钢结构弹塑性动力学及抗震设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先通过对冲击和简谐荷载作用下的不同滞回模型(理想弹塑性(EPP)、弹塑性-线性强化(ELH)、滑移剪切(SSP)和理想双线性弹性模型(BIL))的SDOF(single degree of freedom)振子进行了理论和数值的分析,以考察塑性耗能、阻尼耗能和延性对于抗震和减振的意义。研究表明:在冲击荷载下,结构所能承受的荷载等于结构的最大静力承载力;并给出了结构的最大位移、振幅等计算式。在简谐荷载作用下,当荷载频率低于结构自振频率时,总体上振幅随后期刚度增大而减小;当荷载频率远大于结构自振频率后,结构的振幅几乎保持不变。结构的塑性耗能比阻尼耗能更有利于结构振动位移的控制,尤其在共振条件下更为显著。通过有阻尼和无阻尼单自由度体系在上述荷载下的弹性及弹塑性动力分析,发现动力荷载在整个动力响应过程中所作的功决定于体系的耗能能力。在无阻尼无限弹性体系中简谐动力荷载并不做功。
     各国均用弹性反应谱除以地震力调整系数R来决定设计用地震力。本文借助单自由度非线性动力时程分析程序,分析了EPP、ELH、SSP和BIL四种滞回模型在各类场地条件,不同延性μ,阻尼比ξ下的地震力调整系数R随自振周期T的变化规律。以地震波特征周期T_g在R谱上对应的点为基准点对计算结果标准化,较好地消除了不同地震波对R谱曲线形状的影响。通过统计平均和回归分析,建立了不同场地条件下R的近似公式,可供进一步完善钢结构的抗震设计参考。本文区别于其它同类研究的一个重要特点是将延性和耗能能力作为两个独立的分量,分别考察两者对系数R的影响。研究表明:地震力调整系数R主要取决于结构的延性μ,μ越大R越大;而场地条件、耗能能力、阻尼比、后期刚度对R的影响是第二位的。耗能能力仅对中短周期结构(0.3≤T/T_g<5.0)的R有明显影响。R随阻尼比ξ的增大而减小,对EPP和ELH模型ξ0.05时的R比ξ0.02时要小10~15%,对SSP和BIL模型,ξ的影响相似。对EPP和ELH模型,后期刚度越大R越大;但当后期刚度超过初始弹性刚度的10%之后,后期刚度的变化对R的影响不大。
     本文还对新型抗震隅撑支撑框架进行了深入研究。新型抗震隅撑支撑框架(knee—braced frame, KBF)是在梁柱连接的附近设一起耗能作用的隅撑,主支撑连接在此隅撑上构成的抗震结构体系。与EBF抗震结构体系对比,具有大震时框架结构不易损坏,维修方便的优点。本文采用有限元分析方法,考察了不同的隅撑形式、不同高宽比下KBF结构的性能。在分析总结的基础上,系统地提出了KBF框架的抗震设计要求和有关的计算公式。对一个三层框架结构,分别采用X-CBF、V-CBF、EBF和KBF进行了抗震设计。对比表明,虽然EBF结构的提出,本意是克服中心支撑结构体系抗侧刚度大,地震力大的缺点,但是设计结果表明,EBF、CBF、KBF的抗侧刚度相当。这表明,对EBF和KBF的抗震性能的认识应该从它们的延性和耗能能力强、从而为结构提供一个“保险丝”的
Importance of ductility, damping and the energy-dissipating capacity through plasticity in earthquake-resistance and vibration absorption is explored in this thesis through analysis of SDOF with different hysteretic models under impact and harmonic loads. Ideal elastic-plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped (SSP) and bilinear-elastic (BIL) are studied. It is found that the maximum impact load is the static load the structure can support; and formula of the maximum displacement under impact load etc. was presented. Under harmonic loads, when the load frequency is less than the fundament frequency of the SDOF (single degree of freedom) systems, the amplitude is reduced with the increase of the post-yield stiffness. While the frequency of loads exceeded the frequency of structures greatly, the structure amplitude is almost independent of the post-yield stiffness. The energy dissipation capability of plasticity can reduce structural displacement response more than damping, especially in case of resonance. From the study on SDOF (with damping and without damping) elastic and plastic dynamical response under impact and harmonic loads, it can be found that the work of dynamic loads done during the dynamical response of a SDOF system is dependent on the energy-dissipating capacity of system; and no work is done by the harmonic loads in the infinite elastic system without damping.The seismic force modification factor R was studied based on time-history earthquake analysis of SDOF system, the hysteretic models are EPP, ELH, SSP and BIL. The ductility and the damping ratio are taken to be different values in the analysis. The characteristic period of earthquake records is used to normalize the R-spectra to reduce the effects of different earthquake records on R spectra shape. By means of statistical regression analysis the relation of the seismic force modification factor R with the natural period of system and ductility