双周期标准化的弹塑性反应谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先对考虑P-△效应、承受冲击荷载和简谐荷载作用下单自由度(SDOF)体系的动力响应进行了研究,分析了弹性、安定、塑性荷载作用下不同滞回模型(理想弹塑性滞回模型EPP、双折线弹塑性强化模型ELH、剪切滑移滞回模型SSP和理想双线性弹性模型BI)SDOF体系的能量和位移反应,考察了阻尼、耗能能力和二阶效应对结构反应的影响。结果显示:二阶效应的存在,减小了弹性荷载区间和安定荷载区间,增大了输入能和最大位移,对耗能能力提出更高的要求,其影响是不利的;后期刚度的存在,可以弥补二阶效应带来的不利影响;对于弹性体系,阻尼耗能贡献明显,基本占到总耗能能力的1/2,而在弹塑性体系中,主要的耗能能力来自于滞回耗能,阻尼耗能作用并不大;二阶效应的存在,进一步凸显了滞回耗能的地位。
     鉴于结构非线性反应分析的复杂性,各国均用地震力调整系数R对依据弹性反应谱计算的弹性地震力折减来获得弹塑性体系的地震力。本文利用弹塑性动力时程分析程序,对四类场地共计370条地震波作用下的理想弹塑性单自由度体系和剪切型多自由度(MDOF)体系进行分析,获得了不同延性、周期的地震力调整系数,结果显示:横轴采用Tga和TgR标准化的R谱很好地保留了其特征周期处的峰值特性;考虑二阶效应的R谱要小于不考虑二阶效应的R谱;将根据单自由体系获得的R谱直接用于多自由度体系会偏于不安全,可以通过系数RM对其进行相应修正,以适用不同楼层体系(Rμ,MDOF=Rμ,SDOF×RM);RM随楼层数的增加而减小,RM受周期影响。
     通过建立弹塑性动力放大系数βμ谱,可以进一步简化弹塑性地震力计算,与利用R调整弹性地震力相比,由于仅需要拟合一个谱,其精度和可信性更高。根据对理想弹塑性单自由度体系的分析,二阶效应对βμ有着明显的影响,大致使地震力增大1+2μθ倍。阻尼比对βμ谱的影响与场地类别关系不大。其中阻尼对弹性βe谱的影响与二阶.效应系数无关,随阻尼比增大,βe值越小;对塑性βμ谱的影响与延性无关,随二阶效应系数增大,阻尼影响增强。阻尼比对βe的影响要大于对βμ的影响,但随着二阶系数的增大,对两者的影响趋近。
     根据弹塑性位移放大系数cd谱可较方便地估算结构在地震动作用下的非弹性最大位移,以实现基于性能的抗震设计目标,动力分析的结果表明:长周期结构满足等位移准则;二阶效应的存在会增大弹塑性最大位移,二阶效应越大,影响越大,这种影响在特征周期处最为明显,特别是在TgR处。
     曲率延性和位移延性分别从截面和杆件层面反应结构的延性,分析了两个层次延性的关系。对折减系数的研究显示:滞回模型中弹性阶段和后期强化阶段间曲线过渡段的存在能够增大折减系数,特别是延性小时。采用双折线模型来进行分析会偏于安全;基于位移延性的分析结果具有更好的稳定性,在相同计算精度的要求下,对杆件单元划分数的要求也更低。
Dynamic analysis of single-degree-of-freedom (SDOF) systems under impact and harmonic loads considering P-Δeffect are studied. Energy and displacement response of SDOF system under elastic, shakedown and plastic loads are analyzed. The hysteretic models are elastic-perfectly plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped (SSP) and bilinear-elastic (BIL) model. The influence of damping ratio, energy dissipation capacity and P-Δeffect on structural responses are studied. It is found that the P-Δeffect reduces the elastic limit and shakedown loads, and enlarges input energy and maximum displacement. Post yield stiffness ratio can make up for the adverse impact of the P-Δeffect. Damping is very important for elastic system in dissipating energy and almost half of total energy is due to the damping. While for elasto-plastic systems, hysteretic energy plays the most important role, especially when considering P-Δeffect.
     Due to the complexity of nonlinear dynamic analysis, the seismic force modification factor R is commonly used to reduce elastic seismic force to get the strength demand. Based on elastic-plastic time-history earthquake analysis of EPP hysteretic SDOF system and MDOF system, total 370 earthquake records belonging to 4 site are used to calculate the structural response. Results indicate that peak feature of R spectra around characteristic periods are well retained with lateral axis being normalized by Tga and TgR. Seismic force modification factors becomes smaller when considering P-Δeffect. Using R of SDOF system for MDOF structure is dangerous. RM factor is introduced to consider MDOF effect (Rμ,MDOF=Rμ,SDOF×RM).RM decreases with increase of the number of stories. RM is presented for different periods.
