甘肃武都万象洞石笋灰度、微层特征及其古气候意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
万象洞地处青藏高原东缘和黄土高原西南边缘过渡带,是典型季风系统相互作用的地区,接近夏季风降水的北界,对于亚洲季风的变化十分敏感,是研究亚洲季风变化的理想位置。石笋的气候代用指标很多,包括:碳氧同位素、灰度、微层、微量元素、生长速率、分子化石、密度等,对于万象洞石笋的研究过去十多年以来主要集中在对碳氧同位素记录的研究上。而本文选用万象洞石笋WXB07-4和WXB07-3两个石笋作为研究材料,通过提取WXB07-4石笋的反射光灰度变化曲线,并结合其18个230Th年代和311个氧同位素记录,探讨了8.9-5kaBP期间亚洲季风变迁在石笋灰度记录中的特征,同时通过与其他记录的对比,研究了万象洞石笋灰度变化的驱动机制。并通过对WXB07-3石笋微层特征的研究,探讨了万象洞石笋微层形成的可能因素。并获得了以下的结论:
     1、WXB07-4生长速率的变化较大,最小值出现在5.6-5.1ka BP之间,最大值出现在6.4ka BP附近。从整体来看,8.9-6.7ka BP期间,生长速率比较低,6.7-6.2ka BP期间,虽然生长速率也出现了两个较低值的波动,但是总体上生长速率较高,6.2ka BP开始生长速率开始逐渐下降至最低值。
     2、从WXB07-4石笋的灰度变化特征主要可以分为4个阶段:(1)8.9ka-8.5ka BP期间,灰度值从一个低值逐渐增大;(2)8.5ka-6.4ka BP期间,灰度值虽有起伏,但是总体变化不大;(3)6.4-5.6ka BP期间,灰度值突然增加,然后逐渐减小;(4) 5.6ka-5ka BP期间,灰度值较低。
     3、WXB07-4的灰度记录与其d180记录的相关系数为-0.35,两者存在较强的相关关系,即当d180偏正时,代表季风相对较弱,气温较低,降水较少,对应石笋灰度值较小,反之依然。表明石笋灰度值的变化可以作为石笋古气候与古环境重建方法的有效补充。
     4、WXB07-4石笋的灰度和氧同位素、董哥洞DA石笋氧同位素以及阿曼Q5石笋的氧同位素一致记录了发生在8.2ka BP、7.25ka BP、6.25ka BP以及5.6-5.2kaBP左右的四个季风减弱事件。
     5、WXB07-4灰度与太阳总辐射度以及GISP2冰芯氧同位素之间存在良好的对应关系,表明亚洲季风强度与太阳活动密切相关,亚洲季风强度的变化与北半球高纬温度同步变化。
     6、万象洞石笋WXB07-3的微层显微特征具有典型北方型石笋微层特征,通过与石花洞石笋微层的对比,结合两地现代的气候变化规律发现,微层暗条纹的厚薄可能与降水量的分布和年平均温度的变化存在关系。
Wanxiang Cave is located in the transition zone between the eastern edge of Qinghai-Tibet Plateau and southwestern edge of the Loess Plateau. This zone,closed to the northern boundary of the summer monsoon,is a typical monsoon systems interaction area, is sensitive to changes in the Asian monsoon,and is a ideal location to study the Asian monsoon.There are many climate proxy indicators in stalagmite,including: carbon and oxygen isotopes, gray, micro-level, trace elements, growth rate, the molecular fossils, density and so on. In the past ten years,the climate research on Wanxiang cave was focus on the carbon and oxygen isotope records.In this paper,we use stalagmite WXB07-4 and WXB07-3 collected from Wanxiang Cave as the research materials. We extract the reflected light gray curve of the stalagmite WXB07-4, combined with its 18 230Th age and 311 oxygen isotope records,to research the gray features of Asian monsoon changes between 8.9 ka BP to 5 ka BP. And through comparing with other records,we discuss the driving mechanism of gray change.then we research the micro-level characteristics of the stalagmite WXB07-3,and discuss possible factors of the stalagmite formation. And we obtained the following conclusions:
     1,The change of the growth rate of WXB07-4 is great. The minimum is in 5.6-5.lka BP and the maximum is near 6.4ka BP.On the whole,during 8.9-6.7 ka BP, the growth rate is relatively low. During 6.7-6.2 ka BP, although there have been two growth rate fluctuations, but the overall growth rate is higher. From the beginning of 6.2ka BP, the growth rate gradually declined to the lowest value.