was established for each site and soil condition. This will help to improve the seismic design of steel structures. In this thesis, an important aspect different from other researches is that the ductility and the energy-dissipating capacity are treated as independent factors affecting R. spectra. From the study, it is found that the most important factor determining R is the ductility, R increases with ductility more than linearly. The energy- dissipating capacity, damping, hysteresis model and the post-yield stiffness are the less important factors. The energy dissipating capacity is important only for structures with in short and moderate period (0.3 ≤T IT_g < 5.0). For EPP and ELH models, R decreases with increasing ofdamping, R for 0.05 damping is 10% to 15% smaller than for 0.02 damping. For the shear-slipped model and the bilinear-elastic model, the effect of the damping is similar. For EPP and ELH models, greater post-yield stiffness leads to greater R, but the influence of post-yield stiffness is obvious only when the post yield stiffness is less than 10% of the initial stiffness. Post-yield stiffness has a greater influence when the ductility is large.A new earthquake-resistant system (knee-braced frame, KBF) was investigated, in which an energy
引文
[1] 郭子雄、吕西林,国际上主要抗震规范的设计反应谱比较[J],工程力学增刊,1999,PP.538-544。
    [2] 日本建筑物的构造规定,1997,PP.117-217。
    [3] Uniform Building Code 1997. International conference of building officials, 1997.
    [4] 美国IBC2000。
    [5] 建筑抗震设计规范GB50011-2001[M],中国建筑工业出版社,2001。
    [6] 建筑工程抗震性态设计通则(试用)CECS160:2004,中国计划出版社,2004。
    [7] 白鸿柏、张培林、郑坚等,滞迟振动系统及其工程应用[M],科学出版社,2002,pp.50-116;
    [8] A.H.奈弗、D.Z穆克等,非线性振动[M],高等教育出版社,1980;
    [9] S.铁摩辛柯、D.H.杨、W.小韦孚,工程中的振动问题[M],人民铁道出版社,1978;
    [10] 约翰 M.比格斯,结构动力学[M],人民交通出版社,1982
    [11] G.B.沃伯顿,结构的动力性态[M],地震出版社,1983;
    [12] 杨茀康,结构动力学[M],人民交通出版社,1987;
    [13] 俞载道,结构动力学基础[M],同济大学出版社,1987;
    [14] 马雷奥.派兹,微机辅助工程结构动力学[M],浙江大学出版社,1989;
    [15] M.帕兹,结构动力学——理论与计算[M],地震出版社,1993;
    [16] 杨桂通,塑性动力学[M],高等教育出版社,2000;
    [17] Demeter CtFertis. Dynamics and vibration of structures[M], A wiley-interscience publication, 1973.
    [18] T.F.Zahrah,W.J.Halt. Earthquake energy absorption in SDOF structure[J], journal of structural engineering ASCE, 1984, Vol.110, No.8, PP.1757-1772.
    [19] 周云、徐彤、周福霖,抗震与减震结构的能量分析方法研究与应用[J],地震工程与工程抗震,1999,Vol.19,No.4,PP.133-139;
    [20] Housner.G. W.. Limit design of structures to resist earthquakes [R], Proceedings of the First World Conference on Earthquake engineering, Berkeley, CA, 1956, pp5:1-11.
    [21] Paul C.Jennings. Periodic response of a general yielding structure[J], Journal of the engineering mechanics division proceedings of ASCE, 1964, Vol.90, 131-163.
    [22] Chang-Kuei Sun. Gravity effect on single-degree inelastic system[J], Journal of the engineering mechanics division proceedings of ASCE, 1973, Vol.99, 183-200.
    [23] Uang.C.M, Bertero. V.V.. Use of energy as a design criterion in earthquake-resistant design, Report UCB/EERC-88/18, Earthquake engineering research center, University of California, Berkeley, CA, 1988.
    [24] Michel Bruneau, Niandi Wang. Some aspects of energy methods for the inelastic seismic response of ductile SDOF structures[J], engineering structures, 1996, Vol. 18, No. 1, PP.: 1-12.
