配箍率对钢筋混凝土梁能量耗散能力的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强震作用下,构件的损伤程度对整体结构的功能有关键影响,而在抗震规范“强柱弱梁,强剪弱弯,强节点”思想的指导下,钢筋混凝土结构中的梁首当其冲将要承担地震作用,在地震作用下,如果梁能大量消耗地震能量,保全柱的功能,对于实现“大震不倒”这一水准将有着非常重要的作用。抗震设计中要求对梁端箍筋加密,通过加强构造措施来提高梁端的塑性耗能能力,但是,配箍率对钢筋混凝土梁滞回耗能能力的量化关系尚不明确,本文通过钢筋混凝土梁的滞回试验,探寻配箍率对钢筋混凝土梁滞回耗能能力的量化关系。
     本论文受国家自然科学基金(50908022)资助,按照混凝土结构设计规范《GB50010-2010》和建筑抗震设计规范《GB50011-2010》设计了9根钢筋混凝土梁SJ-1~SJ-9,进行等幅加载的钢筋混凝土梁滞回试验研究,描述试件的破坏过程与形态,考察试件的受力特性及破坏特征,以延性系数和配箍率为考虑参数,分别计算出SJ-1~SJ-9各试件的每次滞回的耗能,进行试件的全滞回环耗能分析、峰值力-累积耗能分析、割线加载刚度-累积耗能分析、初始切线加载刚度-累积耗能分析,发现钢筋混凝土梁在等幅滞回作用下,延性系数越大,试件在滞回过程中滞回耗能越大,耗能能力的衰减度越快,残余耗能能力越低。配箍率对钢筋混凝土梁在滞回作用下耗能能力随延性系数分阶段影响。在小延性(μ≤2)作用下,配箍率越大,钢筋混凝土梁在滞回过程后的残余耗能能力越大;在中等延性和大延性(μ>2)作用下,配箍率对钢筋混凝土梁的滞回耗能能力和残余耗能能力的影响不明显。得到了配箍率和延性系数主导的钢筋混凝土梁的滞回耗能与滞回环数之间的量化关系。
In strong earthquake, the damage of the components has a big inference to theoverall structure. Under the guidance of the seismic code that strong column and weakbeam strong shear weak bending, strong nodes ,thinking reinforced concrete structurein the beam, the first will have to bearearthquake, earthquake effect, if the beam canbe completely consumed seismic energy, the preservation of the column function, wecan achieve this level of earthquake does not fall.
     This article in accordance with the norms "of the People's Republic ofGB50010-2002" and "GB50011-2010" designed nine concrete beams SJ-1 SJ-9, andthen on the concrete beam with hysteresis test, describing the destruction of thespecimen and form investigated by characteristics of the specimen and failurecharacteristics, the ductility factor and the stirrup rate considering the parameterswere calculated. SJ-1 to the SJ-9 specimen of each hysteretic energy, comparativeanalysis of the SJ-1 ~ SJ-9 test results of nine specimens found in the hysteresisamplitude displacement effect, the greater the ductility coefficient of reinforcedconcrete beams, specimen hysteresis hysteretic energy the greater the attenuation ofthe energy dissipation capacity the faster the lower the residual energy dissipationcapacity. Stirrup ratio on the energy dissipation capacity of reinforced concrete beamsin the role of hysteresis with the phased impact of ductility factor. Small ductility (μ≤2) role, the greater the stirrup ratio, the greater the residual energy dissipationcapacity of reinforced concrete beams in the hysteresis; stirrup ratio in the mediumductility and ductility (μ> 2) under the action of no significant effect on the reinforcedconcrete beam hysteretic energy capacity and residual energy dissipation capacity.
     Analog amplitude loading 20mm, 40mm, 60mm, three kinds of displacementamplitude, the hysteresis loop energy-consuming analysis of test results, halfhysteresis loop energy consumption analysis, the peak force the cumulative energyconsumption analysis, the secant stiffness - cumulative energy analysis, the tangentstiffness cumulative energy consumption analysis, elastic-plastic strain analysis,looking for the expression of a luffing role of the energy consumption of reinforcedconcrete beams.