     2, The gray characteristics of the stalagmite WXB07-4 can be divided into four stages:(1) During 8.9-8.5ka BP, the gray level increase from a low value; (2) During 8.5-6.4ka BP, although the gray value is ups and downs, but overall has a little change; (3) During 6.4-5.6ka BP, the gray value has a sudden increase and then gradually decreased; (4) During 5.6-5ka BP, the gray value is lower.
     3,The correlation coefficient of the gray and d18O of WXB07-4 is-0.35. This proves that there is a strong correlation between the gray and d18O. When d18O value is great, this is representative of the relatively weak monsoon, low temperatures,little precipitation,and small gray value,vice versa. This proves that the gray change in stalagmite can provide an effective supplement for paleoclimate and paleoenvironment reconstruction.
     4, WXB07-4 gray, d18O, Dongge DA d18O and Aman Q5 d18O consistent record four monsoon weakened events occur in 8.2ka BP,7.25ka BP,6.25ka BP and 5.6-5.2ka BP.
     5, There is a good correlation between WXB07-4 gray and total solar irradiance. It indicate that Asian monsoon closely related to solar activity.Between WXB07-4 gray and GISP2 ice core oxygen isotope also have a good correlation,indicating that Asian monsoon synchronously change with northern hemisphere high latitude temperature.
     6, The micro-layer microscopic characteristics of stalagmite WXB07-3 is classified in typical North-type stalagmite micro-layer characteristics.Contrast with Shihua Cave stalagmite,combined with the modern climate change discipline in these two places,we find that the thickness of dark tripes in micro-layer may be related closely to changes of the annual precipitation and average temperature.
引文
Allison V.The antiquity of the deposit in Jacob's cavern[A].American Museum of Natural History,Anthropological Papers[C].1926,19, Part VI:294-325.
    Ayalon A,Bar-Mathews M,Sass E,et al. Rainfall-recharge relationships within a karstic terrain in the eastern Mediterranean semi-arid region,Israel:d18O and dD Characteristics [J]. Journal of Hydrology,1998,207:18-31.
    Ayalon A,Bar-Matthews M, Kaufman A. Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel[J]. Geology,2002,30:303-306.
    Baker A,Barnes WL,Smart P L. Speleothem luminescence intensity and spectral characteristics signal calibration and a recordof palaeovegetation change[J]. Chemical Geology,1996,130: 65-76.
    Baker A,Smart P L,Edwards R L,et al. Annual growth banding in a cave stalagmite [J]. Nature, 1993,364:518-520.
    Baker A, Genty D, Smart P L. High resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths. Geology, 1998,26(10):903-906.
    Baker A,Caseldine C J,Gilmour M A,et al. Stalagmite luminescence and peat humification records of palaeomoisture for the last 2500 years [J]. Earth and Planetary Science Letters,1999,165 (1):157-162.
    Baldini J U L,McDermott F,Fairehild I J. Structure of the 8200-year cold event revealed by a speleothem trace element Record[J]. Science,2002,296:2203-2206.
    Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of the Laurentide lakes[J]. Nature,1999,400:344-348.
    Bar-Matthews M,Ayalon A,Kaufman A. Late Quaternary palaeoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave,Israel [J]. Quaternary Research,1997,47:155-168.
    Bar-Matthews M,Ayalon A,Kaufman A.Timing and hydrological conditions of sapropel events in the eastern Mediterranean as evident from speleothems,Soreq Cave,lsrael[J]. Chemical Geology,2000,169:145-156.
    Banner J L,Musgrove M,Asmerom Y, et al. High-resolution temporal record of Holocene ground-water chemistry:Tracing links between climate and hydrology[J]. Geology,1996,24: 1049-1052.
    Beck J W,Richards D A,Edwards RL,et al. Extremely large variations of atmospheric 14C concentration during the last glacial period[J]. Science,2001,292:2453-2458.
    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene andglacial climates[J]. Science,1997,278:1257-1266.
    Brook G A,Rafter M A,Railsback L B. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave,Madagascar[J]. Holocene,1999, 9(6):695-705.
    Burns S J,Matter A,Frank N. Speleothembased palaeoclimate record from northern Oman [J]. Geology,1998,26 (6):499-502.