     By using inelastic response spectra, seismic force of elasto-plastic system can be obtained more easily. The direct method has more accuracy than the indirect method. Inelastic response spectra between systems with and without considering P-Δeffect are different. The effects of damping ratio on elastic and inelastic spectra are independent on sites. Elastic spectra decreases with the increase of damping ratio. Damping effects on elastic spectra and inelastic spectra have little relation to P-Δeffect and ductility, respectively. Elastic spectra are more sensitive to damping ratio than inelastic spectra. The influence of damping ratio on inelastic spectra is larger for system considering P-Δeffect.
     Inelastic displacement ratio Cd is studied to estimate the maximum inelastic displacement according to the maximum elastic displacement. It is found that the equal displacement rule is applicable for long period region. Maximum inelastic displacement of structure considering the P-Δeffect is larger than those without P-Δeffect. The influence of P-Δeffect is significant for structure with period being equal to characteristic periods, especially when period being equal to TgR.
     The relation between sectional ductility and member ductility is studied. Strength reduction factors based on curvature ductility and displacement ductility are analyzed. Curved segment in the moment-curvature relationship between elastic stage and hardening stage is proved to be favorable. The responses can be conservatively predicted using the simple bilinear-elastic model. The results based on displacement ductility are more stable. Larger element number of structures is required to guarantee calculation precision when the analysis is based on curvature ductility than on displacement ductility.
引文
[11 曹资,朱志达.1998.建筑抗震理论与设计方法[M].北京:北京工业大学出版社.
    [2]大崎顺彦.1990.建筑物抗震设计法[M].毛春茂.刘忠,译.北京:冶金工业出版社.
    [3]高振维.2004.房屋抗震工程学[M].武汉:湖北科学技术出版社.
    [4]胡聿贤.2006.地震工程学[M].第二版.北京:地震出版社.
    [5]黄金桥.2004.钢结构弹塑性动力学及抗震设计理论研究[D].杭州:浙江大学.
    [6]李耀庄,管品武.2005.结构动力学及应用[M].合肥:安徽科学技术出版社.
    [7]王东升,李宏男,王国新.2006.统计意义一致的弹塑性设计位移谱[J].大连理工大学学报,46(1):88-92.
    [8]翟长海.2004.最不利设计地震动及强度折减系数[D].哈尔滨:哈尔滨工业大学.
    [9]翟长海,谢礼立.2006.近场脉冲效应对强度折减系数的影响分析[J].土木工程学报.39(7):15-18.
    [10]霍长海,谢礼立.2007.结构抗震设计中的强度折减系数研究进展[J].哈尔滨工业大学学报,29(8):1177-1184.
    [11]中国工程建设标准化协会.2004.CECS160-2004:建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社.
    [12]中华人民共和国建设部.2010.GB50011-2010:建筑抗震设计规范[S].北京:中国建筑工业出版社.
    [13]赵永峰.2008.精致化延性抗震设计理论[D].杭州:浙江大学.
    [14]赵永峰,童根树.2008a.双折线弹塑性滞回模型的结构影响系数[J].工程力学,25(1):61-70.
    [15]赵永峰,童根树.2008b.等延性屈服点谱YPS[J].土木工程学报,41(9):48-53.
    [16]赵永峰,童根树.2009.剪切滑移滞回模型的结构影响因素[J].工程力学,26(4):73-81.
    [17]Akkar S D, Miranda E.2005. Statistical evaluation of approximate methods for estimating maximum deformation demands on existing structures[J]. Journal of Structural Engineering,131(1):160-172.
    [18]Akshay G, Helmut K.2000. Estimation of seismic drift demands for frame structures[J]. Earthquake Engineering and Structural Dynamics,29:1287-1305.
    [19]Altug E, Haluk S.2004. Seismic energy dissipation in deteriorating systems through low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics,33:49-67.
    [20]Amadio C, Fragiacomo M, Rajgelj S.2003. The effects of repeated earthquake ground motions on the non-linear response of SDOF systems[J]. Earthquake Engineering and Structural Dynamics,32:291-308.
    [21]Amador T G, James O J.2007. Energy demands for seismic design against low-cycle fatigue[J], Earthquake Engineering and Structural Dynamics,36:383-404.
