城市防震减灾能力标定及可接受风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市防震减灾能力的评价研究作为国家防震减灾工作的核心内容之一,关乎人民生命财产安全和社会可持续发展,是一项基础性和公益性研究工作,对于构建社会主义和谐社会和完成国务院2004年所提出的“在未来的十五年内(2020年以前)使我国基本具备综合抗御6级左右、相当于各地区地震基本烈度的地震能力,大中城市、经济发达地区的防震减灾能力力争达到中等发达国家的水平”目标具有重要意义。城市防震减灾能力的评价研究起步较晚,是地震工程研究的难点和热点课题之一,更是现代社会对地震工程界提出的一个亟待解决的问题。本文进行的城市防震减灾能力标定及可接受风险研究不仅可以使城市灾害损失定量化评价成为可能,而且可为评价城市防震减灾能力提供客观的度量标准,有助于科学合理地指导城市的防震减灾决策。
     本文在广泛收集城市各类灾害资料的基础上,结合现有的城市防震减灾研究成果,运用经济学和运筹学基本原理,进一步改进和完善了原有城市防震减灾能力的评价方法,优化了城市防震减灾能力的评估体系,构建了一个更加科学合理的评价城市防震减灾能力的评估模型,主要研究内容如下:
     1、完善了城市防震减灾能力评价体系
     根据评价城市防震减灾能力的三大准则(城市遭遇地震时可能发生的人员伤亡、经济损失和震后恢复时间)和影响这三大准则的六大指标(城市地震危险性分析能力、城市地震监测和预报能力、城市工程性设施抗震能力、城市政治经济社会人文的影响能力、城市灾害管理能力和城市震后应急救助及恢复重建能力)的具体内容及其影响范围,完善并发展了其下的各个子系统,优化形成了完整的城市防震减灾能力评估体系框架。
     收集并整理各个领域的专家调查意见,考虑到在群组决策时,由于客观事实的复杂性和人的认识的多样性,会出现一些特殊的情况,因此,本文采用了改进的层次分析法,即针对信息不全的层次分析方法和不确定型的层次分析方法,充分有效的利用了所收集到的全部的专家意见,提取了更多的有效信息,得到了更为全面和准确的三大准则和六大指标的权重。同时根据各个指标系统内部不同评价目标的特性,对各个指标的子系统的权重也进行了计算和分析,使得城市防震减灾能力评价体系更加合理有效。
     2、提出了工程性设施抗震能力的评价方法
     根据建(构)筑物和生命线系统对城市防震减灾能力的不同作用方式,采取了有针对性的评价方法。
     根据“七五”~“十一五”期间的震害预测资料,确定了影响城市建(构)筑物抗震能力的四个因素,即抗震设防情况、建筑年代、结构类型和场地条件,并采用基于性态的抗震设防思想,建立了城市建构筑物抗震能力指数的评价方法。
     提出了生命线系统防震减灾能力的评价方法。一方面考虑生命线系统各个子系统对城市防震减灾能力的单独作用,根据专家调查意见,应用熵权双基准法,对各项信息进行无量纲化(功效系数法)处理,计算出各项信息的权重,然后在信息表中确定两个基准点(理想点和反理想点),再计算出各项子系统在整体评价中的优属度,确定了各个系统的单独作用。另一方面,考虑生命线系统各个子系统之间存在的耦联关系,根据我国“七五~九五”期间所作过震害预测的城市和1993年以来进行过地震损失评估的城市统计结果,采用偏相关分析方法,评价了各个子系统之间相互作用的大小。最后将这二者结合,综合了主观意见和客观资料,从而可以有效合理的评价生命线系统各个子系统的防震减灾能力。
     3、建议了地震灾害可接受风险的界定标准
     首次在地震灾害的评价体系中引入风险管理的概念,详细阐述了可接受风险的基本概念和可接受风险的评价过程及方法,同时结合各个国家及不同行业的可接受风险标准,在统计我国多年来各类自然灾害和人为灾难的损失结果、以及多次破坏性地震的震害调查资料的基础上,建议了我国地震灾害可接受风险的界定标准。
     4、提出了综合度量城市防震减灾能力的参数及计算方法
     运用模糊数学中的灰色关联度原理,将城市防震减灾能力评价体系中的各个子系统的抗震能力综合成为度量城市防震减灾能力的参数,建立了基于灰色关联度的多目标决策模型。在此基础上,建议了划分城市防震减灾能力强弱的标准。同时,利用本文所提出的基于灰色关联度的多目标决策模型对国内外十个城市的防震减灾能力进行了评价,验证了本文该模型的合理性。
The cities’disaster reduction is the important component of the national public security. It is important for the people’s personal safety and property and society's sustainable development. In 2004, China government put forward that the cities with dense population or developed economy and the area off the seashore should have ability to resist earthquake(M=6) before 2020. It is really a challenge for researchers to evaluate the cities’ability reducing earthquake disaster. It will provide an objective criterion for evaluating and comparing city’s ability reducing earthquake disasters among various cities, and it will also give advices to decision on reducing earthquake disaster.