    Burns S J,Fleitmann D,Matter A,et al. Indian Ocean Climate and an Absolute Chronology over Dansgaard/Oeschger Events 9 to 13[J]. Science,2003,301:1365-1367.
    Cheng H, Fleitmann D, Edwards R L,et al. Timing and structure of the 8.2 kyr B.P. event inferred from d18O records of stalagmites from China, Oman, and Brazil[J]. Geology,2009: 1007-1010.
    Constantin S,Bojar A V,Lauritzen S E,et al. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: A speleothem record from Poleva Cave (Southern Carpathians, Romania)[J]. Palaeogeograhpy,Palaeoclimatology, Palaeoecology, 2007,243:322-338.
    Dorale J A,Gonzalez L A,Reagan,M K,et al. A high resolution record of holocene climate change in speleothem calcite from cold water cave, Northeast Iowa [J]. Science,1992,258: 1626-1630.
    Dorale J A,Edwards R L,Ito E,et al. Climate and vegetation history of the mid continent from 75 to 25 ka:a speleothem record from Crevice Cave, Missouri, USA [J]. Science,1998,282: 1871-1874.
    Duplessy J C,Labeyrite J,Lalou C,et al.Continental climatic variations between 130000 and 90000 years BP[J]. Nature,1970,226:631-633.
    Edwards R L,Chen J H,Wasserburg G J.238U-234U-230Th-232Th systematics and the precise measurement of time over the Past 500000 years[J]. Earth and Planetary Science Letters, 1986,81(2-3):175-192.
    Fairchild I J,Baker A,Borsato A,et al.Annual to sub-annual resolution of multiple trace element trends in speleothems[J]. J.Geol.Soc.London,2001,158:831-841.
    Fleitmann D,Burns S J,Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science,2003:1737-1739.
    Fleitmann D,Cheng H,Badertscher S,et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey[J].Geophysical Research Letters,2009,36, L19707.
    Frappier A,Sahagian D,Gonzalez A,et al. ElNino events recorded by stalagmite carbon isotopes [J]. Science,2002,298-565.
    Frohlich C.Observational evidence of a long-term trend in total solar irradiance[J], Astron. Astrophys,2009,501:27-30.
    Frumkin A,Stein M. The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem[J]. Earth and Planetary Science Letters,2004,217:451-464.
    Galy A,Bar-Matthews M,Halicz L,et al. Mg isotopic composition of carbonate:insight from speleothem formation[J]. Earth and Planetary Science Letters,2002,201:105-115.
    Gascoyne M. Trace elements in calcite:The only cause of speleothem color [J]. National Speleological Society Bulletin,1978:40-90.
    Gascoyne M. Trace element partition coefficients in the calcite water system and their paleoclimatics in significance in cave studies[J]. Journal of Hydrology,1983,61:213-222.
    Genty D,Baker A,Maire R. Comparison of annual luminescent and visible laminae in stalagmites, Comptes Rendus DeL'Academie des Sciences, SerⅡ. Fascicule A[J]. Science dela Terre et des Planetes,1997,325:193-200.
    Genty D,Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites:Importance of paleocliamtology [J]. Journal of Sedimentary Research,1996,66: 275-288.
    Genty D,Blamart D,Ouahdi R.,et al. Precise dating of Dansgaard-Oeschger climatic oscillations in western Europe from stalagmite data[J]. Nature,2003,421:833-837.
    Gilson R J,MCarthney E. Luminescence of speleothems from Devon,UK:The presence of organic activators[J]. Ashford Speleological Society Journal,1954:6-8.
    Goede A,McCulloch M,McDermott F,et al.Aeolian contribution to strontium and strontium isotope variations in a Tasnanian speleothem [J]. Chemical Geology,1998,149:37-50.
    Grootes P M, Stuiver M, White J W C, et al. Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores [J]. Nature,1993,366:552-554.
    Hans E G. Applications of magnetic sector ICP-MS[J]. Journal of Geochemical Exploration,2002, 75:1-15.
    Hendy C H,Wilson AT. Palaeoclimatic data from speleothems[J]. Nature,1968,219:48-51.
    Hendy C H. The isotopic geochemistry of speleothems-I. the calculation of the effects of different model of formation on the isotopic composition of speleothems and their appliability as paleoclimate Indicators [J]. Geoehimet Cosmochim Acta,1971,35:801-824.