    [22]Amador T G, Nadyne B A.2008. Cumulative ductility spectra for seismic design of ductile structres subjected to long duration motions:concept and theoretical background[J]. Journal of Earthquake Engineering,12:152-172.
    [23]Amador T G, Oscar Z C, Jorge R G.2009. Displacement-based seismic assessment of low-height confined masonry buildings[J]. Earthquake Spectra,25(2):439-464.
    [24]Aschheim M.2000. Yield point spectra:a simple alternative to capacity spectrum method[C]. Advanced Technology in Structural Engineering, American Society of Civil Engineering (ASCE) Structures Congress 2000, Philadelphia, USA.
    [25]Aschheim M.2002. Seismic design based on the yield displacement[J]. Earthquake Spectra,18(4):581-600.
    [26]Aschheim M, Monts E H.2003. The representation ofP-Δ effects using Yield Point Spectra[J]. Engineering Structures,25:1387-1396.
    [27]Ashraf A, Mouchir C.2009. Response spectra of degrading structural systems[J]. Engineering Structures,31: 1393-1402.
    [28]Borzi B. Elnashai A S.1999. Refined force reduction factors for seismic design[J]. Engineering Structures,22: 1244-1260.
    [29]Bozorgnia Y. Hachem M M, Campbell K W.2010a. Ground motion prediction equation ("attenuation relationship") for inelastic response spectra[J]. Earthquake Spectra,26(1):1-23.
    [30]Bozorgnia Y, Hachem M M, Campbell K W.2010b. Deterministic and probabilistic predictions of yield strength and inelastic displacement spectra[J]. Earthquake Spectra,26(1):25-40.
    [31]Cabinet Office.2000. The Building Standard Law of Japan[S].
    [32]Cai J, Zhou J, Fang X D.2006. Seismic ductility reduction factors for Multi-Degree-of-Freedom systems[J]. Advances in Structural Engineering,9(5):591-601.
    [33]Can O K, Cem T.2008. A numerical study on response modification, overstrength, and displacement amplification factors for steel plate shear wall systems[J]. Earthquake Engineering and Structural Dynamics,38: 497-516.
    [34]Chopra A K.2001. Dynamics of structures:theory and application to earthquake engineering[M],2nd ed. New Jersey:Prentice Hall.
    [35]Chopra A K, Chintanapakdee C.2001. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J]. Earthquake Engineering and Structural Dynamics,30:1769-1789.
    [36]Cuesta I, Aschheim M A.2001. Isoductile strengths and strength reduction factors of elasto-plastic SDOF systems subjected to simple waveforms[J]. Earthqake Engineering and Structural Dynamics,30:1043-1059.
    [37]Danny A, Mario O.2007. On the estimation of hysteretic energy demands for SDOF systems[J]. Earthquake Engineering and Structural Dynamics,36:2365-2382.
    [38]Danny A E, Amador T G.2003. Strength reduction factors for ductile structures with passive energy disspating devices[J]. Journal of Earthquake Engineering,7(2):297-325.
    [39]Dolsek M. Fajfar P.2004. Inelastic spectra for infilled reinforced concrete frames[J]. Earthquake Engineering and Structural Dynamics,33:1395-1416.
    [40]Elghadamis F E, Mohraz B.1987. Inelastic earthquake spectra[S]. Earthquake Engineering and Structural Dynamics,15:91-104.
    [41]Elnashai A S, Mwafy A M.2002. Overstrength and force reduction factors of multistorey reinforced-concrete buildings[J]. The Structural Design of Tall Buildings,11:329-351.
    [42]Erol K, Sashi K K.2008. Relevance of absolute and relative energy content in seismic evaluation of structures[J]. Advances in Structural Engineering,11(1):17-34.
    [43]European Committee for Standardization.2003. Eurocode 8:Design of structures for earthquake resistance[S]. Brussels:CEN.
    [44]Fajfar P, Vidic T.1994. Consistent inelastic design spectra:hysteretic and input energy[J]. Earthquake Engineering and Structural Dynamics,23:523-537.
    [45]Fajfar P.1999. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,28:979-993.
    [46]Freeman S A.1978. Prediction of response of concrete buildings to severe earthquake motion[C]. Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI Special Publication 55, Detriot: American Concrete Institute,589-605.
    [47]George D H, Dimitri E B.2009. Inelastic displacement ratios for SDOF structures subjected to repeated earthquake[J]. Engineering Structures,31:2744-2755.