     Based on the current research achievements on reducing earthquake disaster, and used the theory of the economics, operations research and other disciplines related to it, this paper is setting up an index system about evaluating cities’ability reducing earthquake disasters. It carries out research from the following several aspects:
     1. Set up the the index system on city’s ability reducing earthquake disasters
     The conception of cities’ability reducing earthquake is presented, the ability could be evaluated with three basic elements– the seismic casualty and economic loss during the certain earthquake and the recovery time after the certain earthquake. Based on these three elements, six factors affecting cities’ability reducing earthquake disasters are proposed–seismic hazard analysis, earthquake monitor and prediction, the capacity on building resisting earthquake damage, the influence of the urban political, economic, social and cultural factors, ability on cities’disaster management, and ability on earthquake hazard mitigation and rescue. In accordance with the specific content of the various indicators and its impact, this paper improves and develops its various subsystems, forming a complete urban earthquake disaster prevention and mitigation capability assessment framework.
     Collecting and collating all the views of experts in different fields by surveying, and using the improved analytic hierarchy process to determine the weight of the three criteria and six indicators. At the same time, according to the characteristics of different evaluation targets, combined with the theory of the entropy two-base-point and partial correlation analysis, this paper calculates all the weight of the system, and it forms a complete evaluation system for evaluating cites’capacity on reducing earthquake disaster.
     2、Put forward methods on evaluating the capacity of the various indicators on resistancing earthquake disaster
     Because various factors play various role in index system, this paper applies the different methods to evaluate the factors’ability on reducing earthquake disaster.
     First of all, according the data of the sevel earthquakes damage prediction from“75”and Wenchuan earthquake survey, this paper determines the weight value of four factors (earthquake resistance condition, construction time, structure type and location condition) to impact the capacity of build to anti-seismic damage, while the four factors proposed the method to evaluate the capacity of structures in seismic index.
     Secondly, it uses two-base-point method to evaluate the urban lifeline system satisfaction, and determines its capacity in urban earthquake disaster prevention and mitigation.
     At last, the method of dual base-point is proposed to evaluate the satisfaction condition of lifelines’performance after earthquake, consequently to gain the value of lifeline system in index system.
     3、Proposed the method of computing seismic casualty, economic loss and recovery time
     (1)According to the results on the earthquake damage prediction of a number of cities from " 95 " Plan, it statistics and regression the relationship between the builds’anti-seismic capacity and the personnel casualty rates. At the same time, considering other factors, it also calculates the relationship between different seismic intensity factors under the anti-seismic capacity and casualties.
     (2)First, about direct economic loss, the relation between the seismic ability index of structures and structural loss and belongings loss are gained utilizing the cities’prediction results of earthquake disasters which are made during the period of 95. Then, it calculates the earthquake indirect economic losses by considering the ability to anti-seismic structure, socio-economic structure and the other five indicators of seismic capacity. Finally, considering the relevant provisions on Chinese earthquake emergency rescue, it obtains the direct investment on the earthquake disaster relief. Combinating by three parts, the total value of economic losses by the earthquake could be determined.
     (3)According the ATC-13 report of FEMA, the recovery time of various damage condition are gained statistically. The according to the conception of recovery time this paper defined, the method of computing recovery time is presented.
     4、research on acceptable risk level for cities’ability in reducing earthquake disasters
     It presents the study on the acceptable risk level for city’s ability in reducing earthquake disasters. The so-called acceptable risk level refers to the threshold for the safety level based on the risk analysis and assessment. It defines the acceptable risk levels for the corresponding risk-prevention measures, including failure probability and the consequences of measure failure, such as human casualty and economic loss, etc. In more detailed way, the paper has discussed the methods to use ALARP principle and F-N curve to determine the acceptable risk and their applications in the city’s ability in reducing earthquake disasters. However, it remains a controversial issue to make accurate assessment of the acceptable risk level in the actual situations, which is still left be solved through the joint efforts of the governmental departments, engineers, scholars and the public concerned.
     5、suggest the method of computing the comprehensive index on city’s seismic ability and some examples
     Based on the concept of fuzzy membership function, the urban earthquake disaster prevention and mitigation capability index is calculated by the capacity of the various subsystems in reducing earthquake disasters. And on this basis, it proposes the standard on dividing the ability to resist the different intensity earthquakes.
     At the same time, Making use of evaluation model mentioned above, ten cities home and abroad is evaluated on their ability reducing earthquake disaster, and then causes about these cities’seismic ability difference are demonstrated.
引文
[1]中国城市科学研究会. 21世纪城市综合防灾减灾[M].城市发展研究,2000(3):1-3.
    [2]郑宇.城市防震减灾能力评价指标与应急需求研究[D].南京,南京工业大学,2003.
    [3]万艳华.《城市防灾学》[M].中国建筑工业出版社,2003.
    [4]庄丽.城市居住区抗震防灾规划的研究与应用[D].青岛,中国海洋大学,2007.
    [5]胡少卿.建筑物的群体震害预测方法研究及基础设施经济损失预测方法探讨[D].哈尔滨,中国地震局工程力学研究所,2007.