    Holmgren K,Karlen W. Paleoclimatic significance of the stable isotopic composition and petrology of a late pleistocene stalagmite from Botswana[J]. Quaternary Research,1995,43: 320-328.
    Hu C Y, Henderson G.M., Huang J.H.Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J].Earth and Planetary Science Letters,2008,266:221-232.
    Huang Y M,Ian J F,et al. Seasonal variations in Sr, Mg and P in modern speleothems(Grotta di Ernesto,Italy)[J]. Chemical Geology,2001,175:429-448.
    Kluge T,Marx T,Scholz D, et al. A new tool for palaeoclimate reconstruction:Noble gas temperatures from fluid inclusions in speleothems[J]. Earth and Planetary Science Letters, 2008,269:407-414.
    Lauritzen S E. High-resolution paleotemperature proxy record for the Last Interglaciation based on Norwegian speleothems[J]. Quaternary Research,1995,43,133-146.
    Liew P M, Lee C Y, Kou C M. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan[J]. Earth and Planetary Science Letters,2006,250:596-605.
    Li H C,Ku TL,You C F,et al.87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago[J]. Geochimica et Cosmochimica Acta,2005, 69:3933-3947.
    Li W X,Lundberg J,Dick A P. High precision mass- spectrometric uranium series dating of cave deposits and implications for Palaeoclimate studies[J]. Nature,1989,339:534-536.
    Luo X,Rehkabmper M,Lee D C. High precision 230Th/232Th and 234U/238U measurements using energy filtered ICP magnetic sector multiple collector mass spectrometry.Int. J Mass spectrom.Ion Processess,1997,171:105-117.
    Magny M, Haas J N. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman[J]. Quaternary Sci,2004,19:423-430.
    Martin J C, Mark B D. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J]. Soil Biol Biochem,1996,28(9):1191-1199.
    McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. J Chem Phys,1950,18:849-857.
    McDermott F,Mattey D P,Hawkesworth, C J. Centennialscale Holocene climate variability revealed by a high-resolution speleothem d18O record from S.W. Ireland [J]. Science,2001, 294:1328-133
    Ming Tan,Tungsheng Liu,Juzhi Hou,et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003,30 (12):1617-1620.
    Neff U,Burns S J,Mangini A. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J]. Nature,2001:290-293.
    Quinif Y,Genty D.Maire R. Les speleothem:un outil performant pour les etudes paleoclimatiques [J]. Bulletin Society Geology France,1994,165:603-612.
    Roberts M S,Smart P C,Baker A. Annual trace element variations in a Holocene Speleothem [J]. Earth and Planetary Science Letters,1998,154:237-246.
    Schwarcz H P,Ford D C.Continental Pleistocence climatic variations from speleothem age and isotope data[J]. Science,1974,184:893-895.
    Serefiddin F,Schwarcz H P,Ford D C,et al. Late Pleistocene paleoclimate in the Black Hills of South Dakota from isotope records in speleothems[J]. Palaeogeograhpy,Palaeoclimatology, Palaeoecology,2005,203:1-17.
    Shen C C,Edwards R L,Cheng H. Uranium and thorium isotopic and concentration measurements by magnetic scetor inductively coupled plasma mass spectrometry[J]. Chem Geol,2002,85: 165-178.
    Shopov Y Y. Laser luminescent microzonal analysis:A new method for investigation of the alterations of climate and solar activit yduring the Quaternary [A]. In:Kiknadze T,eds. Problems of Karst study in Mountainous Countries [C]. Tbilisi:Georgia, Metsniereba,1987. 228-232.
    Talma A S,Vogel J C. Late Quaternary Paleotemperatures derived from a speleothem from Cango caves,Cape province,South Africa[J]. Quaternary Research,1992,37:203-213.
    Thompson G,Lumsden D N,Walker R N,et al. Uranium-series dating of stalagmite from Blanchard Springs Cavern, USA[J]. Geochimica et Cosmochimica Acta,1975,39:1211-1218.
    Vinther B M, Clausen H B, Johnsen S J, et al. A synchronized dating of three Greenland ice cores throughout the Holocene[J]. Journal of Geophysical Research,2006,111:D13102.
    Wang X F,Auler A S,Edwards R L,et al. Wet periods innortheastern Brazil over the past 210 kyr linked to the distantclimate anomalies[J]. Nature,2004,432:740-743.
    Wang Y J,Cheng H,Edwards R L,et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave,China[J]. Science,2001,294:2345-2348.