    [25] 钱稼茹、罗文斌,建筑结构基于位移的抗震设计[J],建筑结构,2001,31(4),PP.3-6。
    [26] 叶列平、伍文杰,基于能量准则的SDOF阻尼减震结构的最大地震位移[J],清华大学学报(自然科学版),2001,41(12),PP.72-74。
    [27] 经杰、叶列平、钱稼茹,基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析[J],工程力学,2003,20(3),PP.31-37。
    [28] 胡冗冗、王亚勇,地震动瞬时能量与结构最大位移反应关系研究[J],建筑结构学报,2000,vol.21,No.1,PP.71-76;
    [29]王亚勇,关于设计反应谱、时程法和能量方法的探讨[J],建筑结构学报,2000,Vol.21,No.1,PP.21-28;
    [30] 王常峰、朱东生、田琪,基于瞬时能量的双线性系统最大位移研究[J],振动工程学报,2003,Vol16,No.1,105-108;
    [31] 肖明葵、白绍良、赖明等,基于滞回耗能的结构抗震最大位移反应[J],重庆大学学报,2003,26(3),PP.133-137。
    [32] 刘伯权、白绍良、赖明,抗震结构的破坏准则评述及探讨[J],重庆建筑工程学院学报,1993,15(4),PP.1-21。
    [33] 黄宗明、孙勇、白绍良,影响结构地震反应破坏耗能比的因素分析[J],工程力学增刊,1996,PP.585-589。
    [34] 童根树、陈绍蕃,弹塑性体的动力安定性(Ⅰ)[J],西安冶金建筑学院学报,1992,vol.24,No.2,PP.111-115;
    [35] 童根树、陈绍蕃,弹塑性体的动力安定性(Ⅱ)[J],西安冶金建筑学院学报,1992,vol.24,No.2,PP.117-122;
    [36] 童根树,连续体和结构的动力安定性及钢结构在反复动力衙载作用下的塑性设计,博士论文,西安冶金建筑学院,1984。
    [37] Michael R.Horne. Plastic theory of structures[M], The M.I.T.Press, 1971.
    [38] H.Krawinkler, R.Medina, B.Alavi. Seismic drift and ductility demands and their dependence on ground motions[J], Engineering structures, Vol.25, 2003, PP.637-653.
    [39] stephen A.Mahin, Vitelmo V.Bertero. An evaluation of inelastic seismic design spectra[J], Journal of the structural division, ASCE, Vol. 107,No.9, 1981, PP. 1777-1795.
    [40] Peter Fajfar, Equivalent ductility factors, taking into account low-cycle fatigue[J], Earthquake engineering and structural dynamics, Vol.21,1992, PP.837-848.
    [41] Chin-Hsiung Loh, Chau-Shen Hwang, Wen-Yu Jean. Seismic demand based on damage control model—considering basin effect and source effect[J], Soil dynamics and earthquake engineering, Vol. 17,1998,PP.335-345.
    [42] F.E Elghadamsi, B.Mohraz. Inelastic earthquake spectra[J], Earthquake engineering and structural dynamics, Vol. 15,1987,PP.91-104.
    [43] S.P.Lai, J.M.Biggs. Inelastic response spectra for aseismic building design[J], Journal of the structural division, ASCE, Vol.106, 1980, PP.1295-1310.
    [44] B.mohraz, F.E.Elghadamsi. 1973 NRC design spectra[J], J.eng.mech.div.ASCE, Vol. 104,1978, PP.485-491.
    [45] A.J.Kappos. Evaluation of behaviour factors on the basis of ductility and overstrength studies[J], Engineering structures, Vol.21,1999, PP.823-835.
    [46] A.S.Veletos, N.M.Newmark. Effect of inelastic behavior of the response of simple systems to earthquake motion[R], 2WCEE, 1960.
    [47] 建筑抗震设计规范TJ11-78[M],中国计划出版社,1979。
    [48] 高层建筑结构设计[M],科学出版社,1982,PP.62。
    [49] 建筑抗震设计规范GB11-89[M],中国建筑工业出版社,1989。
    [50] 高层建筑钢结构技术规程JGJ99-98,中国建筑工业出版社,1998。
    [51] 徐植信、余安东,关于地震影响系数的讨论[J],工程力学增刊,1998,PP.100-107。
    [52] Newmark NM, Hall WJ. Earthquake spectra and design, EERI Monograph Series, Oakland: EERI, 1982.
    [53] Krawinkler H, Nassar AA. Seismic design based on ductility and cumulative damage demand and capacities. In: Fajfar, Krawinkle, editors. Nonlinear seismic analysis and design of reinforced concrete buildings. New York: Elsevier Applied science, 1992.
    [54] Eduardo Miranda, Site-Dependent strength-reduction factors[J], Journal of structural engineering, Vol. 119,3503-3519, 1993.
    [55] Eduardo Miranda, Jorge Ruiz-Garcia. Influence of stiffness degradation on strength demands of structures built on soft soil sites[J], Engineering structures, Vol.24, 2002, PP. 1271-1281.