    [48]Ghannad M A, Jahankhah H. Site-dependent strength reduction factors for soil-structure systems[J]. Soil Dynamics and Earthquake Engineering,27:90-110.
    [49]Gulkan P, Sozen M.1971. Inelastic response of reinforced concrete structures to earthquakes motions[J]. ACI Journal,71:604-610.
    [50]Han S W, Kwon O S, Lee L H.2001. Investigation of dynamics P-Δ effect on ductility factor[J]. Structural Engineering and Mechanics,12(3):249-266.
    [51]Hyunhoon C, Jinkoo K.2006. Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum[J]. Engineering Structures,28:304-311.
    [52]International Code Council.1997. Uniform Building Code[S]. California:International Conference of Building Officials.
    [53]Iwan W D.1980. Estimation inelastic response spectra from elastic spectra[J]. Earthquake Engineering and Structural Dynamics,8:375-388.
    [54]Jalali R S, Trifunac M S, Amiri G G, Zahedi M.2007. Wave-passage effects on strength-reduction factors for design of structures near earthquake faults[J]. Soil Dynamics and Earthquake Engineering,27:703-711.
    [55]Joanna L G, Adrian R M, Cole M.2010. Strength reduction factors for near-fault forwar-directivity ground motions[J]. Engineeringl Structures,32:273-285.
    [56]Jorge L V, Jennifer E T, Richard E K.2006. Development of seismic force reduction and displacement amplification factors for autoclaved aerated concrete structures[J]. Earthquake Spectra,22(1):267-286.
    [57]Kappos A J.1999. Evaluation of behaviour factors on the basis of ductility and overstrength studies[J]. Engineering Structures,21:823-835.
    [58]Karakostas C Z, Athanassiadou C J, Kappos A J, Lekidis V A.2007. Site-dependent design spectra and strength modification factors, based on records from Greece[J]. Soil Dynamics and Earthquake Engineering,'27: 1012-1027.
    [59]Kevin K F, Wong.2004. Inelastic seismic response analysis based on energy density spectra[J]. Journal of Earthquake Engineering,8(2):315-334.
    [60]Kowalsky M J.1994. Displacement-based design-a methodology for seismic design applied to RC bridge columns[D]. San Diego:University of California.
    [61]Krawinkler H.1995. New trends in seismic design methodology[C]. Proceedings of 10th European Conference on Earthquake Engineering, Vienna, Austria,1994. Rotterdam:AA Balkena.2:821-830.
    [62]Lam N, Wilson J, Hutchinson G.1996. Building ductility demand:interplate versus intraplate earthquake[J]. Earthquake Engineering and Structural Dynamics,25:965-985.
    [63]Lam N, Wilson J, Hutchinson G.1998. The ductility reduction factor in the seismic design of building[J]. Earthquake Engineering and Structural Dynamics,27:749-769.
    [64]Lee L H, Han S W, OH Y H.1999. Determination of ductility factor considering different hysteretic models[J], Earthquake Engineering and Structural Dynamics,28:957-977.
    [65]Lin Y Y, Miranda E.2010. Estimation of maximum roof displacement demands in regular multistory building[J], Journal of Engineering Mechanics,136(1):1-11.
    [66]Macrae G A, Kawashima K.1997. Post-earthquake residual displacements of bilinear oscillators[J]. Earthquake Engineering and Structural Dynamics,26:701-716.
    [67]Manish R, Amarnath R C, Siddhartha G.2011. Approximate method for estimating hysteretic energy demand on plan asymmetric building[J]. Journal of Earthquake Engineering,15:99-123.
    [68]Manfredi G.2001. Evaluation of seismic energy demand[J]. Earthquake Engineering and Structural Dynamics,30: 485-499.
    [69]Miranda E.1993. Site-dependent strength reduction factors[J]. Journal of Structural Engineering,119(12): 3503-3519.
    [70]Miranda E.2000. Inelastic displacement ratios for structures on firm sites[J]. Journal of Structural Engineering, 126(10):1150-1159.
    [71]Miranda E.2001. Estimation of inelastic deformation demands of SDOF systems[J]. Journal of Structural Engineering,127(9):1005-1012.
    [72]Miranda E, Bertero V V.1994. Evaluation of strength reduction factors for earthquake-resistant designfJ]. Earthquake Spectra,10(2):357-379.
    [73]Miranda E, Ruiz-Garcia J.2002. Evaluation of approximate methods to estimate maximum inelastic displacement demands[J]. Earthquake Engineering and Structural Dynamics,31:539-560.