    [6]张风华.城市防震减灾能力评估研究[D].哈尔滨,中国地震局工程力学研究所,2002.
    [7]章在墉.地震危险性分析及其应用[M].上海:同济大学出版社,1996.
    [8]杨玉成,杨柳,高云学等.多层砖房的地震破坏和抗裂抗倒设计[Z].北京:地震出版社,1981.
    [9]金国梁.建筑物的地震震害预测方法综述[J].世界地震工程,1987(1),6-11。
    [10]熊国锋.基于GIS的上海市防震减灾能力评价方法研究[D].上海,同济大学,2007.
    [11]高毅存.《城市规划与城市化》[M].北京,机械工业出版社,2004.
    [12]吴新燕.城市地震灾害风险分析与应急准备能力评价体系的研究[D].北京,中国地震局地球物理研究所,2006.
    [13]马宗晋、张业成等.灾害学导论[M].长沙,湖南人民出版社,1998.
    [14]叶义华,许梦国,叶义成.《城市防灾工程》[M].冶金工业出版社,1999.
    [15]胡聿贤.地震工程学(第二版)[M].北京,地震出版社,2006年.
    [16]李志雄,马丽.加强地震监测预报工作应密切关注的几个问题[J].国际地震动态,2001,(5):15-19.
    [17]梅世蓉、冯德益等.中国地震预报概论[M].地震出版社,1993年6月.
    [18]罗兰格、曾炬、侯建明.中国地震前震观测台网监测能力的评定[J].华北地震科学, 1988,6(1).
    [19]焦远碧、吴开统、杨满栋.华北地区测震台网的监测能力[J].地震,1986,(1):26-32.
    [20]张国民.我国地震监测预报研究的主要科学进展[J].地震,2002,22(1):2-6.
    [21]吴开统、焦远碧.论中国地震台网的监测效能[J].地震研究,1981,4(1).
    [22]尹之潜.城市地震灾害预测的基本内容和减灾决策过程[J].自然灾害学报,1995,4(1):1-9.
    [23]邢成起.百年回首化震灾.北京市地震局网站:http://www.bjdzj.go v.cn/jzltan/ 1601.htm.
    [24]中国赴日地震考察团.日本阪神大地震考察[M].北京,地震出版社,1995.
    [25]中华人民共和国防震减灾法. 1997年12月29日第八届全国人民代表大会常务委员会第二十九次会议通过,1998年3月1日起施行.
    [26]聂永安等.建筑物震害的类比预测方法研究[J].自然灾害学报,1998,7(4).
    [27]尹之潜、杨淑文.城市地震防御能力评价和防御水准问题[J].自然灾害学报,1998,7(1):29-35.
    [28]尹之潜.地震灾害及损失预测方法[M].北京,地震出版社,1995.
    [29]杨亚弟,张其浩等. FZ-110J型避雷器体系抗震分析[J].地震工程与工程振动,1988年02期: 57-69.
    [30]谢礼立、张晓志、周雍年.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1):1-17.
    [31]李杰.生命线工程抗震-基础理论与应用[M].北京,科学出版社.,2005.
    [32]周怡光、章在墉.生命线系统的地震灾害分析[J].世界地震工程,1988,(1):19-24.
    [33]罗奇峰.日本兵库县南部地震中生命线系统的震害及其震后修复[J].灾害学,1997,12(1):43-48.
    [34]苏幼坡、刘瑞兴、袁茂仑.城市生命线震害的相互影响与震后恢复的时序分析[J].工程抗震与加固改造, 2001,(2):26-30.
    [35]李天、李杰、沈祖炎.电力系统地震灾害分析[J].世界地震工程,2000,16(4):19-24.
    [36]郭增建、陈鑫连.城市地震对策[M].北京,地震出版社,1991.
    [37]李桂荣、郭恩栋、朱敏.供电系统抗震性能分析[J].世界地震工程,2004,20(4):107-111.
    [38]杨亚弟、朱葳.华北工作区供电系统震害预测方法研究(85-07-04-03-02).国家地震局工程力学研究所,1995.8。
    [39]张其浩.电力系统地震灾害的预测及其防灾对策(91015).国家地震局工程力学研究所,1994.9。
    [40]翟桐.生命线工程系统震害预测方法研究(96-913-05-02).中国地震局工程力学研究所,2000。
    [41]邹其嘉、孙振凯、毛国敏.电力系统地震易损性研究[J].自然灾害学报,1994,3(2):49-54.
    [42]孙振凯、毛国敏、邹其嘉,电力系统震后恢复过程及经济损失研究[J],自然灾害学报,1994,3(3)。
    [43]翟桐、赵直.防震减灾示范的方法研究(95-06-01).中国地震局工程力学研究所,1996.5~2000.12。
    [44]李亚琦、李小军、刘锡荟.电力系统抗震研究概况[J].世界地震工程,2002,18(4):79-84.
    [45]江建华、黄勤勇、李杰.上海市交通系统抗震可靠度分析[J].工程抗震,2001,No.2:39-43.