    Wang Y.J,Cheng H,Edwards R L. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science,2005,308:854-857.
    Wang Y J,Cheng H,Edwards R L,et al. Millennial and orbital scale changes in the East Asian monsoon over the past 224000 years[J]. Nature,2008,451:1090-1093.
    White W B. Reflectance spectra and color in speleothems [J]. National Speleological Society Bulletin,1981,43:20-26.
    White W B,Brennan E S. Luminescence of speleothems due to fulvic acid and other activators.In: 10th Proceedings of the International Speleology Congress [C].1989,1: 212-214.
    Winograd I J,Tyler B C,Barney J S,et al. A 250000 year climatic record from Great Basin vein calcite: Implications for Milankovitch theory[J]. Science,1988,242:1275-1280.
    Winograd I J,Coplen T B,Landwehr J M,et al. Contiuous 500000-year climate record from vein calcite in Devils Hole,Nevada[J]. Science,1992,258:255-260.
    Yuan D X,Cheng H,Edwards R. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science,2004,304:575-578.
    Zhang P Z,Cheng H,Edwards R L,et al. A Test of Climate,Sun,and Culture Relationships from an 1810-Year Chinese Cave Record[J]. Science,2008,322:940-942.
    安春雷.近千年高分辨率的石笋气候记录研究——以甘肃陇南万象洞为例[D].甘肃:兰州大学,2007.
    班凤梅,潘根兴,王新中.北京石花洞石笋微层层面有机物质的形成时间及机理初探[J].第四纪研究,2005,25(2):265-268.
    蔡演军.石笋记录的最近5万年印度季风气候[D].北京:中国科学院地球环境研究所,2003.
    段福才,汪永进,董进国,等.13ka以来东亚夏季风演变过程和全新世适宜期问题[J].地球化学2009,38(2):105-113.
    何潇.重庆地区26.5kaB.P.-24.1kaB.P.高分辨石笋气候记录[D].重庆:西南大学,2006.
    侯居峙,谭明,.程海,等.本溪水洞石笋微层年代学初步研究[J].中国科学,2001,31(5),387-392.
    黄俊华,胡超涌,周群峰,等.长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J].沉积学报,2002(3):442-446.
    孔兴功,汪永进,吴江澄,等.末次盛冰期连续3ka南京降水记录中ENSO周期[J].科学通报,2003,48:277-281.
    李彬,袁道先,林玉石,等.桂林盘龙洞石笋发光性特征及其古环境记录的初步研究[J].地球学报,1997,18(4):400-406.
    李红春,顾德隆,陈文寄,等.利用洞穴石笋的d180和d13C重建3000a以来北京地区古气候和古环境——石花洞研究系列之三[J].地震地质,1997,19(1):78-83.
    李红春,顾德隆,Stott L D,等.高分辨率洞穴石笋稳定同位素应用之一—京津地区500a来的气候变化d18O记录[J].中国科学D辑,1998,44(2):456-463.
    李清.重庆地区末次冰期以来石笋的微量元素及古气候记录研究[D].重庆:西南大学,2009.
    李清,王建力,李红春,等.重庆地区石笋记录中Mg/Ca比值及古气候意义[J].中国岩溶,2008,27(2):145-150.
    刘东生,谭明,秦小光,等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J].第四纪研究,1997(1):41-51.
    刘敬华.近500年来黄土高原西部降水变化的高分辨率石笋记录及其与历史文献记载的对比研究[D].甘肃:兰州大学,2008.
    刘浴辉,胡超涌,黄俊华.石笋微层研究及其气候意义[J].地质科技情报,2005,24(1):30-34.
    刘浴辉,胡超涌.长江中游石笋微层9ka来气候演变记录[R].湖北:2004年全球重大变化时期生物与环境的协同演化学术研讨会,2004.
    马志邦,李红春,等.据今3Ka来京东地区的古温度变化:石笋Mg/Sr纪录[J].科学通报,2002,4(23):1829-1834.
    秦小光,刘东生,谭明,等.石笋微层的谱分析和北京地区1千年来的气候演变[J].地理学报,1999,54(6):543-549.
    秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义--Ⅱ.灰度的年际变化[J].中国科学(D辑:地球科学),2000,30(3):239-248.
    邵晓华,汪永进,孔兴功,等.南京葫芦洞石笋生长速率及其气候意义讨论[J].地理科学,2003,23(3):304-309.