引文
[1]谢礼立.基于性态的抗震设防和设计地震动[M].北京:科学出版社,2009.19-26
    [2]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社,2007.19-20
    [3]王亚勇.我国2000年抗震设计模式规范展望[C].第五届全国地震工程会议论文集(I),1998.56-58
    [4] Priestley MJN.Performance based seismic design [J].Bulletin of the NewZealandSociety for Earthquake Engineering ,2000,33 (3):325-346
    [5] SEAOC Vison 2000 Committee. Performance-base seimic engineering ofbuildings[C]. Report Preoared by Structuarl Engineers Associstion California,Sacramento, California USA ,1995,345-346
    [6] ATC-40.Seismic evaluation and retrofit of concrete buildings.Appiled TechnologyCouncil.Red Wood City,California,1996,67-68
    [7] FEMA 274.NEHRP guidelines for the rehabilitation of buildings R. FederalEmergency Management Agency, Washington, D.C. September , 1996,89-90
    [8] Smith K G.Innovation in earthquake resistant concrete structure designphilosophies:A century of progress since Hennebique’s patenti[J]. EngineeringStructures,2001,23:72-81
    [9]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30 (6):3-9
    [10]谢礼立.抗震性态设计和基于性态的抗震设防[J].国家标准,1999:9-10
    [11]周云,安宇,梁兴文.基于性态的抗震设计理论和方法的研究与发展(1) [J].世界地震工程,2001,17(2):2-4
    [12]邹昀,吕西林,朱杰江.基于性能的抗震设计方法在某复杂超高层结构中的应用研究[J].工程力学,25(9):93-94
    [13]张新培。基于性能的抗震结构设计理论的若干进展(1) [J].四川建筑科学研究,2001,27(1):34-35
    [14]潘志宏,李爱群.建筑工程基于性态的抗震设计方法——应用《建筑工程抗震性态设计通则》进行工程设计初探[J].工程建设技术标准动态,2008(7):104-105
    [15]吕大刚.基于最优设防荷载和性能的抗灾结构智能化设计研究[D].哈尔滨建筑大学博士学位论文.哈尔滨:哈尔滨建筑大学图书馆,1999,9-11
    [16]李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程和工程震动,2007,27(2):27-28
    [17]吕西林,金国芳,吴晓菡.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,2002,23-24
    [18]李宏男,王强,李兵.钢筋混凝土框架柱多维恢复力特性的试验研究[J].东南大学学报,2002,32(5):732-733
    [19]高菲,刘文锋,李春晖.钢筋混凝土压弯构件恢复力模型的研究[J].青岛理工大学学报,2008,29(2):40-41
    [20]阎石,肖潇,孟庆国.高强钢筋高强混凝土柱的恢复力模型[J].沈阳建筑大学学报,2005,21(2):82-82
    [21] Kunnath S K,Reinhorn A M,Park Y J.Analytical Modeling of Inelastic SeismicResponse of R/C structures [J].J.of structural Engineering,ASCE,1990,116(4):123-128
    [22]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.7-24
    [23] Clough R W and Johnston S B.Effect of stiffness degradation on earthquakeductility requirements [C].Proceedings of the 2nd Japan Earthquak EngineeringSymposium , Tokyo , 1966 ,227-232
    [24] Takeda T Sozen M A and Nielson N N.Reinforced concrete response to simulatedearthquakes[J].Journal of Structural Division.ASCE. 1970 (ST12):2557-2572
    [25] Altug Erberik,Haluk Sucuoglu. Seismic energy dissipation in deterioratingsystems through low-cycle fatigue. Earthquake Engineering and StructuralDynamics [J]. 2004. 33:49-67
    [26] Sucuoglu. H, Erberik MA. Energy-based hysteresis and damage models fordeteriorating systems [J]. Earthquake Engineering and Structural Dynamics 2004;33:69-88.