    [46]文汇报. 1995年1月18日第5版.
    [47]陈艳艳、王光远.考虑供需随机性的道路交通系统震害引发损失期望评估[J].世界地震工程,2003,19(1):25-30.
    [48]傅方、王东炜、王光远.震区道路系统规划设计方案的量化分析[J].世界地震工程,2000,16(4):9-13.
    [49]赵艳林等.拱桥震害预测的灰色聚类方法[J].自然灾害学报,1998,7(2):81-87.
    [50]宋建学、李杰.震后城市交通系统连通性模拟[J].自然灾害学报,1996,5(1):73-78.
    [51]黄龙生、刘广信.道路交通系统的震害预测[J].自然灾害学报,1996,5(1):88-98.
    [52]赵振动、林均歧.地铁系统震害过程的系统工程分析[J].自然灾害学报,1996,5(1):79-87.
    [53]王瑞民、罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63-66.
    [54]朱葳、冯启民,工作区生命线工程震害预测方法研究(85-07-04-03-02).国家地震局工程力学研究所,1992-1995.
    [55]李桂荣、王国荣、郭恩栋.通信系统抗震性能分析[J].世界地震工程,2005,21(3):94-96.
    [56]中国地震局“95-06”项目.大中城市防震减灾对策示范研究-泰安市防震减灾示范研究与应用.中国地震局工程力学研究所,2000.5.
    [57]陈玲俐、李杰、叶志明.震后特殊供水状态下的供水管网水力分析[J].自然灾害学报,2004,13(3):89-94.
    [58]薛景宏、欧进萍、孙建刚.输液管道动力分析[J].世界地震工程,2001,17(2):29-32.
    [59]汤爱平、陆钦年.埋地生命线管道系统智能监测的初步研究[J].世界地震工程,2001,17(1):106-111.
    [60]熊占路、冯启民、郭恩栋.华北工作区供水管线震害预测方法的研究(85-07-04-03-02).国家地震局工程力学研究所,1995.8.
    [61]汤爱平.生命线系统间的相互作用破坏机理与震害预测[D].哈尔滨工业大学博士后研究工作报告,2001年12月.
    [62]马正茂、冯启民、高惠瑛.跨断层长输油(气)管道抗震研究与实践[J].世界地震工程,2002,18(3):24-31.
    [63]王跃杰、丁志平.地震次生灾害预测和评价的研究[J].山西地震,2002,No.3:33-37.
    [64]李杰、宋建学.城市火灾危险性分析[J].自然灾害学报,1995,4(2):98-103.
    [65]赵思健、任爱珠、熊利亚,城市地震次生火灾研究综述[J],自然灾害学报,2006,15(2):57-67.
    [66]张宝红、陈宏德.地震火灾事例调查[J].自然灾害学报,1994,3(4):39-48.
    [67]曹秀丽.城市地震火灾危害及预防对策[J].城市与防灾,2002(6):28-29.
    [68]李杰、江建华.基于GIS的城市地震次生火灾危险性分析系统[J].地震学报,2001,23(4):420-426.
    [69]余世舟、赵振东、钟江荣.基于GIS确定城市地震次生火灾高危区方法的研究[J].地震工程与工程振动,2004,24(2):176-180.
    [70]刘莉,谢礼立.城市防震减灾能力评价中的可接受风险研究[J].世界地震工程,2009,(01):82-87.
    [71]耿伟、范兵、柏琳.地震次生水灾的成因及对策[J].西北地震学报,2005,27卷增刊:31-35.
    [72]廖旭、黄河、李东春.震时有毒有害气体泄漏危险性分析模型的研究[J].自然灾害学报,2003,12(1):73-76.
    [73]余世舟、赵振东、钟江荣.地震次生毒气泄漏与扩散数值模拟的参数分析[J].地震工程与工程振动,2002,22(6):150-155.
    [74]刘凤民、张立海、刘海青、张业成.中国地震次生地质灾害危险性评价[J].地质力学学报,2006,12(2):127-131.
    [75]刘丽、王世革.滑坡、泥石流区域危险度二级模糊综合评判初探[J].自然灾害学报,1996,5(3):51-59.
    [76]夏元友.滑坡灰色系统预测模型及其应用[J].自然灾害学报,1995,4(1):74-78.
    [77]刘希林、唐川.泥石流危险性评价[M].北京,科学出版社,1995.
    [78]苏经宇、周锡元等.泥石流危险等级评价的模糊数学方法[J].自然灾害学报,1993,2(2):83-90.
    [79]魏永明、谢又予.关联度分析法和模糊综合评判法在泥石流沟谷危险度划分中的应用[J].自然灾害学报,1998,7(2):107-117.
    [80]柯长青.印度洋地震海啸(2004-12-26)及其对中国的警示[J].中国地质灾害与防治学报,2006,17(4):91-96.
    [81] Rachel Davison,Haresh C,Shan.地震灾害风险指数.世界范围的城市间地震风险的整体比较,资料C,1995.