    [74]Moghaddam H, Mohannadi R K.2001. Ductility reduction factor of MDOF shear-building structures[J]. Journal of Earthquake Engineering,5(3):425-440.
    [75]Nassar A A, Krawinkler H.1991. Seismic demands for SDOF and MDOF systems[R]. Report No.95. Stanford University, Stanford, California:The John A. Blume Earthquake Engineering Center.
    [76]Newmark N M, Hall W J.1973. Seismic design criteria for nuclear reactor facilities[R]. Report No.46, Building Practices for Disaster Mitigation, National Buream of Standards, U.S. Department of Commerce,209-236.
    [77]Newmark N M, Hall W J.1982. Earthquake spectra and design[M]. Berkeley:Earthquake Engineering Research Institute.
    [78]Ordaz M, Perez-Rocha L E.1998. Estimation of strength-reduction factors for elastoplastic systems:a new approach[J]. Earthquake Engineering and Structural Dynamics,27:889-901.
    [79]Riddell R, Garcis J E, Garces E.2002. Inelastic deformation response of SDOF systems subjected to earthquakes [J]. Earthquake Engineering and Structural Dynamics,31(3):515-538.
    [80]Rosenblueth E, Herrera I.1964. On a kind of hysteretic damping[J], Journal of Engineering Mechanics Division, 94:37-48.
    [81]Ruiz-Garcia J, Miranda E.2003. Inelastic displacement ratios for evaluation of existing structuresfJ]. Earthquake Engineering and Structural Dynamics,32:1237-1258.
    [82]Ruiz-Garcia J, Miranda E.2006a. Inelastic displacement ratios for evaluation of structures built on soft sites[J]. Earthquake Engineering and Structural Dynamics,35:679-694.
    [83]Ruiz-Garcia J, Miranda E.2006b. Residual displacement ratios for assessment of existing structures[J]. Earthquake Engineering and Structural Dynamics,35:315-336.
    [84]Ruiz-Garcia J, Miranda E.2007. Probabilistic estimation of maximum inelastic displacement demands for performance based design[J]. Earthquake Engineering and Structural Dynamics,36:1235-1254.
    [85]Proest;ey M J N.1997. Displacement-based seismic assessment of reinforced concrete buildings[J]. Journal of Earthquake Engineering,1(1):157-192.
    [86]Reyes-Salazar, Haldar A, Romero-Lopez M R. Force reduction factors for SDOF and MDOF systems[C]//8th ASCE Soecuakty Conference on Probalilistic Mechanics and Structural Reliability, Notre Dame:2000:58-65.
    [87]Reza S J, Mihailo D T.2008. A note on strength-reduction factors for design of structures near earthaquake faults[J]. Soil Dynamics and Earthquake Engineering,28:212-222.
    [88]Riddell R, Hidalgo P, Cruz E.1989. Response modification factors for eatthquake resistant design of short period structures[S]. Earthquake Spectra,5(3):571-590.
    [89]Santa-Ana F R, Miranda E.2000. Strength reduction factors for multi-degree-of-freedom systems[C]//12WCEE, No.1446, Auckland:IAEE.
    [90]Santa-Ana F R.2004. Estimation of strength reduction factors for elastoplastic structures:modification factors[C]//13WCEE. No.126, Vancouver:IAEE.
    [91]Stefano M D, Rutenberg A.1999. Seismic stability and the force reduction factor of code-design one-storey asymmetric structures[J]. Earthquake Engineering and Structural Dynamics,28:785-803.
    [92]Tholen P. Siddhartha G, Kevin R C.2008. Estimation of hysteretic energy demand using concepts of modal pushover analysis[J]. Earthquake Engineering and Structural Dynamics,37:975-990.
    [93]Tong G S, Zhao Y F.2007. Seismic force modification factors for modified-Clough hysteretic model[JJ. Engineering Structures,29:3053-3070.
    [94]Tong G S, Zhao Y F.2008. Inelastic yielding strength demand coefficient spectra[J]. Soil Dynamics and Earthquakes Engineering,28:1004-1013.
    [95]Tong G S, Zhao Y F.2009. P-Δ effects on seismic force modification factors for modified-Clough and EPP hysteretic models[J]. Advances in Structural Engineering,12(4):579-593.
    [96]Tremblay R, Atkinson G M.2001. Comparative study of the inelastic seismic demand of eastern and western canadian sites[J]. Earthquake Spectra,17(2):333-358.
    [97]Trifunac M D, Brady A G.1975. A study on the duration of strong earthquake ground motion[J]. Bulletin of the Seismological Society of America,65(3):581-626.