    邵晓华,汪永进,程海,等.全新世季风气候演化与干旱事件的湖北神农架石笋记录[J].科学通报,2006,51(01):80-86.
    谭明,刘东生,钟华,等.季风条件下全新世洞穴碳酸钙稳定同位素气候信息初步研究[J].科学通报,1997,42(12):1302-1306.
    谭明,李英铁,等.北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究[J].中国岩溶,1997,16(1):1-10.
    谭明,秦小光,沈凛梅,等.中国洞穴碳酸盐双重光性显微旋回及其意义[J].科学通报,1999,44(6):646-648.
    谭明,侯居峙,程海.定量重建气候历史的石笋年层方法[J].第四纪研究,2002,22(3),209-219.
    谭明.石笋微层气候学的几个重要问题[J].第四纪研究,2005,25(2):164-169.
    王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J].第四纪研究,2005(2):258-264.
    汪永进,孔兴功,邵晓华,等.末次盛冰期百年尺度气候变化的南京石笋记录[J].第四纪研究,2002,22(3):243-251.
    汪永进,陈琪,刘泽纯,等.南京汤山溶洞石笋连续200 ka古气候记录[J].科学通报,1997,42(19):2093-2097.
    汪永进,吴江滢,穆西南,等.南京汤山直立人遗址碳酸盐沉积的时标与高分辨率气候变化研究[J].第四纪研究,1999,19(06):569.
    汪永进,吴江滢,许汉奎,等.南京汤山洞穴石笋稳定同位索指示的气候与环境意义[J].地质学报,2000,74(4):333-338.
    汪永进,吴江澄,刘殿兵,等.石笋记录的东亚季风气候H1事件突变性特征[J].中国科学,2002,32(3):227-233.
    吴敬禄,沈吉,王苏民,等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征[J].中国科学D辑,2003,33(6):570-575.
    吴江滢,邵晓华,孔兴功,等.盛冰期太阳活动在南京石笋年层序列中的印记[J].科学通报,2006,51(4):431-435.
    肖鸿林,Brook G,Railsback B,等.贵州羊子坡石笋记录的历史事件[J].第四纪研究,2006,26(5):808-813.
    许清海,肖举乐,中村俊夫,等.孢粉资料定量重建全新世以来岱海盆地的古气候[J].海洋地质与第四纪地质,2003,23(4):99-108.
    姚檀栋,Thompson L G.敦德冰芯记录与过去5ka温度变化[J].中国科学B辑,1992,22(10):1089-1093.
    姚檀栋,Thompson L G,施雅风,等.古里雅冰芯中末次冰期以来气候变化记录研究[J].中国科学D辑,1997,27(5):447-452.
    杨桂芳,彭红霞,黄长生,等.黄土高原西缘末次盛冰期以来古气候演化的有机碳同位素记录[J].华中师范大学学报(自然科学版),2005,39(1):126-130.
    杨勋林.青藏高原东部近1200年来高分辨率洞穴石笋化d18O记录[D].甘肃:兰州大学, 2007.
    杨琰.洞穴石笋高精度ICP-MS铀系年代学与西南岩溶地区古气候变化研究[D].湖北:中国地质大学,2006.
    杨琰,袁道先,程海,等.洞穴石笋初始234U/238U值变化的古气候记录意义[J].地质学报,2008,82(5):691-701.
    易轶.分子化石在洞穴沉积物中的分布特征及其潜在的古气候意义[D].湖北:中国地质大学,2003.
    袁道先.中国岩溶学[M].北京:地质出版社.1994:1-45.
    张德忠,张平中,桑文翠,等.石笋密度蕴含的过去气候变化信息:以末次冰消期黄土高原西部武都万象洞石笋为例[J].科学通报,2010,55(31):3040-3047.
    张平中.中国青藏高原东部石笋氧同位素记录的气候变化研究[D].甘肃:兰州大学,2007.
    张平中,陈一萌Johnson K R,等.甘肃武都万象洞滴水与现代石笋同位素的环境意义[J].科学通报,2004,49(15):1529-1531.
    张向华.中全新世神农架高分辨率的石笋气候记录[D].江苏:南京师范大学,2005.
    周厚云,王庆,蔡炳贵.山东开元洞发现典型“北方型”石笋微生长层[J].第四纪研究,2010,30(2):441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700