    [82]陈颙、彭文涛、徐文立. 21世纪地震灾害的一些新特点[J].地球科学进展,2004,19(3):359-363.
    [83]高文学、马瑾.首都圈地震地质环境与地震灾害[M].北京,地震出版社,1993.
    [84] Organization of Economic Cooperation and Development(经济合作与发展组织).王强译. 1995,Environmental Indicators(环境指标),地理译报,14(3):1-17.
    [85]张怡芝.浅析我国公众的防震减灾意识[J].国际地震动态,1997,(1):17-20.
    [86]史培军、杜鹃等.加强综合灾害风险研究,提高迎对灾害风险能力-从第六届国际综合灾害风险管理论坛看我国的综合减灾[J].自然灾害学报,2006,15(5):1-6.
    [87]袁一凡、陈永.日本阪神大震灾在应急救灾上的几点教训[J].自然灾害学报,1995,4(4):53-61.
    [88]马宗晋.中国的地震减灾系统工程[J].灾害学,2005,20(2):1-5.
    [89]《<破坏性地震应急条例>讲话》编写组.《破坏性地震应急条例》讲话,北京,地震出版社,1995.
    [90]中国地震局地质研究所.区域城市县镇三级防震减灾对策的制定研究报告(96-913-05-03-01). 2000年7月.
    [91]邓风玲.浅谈防震减灾管理中非政府组织的作用[J].国际地震动态,2006,(3):24-27.
    [92]苏幼坡、刘瑞兴.城市地震灾害紧急救助的时序性分析[J].灾害学,2000,15(2):33-37.
    [93]原延宏.依法做好地震应急是减轻地震灾害的关键环节[J].灾害学,1995,10(2):94-97.
    [94]汤爱平.城市灾害管理和震后应急反应辅助决策研究[D].中国地震局工程力学研究所,哈尔滨,1999.
    [95]中国地震局地质研究所.泉州市城区防震减灾对策研究(96-913-05-03-05). 2000.7.
    [96]中国地震局地质研究所.区域城市县镇三级防震减灾对策的制定研究报告(96-913-05-03-01). 2000年7月.
    [97]陈宏.我国商业保险公司未经营地震保险之原因与对策[J].东北地震研究,2004,20(3):76-80.
    [98]刘如山、王自法、朱敏.地震保险中经济损失和赔付问题的研究[J].地震学报,2006,28(2):198-205.
    [99]李志强.中国地震灾害风险管理中的保险问题研究[D].中国地震局地质研究所,北京,1997.
    [100]陶正如、陶厦新.基于工程地震风险评估的地震保险费率厘定[J].自然灾害学报,2004,13(2):112-18.
    [101]巫孟还、邹其嘉.震灾保险的一种实用技术途径及其实施保障[J].自然灾害学报,1992,1(3):17-24.
    [102]林志勇.居住区规划设计质量综合评价研究[D].哈尔滨建筑大学硕士学位论文,1998.6.
    [103]王弈.基于AHP法的住宅小区规划设计方案评价方法研究[D].杭州,浙江大学,2004.
    [104]朱坚鹏.基于AHP住宅区公共服务设施评价体系研究[D].杭州,浙江大学,2005.
    [105]刘家学.定量型多指标决策的层次分析法探讨[J].运筹与管理,1996,5(3):10-15.
    [106]许树柏.层次分析法原理[M].天津,天津大学出版社,1988.
    [107]胡韬.长江堤防工程安全分析及安全评价系统的开发[D].北京,清华大学,2004
    [108]张新.居住区规划设计方案综合评价方法的研究[D].南京,南京工业大学,2004.
    [109]许先云,杨永清.不确定型AHP判断矩阵的一致性逼近与排序方法[J].系统工程理论与实践,1998,(2):19-22.
    [110]苏幼坡、马亚杰、刘瑞兴.城市生命线地震震害相互影响[J].河北理工学院学报,2001,23(2):84-89.
    [111]苏幼坡、刘瑞兴、袁茂仑.城市生命线震害的相互影响与震后恢复的时序分析[J].工程抗震,2001,(2):27-30.
    [112]姚保华、谢礼立、袁一凡.生命线系统相互作用及其分类[J].世界地震工程,2001,17(4):48-54.
    [113]姚保华、谢礼立、火恩杰.研究地震情况下生命线系统相互作用的综合方法[J].地震学报,2004,26(2):193-202.
    [114]汤爱平、郭明珠、欧进萍、谢礼立.生命线系统相互作用下的震害预测方法[J].土木工程学报,2005,38(8):49-55
    [115]温瑞智、陶厦新、谢礼立.生命线系统的震害耦联[J].自然灾害学报,2000,9(2):105-110.
    [116]汤爱平、欧进萍、张克绪、陆钦年.生命线系统相互作用下性态评价方法[J].哈尔滨工业大学学报,2005,37(2):151-155.
    [117] Richard Roiger,Michael W Geatz.数据挖掘教程[M].翁敬农(译),北京,清华大学出版社,2003.
    [118]赵慧芳、张岩.熵权双基准法在网络广告效果评估中的作用[J].统计与信息论坛,2006,21(4):84-86.