    [98]Vidic T, Fajfar P, Fischinger M.1992. A procedure for determining consistent inelastic design spectra:Proc. Workshop on Nonlinear Seismic Analysis of RC structures, Bled, Slovenia, July[C].
    [99]Vidic T, Fajfar P, Fischinger M.1994. Consistent inelastic design spectra:strength and displacement[J]. Earthquake Engineering and Structural Dynamics,23(5):507-521.
    [100]Zhai C H, Xie L L.2006. The modification of strength reduction factors for MDOF effect[J]. Advances in Structural Engineering,9(4):477-490.
    [101]Zhao Y F, Tong G S.2009. An investigation of characteristic periods of seismic ground motion[J]. Journal of Earthquake Engineering,13:540-565.
    [102]Zhao Y F, Tong G S.2010. Inelastic displacement amplification factors for ductile structures with constant strength reduction factor[J]. Advances in Structural Engineering,31(1):15-28.
    [1]Chou C C, Uang C M.2000. Eatablishing absorbed energy spectra-an attenuation approach[J]. Earthquake Engineering and Structural Dynamics,29:1441-1455.
    [2]Kevin K F W. Inelastic seismic response analysis based on energy density spectra[J]. Journal of Earthquake Engineering,8(2):315-335.
    [3]Manfredi G.2001. Evaluation of seismic energy demand[J]. Earthquake Engineering and Structural Dynamics,30: 485-499.
    [4]Riddell R, Garcia J E.2001. Hysteretic energy spectrum and damage control[J]. Earthquake Engineering and Structural Dynamics,30:1791-1816.
    [5]Prasanth T, Ghosh S, Collins K R.2008. Estimation and hysteretic energy demand using concepts of modal pushover analysis [J]. Earthquake Engineering and Structural Dynamics,37:978-990.
    [6]程光煜,叶列平.2008.弹塑性SDOF系统的地震输入能量谱[J].工程力学,25(2):28-39.
    [7]胡冗冗,王亚勇.2000.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报,21(1):71-76.
    [8]黄金桥.2005.钢结构弹塑性动力学及抗震设计理论研究[D].杭州:浙江大学建筑工程学院.
    [9]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析[J].工程力学,20(3):31-37.
    [10]童根树,陈绍蕃.1992.弹塑性体的动力安定性(Ⅰ)—连续体的动力安定定理[J].西安冶金建筑学院学报,24(2):111-116.
    [11]童根树,陈绍蕃.1992.弹塑性体的动力安定性(Ⅱ)—杆系结构的动力安定定理及其应用[J].西安冶金建筑学院学报,24(2):117-122.
    [12]童根树,黄金桥.2005.不同滞回模型下单自由度系统的位移和能量反应[J].浙江大学学报(工学报),39(1):123-130.
    [13]王常峰,朱东生,田琪.2003.基于瞬时能量的双线性系统最大位移研究[J].振动工程学报,16(1):105-108.
    [14]叶列平.2001.基于能量准则的SDOF阻尼减震结构最大地震位移[J].清华大学学报(自然科学版),41(12):72-74.
    [1]Bernal D.1987. Amplification factors for inelastic dynamic P-Δ effects in earthquake[J]. Earthquake Engineering and Structural Dynamics,15:635-551.
    [2]Borzi B, Elnashai A S.2000. Refined force reduction factors for seismic design[J], Engineering Structures,22: 1244-1260.
    [3]Building Seismic Safety Council.2003. FEMA450:NEHRP recommended provisions for seismic regulations for new buildings and other structures Partl:Provisions[S]. Washing D. C,:Federal Emergency Management Agency.
    [4]Chopra A K, Chintanapakdee C.2004. Inelastic deformation ratios for design and evaluation of structures: single-degree-of-freedom bilinear systems[J]. Journal of Structural Engineering,130(9):1309-1319.
    [5]European Committee for Standardization.2003. Eurocode 8:Design of structures for earthquake resistance[S]. Brussels:CEN.
    [6]Han S W, Kwon O S, Lee L H.2001. Investigationg of dynamics P-Δ effect on ductility factor[J], Structural Engineering and Mechanics,12(3):249-266.
    [7]International Code Council.1997. Uniform Building Code 1997[S]. California:International Conference of Building Officials.
    [8]Karakostas C Z, Athanassiadou C J, Kappos A J, Lekidis V A.2007. Site-dependent design spectra and strength modification factors, based on records from Greece[J]. Soil Dynamics and Earthquake Engineering,27: 1012-1027.
