. King's cross fire[J]. Experimental verification of the'trench effect', Fire Safety Journal,1992,18(1):75-82
    [50]K. Moodie, The king's cross fire:Damage assessment and overview of the technical investigation[J].Fire Safety Journal,1992,18(1):13-33
    [51]K Moodie, S. F. Jagger, The king's cross fire:result and analysis from the scale model tests[J].Fire Safety Journal,1992,18(1):83-103
    [52]Dong-Ho Rie etc. A study of optimal vent mode for the smoke control of subway station fire[J].Tunnelling and Underground Space Technology,2006,21(3-4):300-301
    [53]彭伟,霍然,胡隆华,王浩波,杨瑞新.隧道火灾的全尺寸实验研究[J].火灾科学,2006,15(4):212~219
    [54]P.L. Hinkley, H.G.H. Wraight, C.R. Theobald, The contribution of flames under ceilings to fire spread in compartments [J].Fire Safety Journal,1984,7(3):227-242
    [55]毛军,郗艳红,樊洪明,隧道内火焰顶棚射流最高温度的分布研究[J].中国矿业大学学报,2010,39(3):346~351
    [56]毛军,郗艳红,樊洪明.地铁隧道列车火灾的火焰顶棚射流温度特性研究[J].土木工程学报,2010,43(2):119-126
    [57]孔祥金.全国公路隧道最新统计资料[J].公路隧道,2004,(4):41
    [58]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].[博士学位论文].合肥:中国科学技术大学,2006
    [59]包海涛.地铁列车活塞风数值模拟[D].[硕士学位论文].南京:南京理工大学,2005
    [60]中华人民共和国国家标准GB/T3730.1-2001《汽车和挂车类型的术语和定义》.北京:中国质检出版社,2003
    [61]Oka Y, Sugawa O., Imamura T., et al. Effect of Cross-winds to Apparent Flame Height and Tilt Angle from Several Kinds of Fire Source[C]. In 7th International Symposium on Fire, 2002:915-926
    [62]Heskestad G. Fire Plumes, Flame Height and Air Entrainment. In SFPE Handbook of Fire Protection Engineering (3rd edn), Section 2, Chapter 1, SFPE/NFPA,2003
    [63]陈志斌,胡隆华,霍然,祝实.基于图像亮度统计分析火焰高度特征[J].燃烧科学与技术,2008,14(6):557~561
    [64]陈志斌,胡隆华,霍然,祝实.基于图像相关性提取的火焰振荡频率[J].燃烧科学与技术,2008,14(4):367-371
    [65]Coutin M., Most J., Delichatsios M., et aL Flame Heights in Wall Fires:Effects of Width, Confinement and Pyrolysis Length[C]. Proceedings of the 6 international symposium on Fire Safety Science. Poitiers, France,1999
    [66]Mason P. S., Fleischmann C. M., Rogers C. B., et aL Estimating Thermal Radiation Fields from 3D Flame Reconstruction. Fire Technology,2009,45(1):1-22
    [67]于万波.基于Matlab的图像处理[M].北京:清华大学出版社,2008
    [68]康泉胜.小尺度油池火非稳态燃烧特性及热反馈研究[D].[博士学位论文].合肥:中国科学技术大学,2009
    [69]任明亮,陈超,郭强,杨英霞,康国青,罗海亮,地铁活塞风的分析计算与有效利用[J].上海交通大学学报,2008,42(8):1376-1380
    [70]朱克勤,杨宇光.高速列车穿越隧道时一维非定常流的数值研究[J].空气动力学学报,1998,16(4):480~484
    [71]金学易,铁路隧道无帘幕吹入式通风的计算[J].土木工程学报,1981,2:25~28
    [72]铁道部科学研究院西南所通风组:列车在隧道中活塞作用的探讨[J].铁道科学技术,铁道建筑专辑,1966
    [73]纪杰,钟委,张英,霍然.典型多层地铁车站中间层起火时的通风模式优化分析[J].中国铁道科学,2010,31(2):131~136
    [74]陈平,张泽江.地铁站厅中商铺火灾试验研究[J].西华大学学报自然科学版,2007,26(4):9-11
    [75]Gambit 2.1 User's Guide. U.S. Fluent Inc.2001
    [76]Fluent 6.1 User's Guide. U.S. Fluent Inc.2001
    [77]HITOSHI KURIOKA, YASUSHI OKAB, HIROOMI SATOHA, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels [J]. Fire Safety Journal, 2003,38:319-340
    [78]HULH, HUOR, PENG W, et al. On the maximum smoke temperature under the ceiling in tunnel fires [J]. Tunnelling and Underground Space Technology,2006,21:650-655
    [79]HULH, HUOR, WANG H B. et al. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling [J]. Building and Environment,2007,42: 3905-3915
    [80]Thomas P H On the Heights of Buoyant Flame[J]. Fire Research Note,1961, (489)
    [81]Thomas P H. The Size of Flames from Natural Fires [C]. In Ninth Symposium (International) on Combustion,1963:844-859
    [82]Zukoski E E, B.M. Cetegen, Kubota T. Proc. Combust. Inst.1985,20:361-366
    [83]Heskestad G, Fire Plumes in SFPF Handbook of Fire Protection Engineering,2nd ed[M]. National Fire Protection Association, Quincy, MA,1995
    [84]徐伯乐.高原环境下油池火的火焰及羽流特性研究[D].[硕士学位论文].合肥:中国科技大学,2010
    [85]Pagni P J. Pool vortex shedding frequencies[J]. Applied Mechanics Review,1990,43(1): 153-170
    [86]Bejan A. Predicting the pool fire vortex shedding frequency[J]. Journal of Heat Transfer, 1991,113(1):261-263
    [87]Cetegen B M, Kasper K D. Experiments on the oscillatory behavior of buoyant plumes and pool fires[J]. Combustion and Flame,1993,93(1-2):157-184
    [88]V Babrauskas, Flame lengths under ceilings [J].Fire and Materials,1980,4(3):119-126
    [89]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999
    [90]McCaffrey, B., Flame Height, SFPE Handbook of Fire Protection Engineering,2nd Edition, National Fire Protection Association, Quincy, MA,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700