    [119]美国地震工程会(著). 1990,中国石油化工总公司抗震办(译),1991。洛马普里埃塔地震考察[M],北京,地震出版社,51-80.
    [120]中国赴日考察团.日本阪神大地震考察[M]. 1995,北京,地震出版社:51-58.
    [121]刘莉谢礼立.层次分析法在城市防震减灾能力评估中的应用[J].自然灾害学报,2008,17(2):48-52.
    [122]汤爱平、欧进萍.生命线系统的震害特征及其对震后应急反应的影响[J].世界地震工程,2000(1):84-88.
    [123]马玉宏.基于性态的抗震设防标准研究[D].哈尔滨,中国地震局工程力学研究所,2000.
    [124]中华人民共和国建设部.建筑地震破坏等级划分标准(1990建抗字第337号),1990.
    [125]姜开兴.城市建筑物震害预测方法研究[D].北京,北京工业大学,2008.
    [126] [美]应用技术委员会编,曹新玲等译.加利福尼亚未来地震的损失估计,地震出版社,1991.
    [127]傅征祥、李革平.地震生命损失研究[M].北京,地震出版社,1993.
    [128]中国地震局编.地震现场工作大纲和技术指南[M].北京,地震出版社,1998.
    [129]于山.基于GDP的城市抗震减灾资源配置研究[D].天津,天津大学,2005.
    [130]徐嵩龄.灾害经济损失概念及产业关联型间接经济损失计量[J].自然灾害学报,1998,7(4):7-15.
    [131]冯志泽,王宝银,于善请.地震灾害间接经济损失估计[J].灾害学,1998,13(4):23-27.
    [132]王海滋,黄渝祥.地震灾害间接经济损失的概念及分类[J].自然灾害学报,1997,6(2):11-16.
    [133]王海滋,黄渝祥.地震灾害产业关联间接经济损失评估[J].自然灾害学报,1998,7(2):40-45.
    [134]林均岐,钟江荣.地震间接经济损失研究综述[J].世界地震工程,2003,19(3):1-5.
    [135]钟江荣,林均岐.地震间接经济损失研究[J].自然灾害学报,2003,12(4):88-92.
    [136]苏幼坡、刘瑞兴.城市地震灾害紧急救助的时序特性分析[J].灾害学,2000,15(2):33-37.
    [137]李冬升.基于可靠度理论的边坡风险评价研究[D].重庆,重庆大学,2006.
    [138]程凌鹏、杨冰、刘传正.区域地质灾害风险评价研究述评[J].水文地质工程地质,2001(3):75-78.
    [139]甘心孟、沈斐敏.安全科学技术导论[M].北京,气象出版社,2000.
    [140]肖义、郭生练、熊立华、雒征.大坝安全评价的可接受风险研究与评述[J].安全与环境学报,2005,5(3):90-94.
    [141]丁厚成、万成略.风险评价标准值初探[J].工业安全与环保,2004年,30(10):45-47.
    [142] A W Malone,黄润秋.香港的边坡安全管理与滑坡风险防范[J].山地学报,2000,18(2):187-192.
    [143]徐祖信、郭子中.开敞式溢洪道泄洪风险计算[J].水利学报,1989,(4):50-54.
    [144]姜树海、范子武.大坝安全的允许风险研究[J].水利水运工程学报,2003,(3):7-12.
    [145]肖义、郭生练、周芬、田向荣.风险分析在大坝水文安全评估中的应用研究[J].水电能源科学,2003,21(3):51-54.
    [146]肖义.水库大坝防洪安全标准及风险研究[D].武汉,武汉大学硕士学位论文,2004.
    [147]梅亚东、谈广鸣.大坝防洪安全评价的风险标准[J].水电能源科学,2002,20(2):8-10.
    [148]岑慧闲、房淮阳、吴群河.可接受风险的界定方法探讨[J].重庆环境科学,2000,22(3):35-40。
    [149]杨白银、王锐琛、安占刚.单一水库泄洪风险分析模式和计算方法[J].水文,1999,(4):5-12.
    [150]陈肇和、李其军.漫坝风险分析在水库防洪中的应用[J].中国水利,2000,(9):73-74.
    [151]姜树海.防洪设计标准和大坝的防洪安全[J],水利学报,1999,(5):19-25,
    [152]汪敏、刘东燕.滑坡灾害风险分析研究[J].工程勘查,2001,(2):1-6.
    [153]肖义、郭生练、周芬、熊立华、王才君.基于风险分析的大坝设计洪水标准研究[J].水利发电,2003,(11):6-9.
    [154]刘茂.城镇公共安全规划编制要点和规划目标的研究[J].江苏城市规划,2005,第4期:27-32.
    [155]耿波.桥梁船撞安全评估[D].上海,同济大学,2007.
    [156]阮欣.桥梁工程风险评估体系[D].上海,同济大学,2006.
    [157]中国可持续发展信息网(http://www.sdinfo.net.cn)中的自然灾害研究组:http://210.72.100.6/.