    [9]Li H L, Sang W H.1999. Determination of ductility factor considering different hysteretic models[J]. Earthquake Engineering and Sturctural Dynamics,28:957-977.
    [10]Miranda E.1993. Site-Dependent strength-reduction factors[J]. Journal of Structural Engineering,119: 3503-3519.
    [11]Newmark N M, Hall W J.1973. Seismic Design Criteria for Nuclear Reactor Facilities, Report No.46[R]. Building Practices for Disaster Mitigation, National Bureau of Standards, U. S. Department of Commerce, 209-236.
    [12]Reza S J, Mihailo D T.2008. A note on strength-reduction factors for design of structures near earthaquake faults[J]. Soil Dynamics and Earthquake Engineering,28:212-222.
    [13]Riddell R, Hidalgo P, and Cruz E.1989. Response Modification Factors for Earthquake Resistant Design of Short Period Structures[J]. Earthquake Spectra,5(3):571-590.
    [14]Rosenbluth E.1965. Slenderness effects in building[J]. Journal of Structures Division,91(1):229-252.
    [15]Tong G S, Zhao Y F.2007. Seismic Force Modification Factors for Modified-Clough Hysteretic Models[J]. Engineering Structures,29(11):3053-3070.
    [16]Tong G S, Zhao Y F.2009. P-Δ effects on seismic force modification factors for modified-clough and·EPP hysteretic models[J]. Advances in Structural Engineering,12(4):579-593.
    [17]Vidic T, Fajfar P, Fischinger M.1992. A procedure for determining consistent inelastic design spectra:Proc. Workshop on Nonlinear Seismic Analysis of RC structures. Bled, Slovenia, July[C].
    [18]赵永峰,童根树.2008.双折线弹塑性滞回模型的结构影响系数[J].工程力学,25(1):61-70.
    [19]中华人民共和国建设部.2010.GB50011-2010:建筑抗震设计规范[S].北京:中国建筑工业出版社.
    [20]中国工程建设标准化协会.2004.CECS160-2004:建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社.
    [1]Amador T G, Oscar Z C, Jorge R G.2009. Displacement-based seismic assessment of low-height confined masonry buildings[J]. Earthquake Spectra,25(2):439-464.
    [2]Aschheim M.2002. Seismic design based on the Yield Displacement[J]. Earthquake Spectra,18(4):581-600.
    [3]Bozorgnla Y, Hachem M M, Campbell K W.2010. Deterministic and probabilistic predictions of yield strength and inelastic displacement spectra[J]. Earthquake Spectra,26(1):25-40.
    [4]Chenouda M, Ayoub A.2008. Inelastic displacement ratios of degrading systems[J]. Journal of Structural Engineering,134(6):1030-1045.
    [5]Chopra A K, Chintanapakdee C.2004. Inelastic deformation ratios for design and evaluation of structures: Single-Degree-of-freedom bilinear systems[J]. Journal of Structural Engineering,130(9):1309-1319.
    [6]Fajfar P.1999. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,28:979-993.
    [7]Freeman S A.1978. Prediction of response of concrete buildings to severe earthquake motion[C]. Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI Special Publication 55, American Concrete Institute, Detroit, MI,589-605.
    [8]Jorge R G, Miranda E.2006. Inelastic displacement ratios for evaluation of structures built on soft soil sites[J]. Earthquake Engineering and Structural Dynamics,35(6):679-694.
    [9]Jorge R G, Miranda E.2007. Probabilistic estimation of maximum inelastic displacement demands for performance-based design[J]. Earthquake Engineering and Structural Dynamics,36(9):1235-1254.
    [10]Krawinkler H.1995. New trends in seismic design methodology. In:Proceedings of 10th European Conference on Earthquake Engineering, Vienna, Austria[C]. Rotterdam:AA Balkena.2:821-830.
    [11]Lin Y Y, Miranda E.2010. Estimation of maximum roof displacement demands in regular multistory building[J]. Journal of Engineering Mechanics,136(1):1-11.
    [12]Miranda E.1993. Site-Dependent strength-reduction factors[J]. Journal of Structural Engineering,119: 3503-3519.
    [13]Miranda E.2001. Estimation of inelastic deformation demands of SDOF systems[J]. Journal of Structural Engineering,127(9):1005-1012.
    [14]Mollaioli F, Bruno S.2008. Influence of site effects on inelastic displacement ratios for SDOF and MDOF systems[J]. Computers and Mathematics with Applications,55(2):184-207.