    [56] Tomaz vidic, Peter Fajfar. Consistent inelastic design spectra: strength and displacement[J], Earthquake engineering and structural dynamics, Vol.23,507-521, 1994.
    [57] Peter Fajfar. Capacity spectrum method based on inelastic demand spectra[J], Earthquake engineering and structural dynamics, Vol.28, 979-993, 1999.
    [58] Li Hyung Lee, Sang Whan Han. Determination of ductility factor considering different hysteretic models[J], Earthquake engineering and structural dynamics, Vol.28, 957-977, 1999.
    [59] B.Borzi, A.S.Elnashai. Refined force reduction factors for seismic design[J], Engineering structures, Vol.22,1244-1260, 2000.
    [60] 卓卫东、范立础,结构抗震设计中的地震力调整系数研究[J],地震工程于工程振动,vol.21,No.1,84-88,2001。
    [61] 翟长海、公茂盛、张茂花等,工程结构等延性地震抗力谱研究[J],地震工程与工程振动,2004,24(1):PP.22-29。
    [62] M.N.Nader, A.Astaneh. dynamic behavior of flexible, semirigid and rigid steel frames[J], J.Construct. Steel Research, 1991,18, PP.179-192.
    [63] 陈富生、邱国桦、范重,高层建筑钢结构设计[M],中国建筑工业出版社,2000,PP.306-328。
    [64] Egor P.Popov, Michael D.Engelhardt, seismic eccentrically braced frames[J], J. Constrct. Steel research, 1988, 10 PP. 321-354.
    [65] 王万祯,钢框架梁柱栓焊刚性连接的滞回性能、破坏机理[博士论文],西安建筑科技大学,2003。
    [66] K. D. Hjelmstad, E. P. PoPov. Characteristics of eccentrically braced frames[J], Journal of structural engineering, ASCE, 1983, 109(10), PP.2387-2403.
    [67] D.Jurukovski, M.Petkovski, Z.Rakicevic. Energy absorbing elements in regular and composite steel frame structures[J], Engineering structures, 1995, 17(5), PP.319-333.
    [68] 李志明,美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(4)[J],钢结构,2003,Vol.18,No.4,PP.58-61。
    [69] D.A.Foutch. Seismic behaviour of eccentrically braced steel building[J], ASCE J.Struct.Engng 1986, 115 (8), 1857-1876.
    [70] A.S.Whittaker, C.M.Uang, V.V.Bertero. Seismic testing of eccentrically braced dual steel frames[J], Earthquake spectra, 1989, 5(2), 429.
    [71] T.Balendra, K.Y.Lam, C.Y.Liaw, S.L.Lee. Behavior of eccentrically braced frame by pseudo-dynamic test[J], ASCE J.Struct.Engng 1987, 113, PP.673-688.
    [72] James O.Malley, Egor P.Popov. Shear links eccentrically braced frames[J], ASCE J. Struct. Engng., 1984, 110(9), PP.2275-2295.
    [73] M.D.Engelhardt, E.P.Popov. Experimental performance of long links in eccentrically braced frames[J], Journal of structural engineering ASCE, 1992, 118(11), PP.3067-3088.
    [74] A.Ghobarah, T.Ramadan. Bolted link-column joints in eccentrically braced frames[J], Engng struct. 1994, 16(1), PP.33-41.
    [75] David Key, earthquake design practice for buildings[M], Thomas Telford, London, 1988,PP, 137-155.
    [76] Daniel N.Manheim, Egor P.Popov, Plastic shear hinges in steel frames[J], Journal of structural engineering, 1983, 1099(10): 2404-2419.
    [77] Charles W. Roeder, Egor P. Popov, eccentrically braced steel frames for earthquakes[J], journal of the structural division, ASCE, 1978, 104(3), PP.391-411.
    [78] 申林、蔡益燕、郁银泉,偏心支撑钢框架设计方法[J],建筑结构,2002,Vol.32,No.2,PP.13-16。
    [79] K.Kasai, E.P.Popov. General behavior of WF steel shear link beams, ASCE J. Struct. Engng., 1986, 112(2), PP.362-382.
    [80] 钱稼茹、陈茂盛、张天申,偏心支撑钢框架在水平力作用下的试验研究和极限分析[J],建筑结构,1993,4,PP.3-9。
    [81] 李志明,美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(3)[J],钢结构,2003,Vol.18,No.4,PP.61-63。
    [82] 李志明,美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(2)[J],钢结构,2003,Vol.18,No.3,PP.50-52。
    [83] 李志明,美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(1)[J],钢结构,2003,Vol.18,No.2,PP.62-64。
    [84] J. Dario, Aristizabal-Ochoa. Disposable knee bracing: Improvement in seismic design of steel frames[J], Journal of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700