    [158]汪敏.滑坡灾害风险分析系统理论及在港渝地区应用研究[D].重庆,重庆大学,2001.
    [159]中华人民共和国国家统计局. 1949-1995中国灾情报告[M],北京,中国统计出版社,1995.
    [160]中国地震局监测预报司.中国大陆地震灾害损失评估汇编(1996-2000)[M],北京,地震出版社,2000.
    [161]李卫平. 1996一2003年全世界灾害地震统计分析[J].华北地震科学,2005,23(2):54-64.
    [162]侯建胜、苗崇刚等. 2000年中国大陆地震灾害评述[J].自然灾害学报,2001,10(3):51-55.
    [163]李卫平等. 2002年全世界灾害性地震综述[J].国际地震动态,2003,(2):10-14.
    [164]侯建胜、苗崇刚等. 2003年中国大陆地震灾害评述[J].自然灾害学报,2004,13(3):24-29.
    [165]李卫平等. 2004年全球地震灾害的灾情综述[J].中国地震,2005,2(11):123-129.
    [166]米洪亮等. 2005年中国大陆地震灾害损失述评[J].自然灾害学报,2006,15(3):164-168.
    [167]中华人民共和国中央人民政府网站.地震局发布2006年我国地震灾害及受灾损失等情况,2007年2月7日,http://www.gov.cn/jrzg/2007-02/07/content_520039.htm.
    [168]马宗晋等.我国自然灾害的经济特征与社会发展[J].科技导报,1994(4):61-64.
    [169]尹之潜等.地震灾害预测与地震灾害等级[J].中国地震,1991,7(1):9-19.
    [170] A Guide to Post-Earthquake Damage. Investigation and Documention for Hospital Lifelines, Lifeline Earthquake Engineering: Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991.
    [171] A.W.Coburm, R.J.Spence, A. Pomonis, Factor Determining Human Casualties: Mortality Prediction in Building Collapse, the Tenth World Conference on Earthquake Engineering, Vol 10, 1992:5989-5994.
    [172] Anshel J.S., Northridge Earthquake Lifeline Performance and Post-Earthquake Response. New York, American Society of Civil Engineers, 1995;
    [173] Borden F W., The 1994 Northridge Earthquake and the Fires that followed[A], Thirteenth Meeting of the UJNR Panel on Fire Research and Safety[C], 1996, 2: 303-312。
    [174] Casagrande, A role of the“calculated risk”in earthwork and foundatiomengineering, Journal of the Soil Mechanics Division, ASCE, 1965, 1(91)4。
    [175] Chan L S, Chen Yong, Chen Q, et al. Assessment of global seismic loss based on macroeconomic indicators[J]. Natural Hazards,1998, 17:269~283.
    [176] Charles Scaethorn, S. E., Lifeline Interaction and Post-Earthquake Functionality, Vice President EQE International San Francisco, CA 94104.
    [177] Chen Yong, Liu J, Chen L, et al. Global seismic hazard assessment based on area source model and seismicity data[J]. Natural Hazards, 1998,17:251~267.
    [178] Chen Yong. Eatimating losses from future earthquake in China[A]. In: Schenk V, eds. Earthquake Hazard and Risk[C]. Kluwer Academic Publishers, 1996: 49~56.
    [179] Communications Lifeline Performance In the Northridge Earthquake , Lifeline earthquake engineering: Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991.
    [180] Dacy D C,Kunreuther H.The Economics of Natural Disaste,Implica-tion for Federal Policy.New York:Eree Press,1969
    [181] Davidson Raehel,HareshSban. An Urban Earthquake Disaster Risk Index[M]. The John A.BI Earthquake Engineering Center , rePortno.121.Stanford ,California:BlumeCenter,1997.
    [182] DEFRA. Flood and Reservior Safety Integration[R], Final report, http://www.defra.gov.uk/environment/water, August, 2002. 8-26
    [183] Der Kiureghian A,Sackman J L,Seismic interaction in connected electrical substation equipment[J],PEER Center News,2(4):1~4;
    [184] Dina D’Ayala, Robin Spence, Carlos Oliveira, Earthquake Loss Estimation for Europe’s Historic Town Centres, Earthquake Spectra,Vol.13, No.14, 1997。
    [185] Eiichi Kuribayashi, Leelawat Chartchai, Go Suzuki and Hiroaki Kawabe, Study on Sccio-Economic Effects of Lifeline Earthquake Disaster in Urburn Transportion Networks.
    [186] Fell. R, Some landslide risk zoning schemes in use in easter. Australia and their application Sixth Australian New Zealand Conference on Geomechanics, Christchurch, 1992, 505-512。
    [187] Fischhoff B, Lichtenstein S, Acceptable Risk[M], Cambridge University Press, New York, 1981。
    [188] George C. Lee and Chin-Hsiung Loh,The Chi-Chi,Taiwan Earthquake of September 21,1999:Reconnaissance Report,The Multidisciplinary Center for Earthquake Engineering Research, 2000,4,30.