    [27]黄志华,吕西林,周颖.钢筋混凝土连梁的变形能力及基于性能的抗震设计[J].结构工程师,2009,25(5):17-18
    [28] Park Y J, Ang A H-S. A mechanistic seismic damage model for reinforcedconcrete [J]. Structure Engineering, ASCE, 1985, 111 (4):740-756
    [29]张国军,吕西林.高强混凝土框架柱的地震损伤模型[J].地震工程与工程振动,2005,25(2):101-102
    [30]张国军,吕西林,白国良.周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J].地震工程与工程震动,2005,25(6):70-72
    [31]张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究[J].建筑结构学报,2006,27(1):91-92
    [32]孙卓,李建中,闫贵平,范立础.钢筋混凝土单柱式桥墩抗震性能试验研究[J].同济大学学报,2006,34(2):164-165
    [33]吕西林,郭子雄,王亚勇.RC框架梁柱组合件抗震性能试验研究[J].建筑结构学报,2001,22(1):5-6
    [34]张国军.高强混凝土框架柱抗震性能的试验研究[D].上海:同济大学,2006,78-79
    [35]过镇海,时旭东.钢筋混凝土原理和分析[M].北京,清华大学出版社,2003:345-346
    [36]黄培彦,赵琛.FRP加固钢筋混凝土构件的疲劳性能[M].北京:科学出版社,2009,123-124
    [37]陶忠,高献,于清.FRP约束钢筋混凝土柱滞回性能的理论分析[J].工业建筑,2005,35(9):17-18
    [38]高献.FRP约束圆钢筋混凝土柱滞回性能研究:[D].福州:福州大学,2005,87-88
    [39]张国军,吕西林.高轴压比高强混凝土短柱力学性能的试验研究[J].工业建筑,2005,35(3):21-22
    [40]张国军.大型火力发电厂高强混凝土框架柱的抗震性能研究[D].西安建筑科技大学,2003,89-90
    [41]杜宏彪.双向压弯钢筋混凝土柱的抗震性能[J].哈尔滨建筑大学学报.1999,32(4):103-104
    [42]苏小卒,张荣,王磊,陶湘华.钢筋混凝土异形柱抗震性能的试验研究[J].结构工程师.2007,23(3):63-64
    [43]陈杨泽,梅仲华.对型钢混凝土柱恢复力模型的探讨[J].武汉理工大学学报,2003,25(7):43-44
    [44]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):36-37
    [45]杨红,白绍良.基于变轴力和定轴力试验对比的钢筋混凝土柱恢复力滞回特性研究[J].工程力学,2003,20(6):60-61
    [46]肖明葵,刘纲,白绍良.滞回恢复力模型中求折点的一种方法[J].重庆大学学报,2002,25(1):15-16
    [47]李佳,易伟建.钢管混凝土压弯构件滞回模型分析[J].湖南大学学报,2002,29(3):134-135
    [48]杜宏彪,沈聚敏.在任意加载路径下双轴弯曲钢筋混凝土柱的非线性分析[J].地震工程与工程振动,1990,10(3):44-45
    [49]张国军,吕西林,刘建新.高强约束混凝土框架柱基于位移的抗震设计[J].同济大学学报,2007,35(2):145-146
    [50]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,2007,24(3):85-86
    [51]祝英枝,刘之洋.砼小型空心砌块配筋砌体的滞回特性[J].东北大学学报,2000,21(5):555-556
    [52]赵永峰,童根树.双折线弹塑性滞回模型的结构影响系数[J].工程力学,2008,25(1):62-63
    [53]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J].土木工程学报,2006,39(10):35-35
    [54] JGJ101-96.建筑抗震试验方法规程[S].中国建筑工业出版社.1996
    [55] GB50010-2002.混凝土结构设计规范[S].中国建筑工业出版社.2002
    [56] GB50204-2002.混凝土结构工程施工质量验收规范[S].中国建筑工业出版社.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700