    [15]Riddell R, Garcis J E, Garces E.2002. Inelastic deformation response of SDOF systems subjected to earthquakes [J]. Earthquake Engineering and Structural Dynamics,31(3):515-538.
    [16]Rupakhety R, Sigbjornsson R.2009. Ground-Motion Prediction Equations (GMPEs) for inelastic displacement and ductility demands of constant-strength SDOF systems[J], Bulletin of Earthquake Engineering,7(3):661-679.
    [17]Tong G S, Zhao Y F.2007. Seismic force modification factors for modified-Clough hysteretic models[J]. Engineering Structures,29(11):3053-3070.
    [18]Tothong P, Cornell C A.2006. An empirical ground-motion attenuation relation for inelastic spectral displacement[J]. Bulletin of the Seismological Society of America,96(6):2146-2164.
    [19]赵永峰,童根树.2008.等延性屈服点谱YPS[J].土木工程学报,41(9):48-53.
    [20]中国工程建设标准化协会.2004.CECS 160-2004:建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社.
    [21]中华人民共和国建设部.2010.GB50011-2010:建筑抗震设计规范[S].北京:中国建筑工业出版社.
    [1]Cai J, Zhou J, Fang X D.2006. Seismic ductility reduction factors for Multi-Degree-of-Freedom systemsfJ]. Advances in Structural Engineering,9(5):591-601.
    [2]Chopra A K.2001. Dynamics of structures:theory and application to earthquake engineering[M].2nd ed. New Jersey:Prentice Hall.
    [3]Moghaddam H, Mohannadi R K.2001. Ductility reduction factor of MDOF shear-building structures[J]. Journal of Earthquake Engineering,5(3):425-440.
    [4]Kang C K, Choi B J.2010. Empirical evaluation of ductility factors for the special steel moment-resisting frames in view of soil condition[J]. The Strcutural Design of Tall and Special Buildings,19:551-572.
    [5]Santa-Ana F R, Miranda E.2000. Strength reduction factors for multi-degree-of-freedom systems[C]//12WCEE, No.1446, Auckland:IAEE.
    [6]Santa-Ana F R.2004. Estimation of strength reduction factors for elastoplastic structures:modification factors[C]//13WCEE, No.126, Vancouver:IAEE.
    [7]Zhai C H, Xie L L.2006. The modification of strength reduction factors for MDOF effect[J]. Advances in Structural Engineering,9(4):477-490.
    [1]蔡健,许雪峰.2009.钢筋混凝土L形截面柱的曲率延性[J].华南理工大学学报(自然科学版),37(6):136-141.
    [2]郭健,何益斌,肖阿林.2008.实腹式型钢混凝土柱延性系数分析[J].中南大学学报(自然科学版),39(1):196-201.
    [3]韩林海,陶忠,闫维波.2000.圆钢管混凝土构件弯矩-曲率滞回特性研究[J].地震工程与工程振动,20(3):50-59.
    [4]李国强,沈祖炎.1998.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学技术出版社.
    [5]李惠,王震宇,吴波.2000.钢管高强混凝土叠合柱弯矩-曲率关系的合成模型[J].计算力学学报,17(2):184-191.
    [6]刘明学,钱嫁茹.2007.FRP-混凝土-钢双臂空心管的截面弯矩-曲率全曲线[J].清华大学学报(自然科学版),47(12):2101-2110.
    [7]刘界鹏,张素梅.2003.方钢管混凝土压弯构件截面弯矩-曲率滞回性能研究[J].哈尔滨工业大学学报,35:151-154.
    [8]马宏旺,赵国藩.2001.钢筋混凝土矩形柱截面曲率延性系数概率分析[J].大连理工大学学报,41(4):485-490.
    [9]吴波,王维俊,王帆.2005.碳纤维布加固钢筋混凝土柱的弯矩-曲率关系分析[J].华南理工大学学报(自然科学版):33(1):10-15.
    [10]沈聚敏.2000.抗震工程学[M].北京:中国建筑工业出版社.
    [11]张新培,陈伟,张翼.2006.不等肢异性柱截面曲率延性分析[J].四川大学学报(工程科学版),28(4):44-48.
    [12]杨红,白绍良.2003.基于变轴力和定轴力试验对比的钢筋混凝土柱恢复力滞回模型特性研究.工程力学,20(6):58-64
    [13]赵艳静,李忠献,陈云霞.2004.四级抗震等级时钢筋混凝土异性柱轴压比限值的研究[J].建筑结构学报,25(3):58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700