    [189] Goltz J.D.,The Northridge California Earthquake of January 17,1994 General Reconnaissance Report,Technical Report,NCEER-94-0005,March 11,1994;
    [190] Gordon P,Moole J E,Richardson H W,Shinozuka M.An integrated model of bridge performance,highway netwoeks,an the spatial metropolitan ecomomy:towards a general model of how losses due to earthquake impacts on lifelines affect the ecomomy. NCEER-97-0005,Proceedings of the Workshop on Earthquake Engineering Frontiers in Transportation Facilities,National Center for Earthquake Engineering research, Buffalo,N.Y.,Aug.29,1997.
    [191] Jonkman S N, van Gelder P H A J M and Vrijling J K, An overview of quantitative risk measures for loss of life and economic damage[J], Journal and Hazardous Material, 2003,99(1): 1-30。
    [192] Kameda H,Nojima N,1992,Developments of Lifeline Earthquake Engineering[A],In: Kameda H ed. Proc of Workshop on China-Japan Joint Research for EarthquakeDisaster Prediction and Mitigation[C]:170-186;
    [193] Kawashima K,Kanoh,T.Evaluation of indirect economic effects caused by the 1983 Nihonkai-chubu[J], Japan,earthquake.Earthquake Spectra,1990,6(4):739~756.
    [194] KK.Shiono, F.Krimgold, Y.Ohta, Modeling of Search-and-rescue Activity in an Earthquake, the Tenth World Conference on Earthquake Engineering, Vol 10, 1992.
    [195] L.V. Lund,Lifeline Enconomics and Hazard Mitigation, Social and Economic Impact of Earthquake on Utility Lifelines,California,1980,P78-84;
    [196] Lee G C,Loh C H,Preliminary Report from Mceer-Ncree Workshop on the 921 Taiwan Earthquake[M],Buffalo,N Y:Multidisciplinary Center for Earthquake Engineering Research:1-14;
    [197] Lifeline Utilities Lessons, Northridge Earthquake, Lifeline earthquake engineering: Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991.
    [198] Morgan G C, Rawlings G E, and Sobkowicz J C, Evaluating total risk to communities from large debris flows[A], in Geotechnique and Natural Hazards, BiTech Publishers, 1992, 225-236。
    [199] Nojima N ,Kameda H,1991,Cross-impact analysis for lifeline interaction[A]。In:Cassaro M A ed. Lifeline earthquake engineering, TCLEE Monograph 4[C],Los Angeles:American Society of civil Engineers,629~638;
    [200] Panel on Earthquake Loss Estimation Methodology, Committee on Earthquake Engineering Commission on Engineering and Technical System & NationalResearch Council.1989 Estimating Losses From Future Earthquake. Issused by FEMA(FEMA-177), Printed in USA.
    [201] Pearce D W,Turner R K. Economics of Natural Resources and the Environment. London:Harvester Wheatshueaf,1999
    [202] Post-Quake Transportation Operations Following the 1994 Northridge Earthquake, Lifeline earthquake engineering: Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991
    [203] Risk Management Solutions,Inc.(1997), Earthquake Loss Estimation Method-HAZUS97 Technical Manual, National Institute of Building Sciences, Washington.D.C.
    [204] Seismic Performance of Los Angels Water Tanks, Lifeline earthquake engineering: Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991.
    [205] Sekizawa A., Post-Earthquake fires and firefighting activities in the early atsge in the 1995 Great Hanshin Earthquake[A], Thirteenth Meeting of the UJNR Panel on Fire Research and Safety[C], 1996, 2:289-302。
    [206] Shinozuka M,Chang S E.Advances in earthquake loss estimation and application to Memphis[J],Tennessee.Earthquake Spectra,1997,13(4):739~758.
    [207] Stephanie E. Chang, Hope A. Seligson, Ronald T. Eguchi, Estimation of Economics Losses Caused by Disruption of Lifeline Service: An Analysis of the Memphis Light, Gas and Water System, Lifeline earthquake engineering. Technical Council on Lifeline Earthquake Engineering, Monograph No.4 August, 1991.
    [208] The January 17, 1995 Hyogoken-Nanbu(Kobe) Earthquake: Performance of Structures, Lifeline, and Fire Protection Systems[R], NST Special Publication 901。
    [209] Trifunac M D, Todorovska M. I., The Northridge, California, earthquake of 1994: fire ignition by strong shaking[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(2): 165-175。
    [210] Varnes D IAEG Commission on Landslide[A], Landslide hazard zaonation a review of principles and practice[C], Paris RNESCO, 1984。
    [211] Vrijling J K and van Hengel W, A framework for risk evaluation[J], Journal of Hazardous Material, 1995, 43(3): 245-261
    [212] Whitman R V, Evaluating caculated risk in Geotechnical Engineering[J], Journal of Geotechnical Engineering, ASCE, 1984, 110(2):145-188。
    [213] Work Bank. World Development Report 1998[M]. New York: Oxford University Press, 1999:15~40.
    [214] World Society for Earthquake and Civil Engineering Dynamics: Newsletter(1997-2004). http://www.ice.org.uk/ice/public/pubindex.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700