RS与GIS在区域地质灾害风险评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国由于地质和地理环境复杂,气候条件时空差异较大,地壳断裂活动分布普遍,是崩塌、滑坡、泥石流等地质灾害发生频繁的国家。同时我国的地震活动强度和频度也较高,全球大陆地区的大地震中,约有四分之一至三分之一发生在我国。由于地震影响区内地形起伏较大,地质构造复杂,加之余震频繁,影响了区内的地质环境条件,常常诱发大量的地质灾害,尤其发生在山区的地震,坡陡谷深,造成的地质灾害更为严重。地震诱发的大量崩塌、滑坡会使交通、通讯等中断,地面调查无法满足时效性要求,很难快速到达灾区,与此同时地震灾区经常气候异常,降雨频繁,仅凭光学影像也很难满足要求,结合微波雷达应用多源遥感技术、GIS技术开展地质灾害调查与风险评价是当今技术发展的必然趋势。遥感技术应用于区域地质灾害评价,虽然已取得了很多进步性成果,但是综合利用高分辨率机载、星载遥感图像、GIS技术进行地质灾害的精细解译、孕灾背景分析及风险评价的研究相对较少。本文以青川、平武县为例,在系统的研究工作中取得了如下研究成果和认识:
     (1)初步建立了较为系统的利用星载、机载光学与微波遥感技术研究地质灾害的方法体系,结合地质灾害的成因及发育特征,在前人研究的基础上完善了地质灾害遥感解译的方法,结合研究区特征阐明了遥感、地理信息技术在地质灾害调查、风险评价等中的作用。
     (2)探讨了遥感在地质灾害研究中的关键技术,包括数据源的选取、辐射校正、几何校正、正射校正、雷达成像几何特性及干涉雷达技术,提出了对地质灾害风险评价不同研究阶段及孕灾地质背景环境提取所适用的遥感数据源和处理方法。
     (3)在卫星过境前、卫星过境后及同步进行了综合遥感实验,进行多源数据同步获取,在多源数据协同处理的基础上提取地质灾害研究所需的相关因子;有针对性、有目的性的对重点研究区域进行了地面调查和雷达定标工作。
     (4)通过比较灾害前多光谱影像河道范围与灾害发生后X波段机载雷达图像河道提取结果,可以快速检测出河道的变化,这对于导致河道堵塞的大型滑坡提取效果较好;利用0.5米X波段机载雷达图像可以比较清楚的识别滑坡,相对于地面调查不但速度快,而且不受天气的影响,对地质灾害的监测与调查更为可靠和适用。
     (5)利用多时相SPOT、TM、航拍光学、雷达图像对滑坡等典型地质灾害进行了对比分析研究,实践证明,高分辨率多极化SAR图像对滑坡、堰塞湖、桥梁、房屋等的判读非常有效,特别是在云、雨、夜等气候恶劣条件下,无法获得高分辨率光学图像时,SAR作为光学遥感的补充,能够为应急指挥辅助决策提供及时准确的信息。
     (6)结合野外调查,利用多源遥感数据,进行了地质灾害孕灾背景、发育状况、承灾体的提取。在对青川、平武县研究区地质背景、灾害分布规律研究的基础上,确定了地质灾害评价的指标体系,利用不同的数学模型进行了地质灾害危险性评价,经对比分析,选取精度较高的模型对研究区进行了危险性评价及风险评价,分析结果与地质灾害发育现状非常吻合,对减灾救灾等有一定的参考价值。
Crustal fracture activities is distributed universally because of china's complex geological and geographical environment and quite different space-time of climatic conditions, thus china is a country where collapse, landslide, debris flow and other geological disasters occur frequently. Meanwhile intensity and frequency of China’s activity is higher than other countries.The world’s major earthquake in the mainland,about a quarter to one third,occurred in China.As undulating terrain in the areas affected by earthquake, complex geological structure, coupled with frequent aftershocks, the local geological environment is influenced and a large number of secondary geological disasters are induced. Especially the earthquake occurred in the mountainous areas often causes severe deformation of the surface and a lot of landslides and results in transportation and communication interrupted. Ground survey can not meet requirement of the timeliness, saving it is difficult to quickly reach the affected area. Coupled with frequent climate abnormal in the earthquake areas and rainfall frequency, so optical imaging alone is difficult to meet the requirements, and application of the multi-source remote sensing technology and GIS technology to carry out investigation and assessment of geological hazards is the inevitable trend of modern high-tech development. Although remote sensing technology in regional geological hazard investigation and evaluation has made many successful experiences, most stay the disaster point’s extraction and macro-regional evaluation in the use of optical images. The fine interpretation of geological disasters by comprehensive utilization of high-resolution airborne and satellite-borne remote sensing images and GIS technology, pregnant disaster background analysis and risk assessment research are relatively small. This paper, taking Qing Chuan and Ping Wu County as the example, has made understanding and research results in the systematic study, as follows:
     (1) More systematic methods and system which utilizes satellite-borne airborne optical and microwave remote sensing to research geological disaster is initially established; combined with the causes and development characteristics of geological disasters, method of interpretation of geological hazards is improved on the basis of previous research; combination of the study area, the roles of geological disaster survey and risk assessment through remote sensing technology are clarified.
     (2) Key technologies of remote sensing in the study of geological disaster, including data source selection, radiometric correction, geometric correction, ortho correction, geometric characteristic radar image and interference-in radar technology.
     (3) Taking a comprehensive remote sensing experiment before crossing the satellite, the satellite after the transit, and simultaneously and simultaneous multi-source data acquisition, geological hazards associated factors required are extracted based on collaborative processing of multi-source data; the ground survey work and radar calibration work are performed targetedly and purposefully to the important study areas.
     (4) By comparing the disaster-before multi-channel spectral image channel with disaster–after X-band airborne radar image channel extraction results, the changes in river channels can be quickly detected, which is better for the extraction effect of a large landslide leading to channel blocking. Using 0.5 meter X-band airborne radar images can more clearly identify landslide, which is more fast, relative to the ground investigation,and the geological hazards monitoring is more reliable and applicable when it clouds and rains.
     (5) The comparative analysis on landslide is performed to the major geologic hazards using multi-temporal SPOT, TM, aerial optical, radar images and other. It is proved that high-resolution and multi-polarization SAR image is very effective to interpretation of the landslide, barrier lakes, bridges, housing and so on. Especially in the clouds, rain, night and other bad weather conditions and failing to access to high-resolution optical images, SAR,as a supplementary of optical remote sensing,can provide timely and accurate information to make emergency command and aid decision.
     (6) Combined with field investigation and using of multi-source remote sensing data, geological disasters pregnancy background, the growth conditions and the extraction of host body are fulfilled. In the study of geology background and disaster distribution the hazard assessment index system is identified with mathematical evaluation models that appraise the geological hazards of the regional risk. By comparative analysis, selecting high precision model makes risk assessment and risk evaluation to study area.Risk assessment, analysis results and status of geological hazards are in good agreement, which have some reference value for disaster reduction and relief.
引文
[1]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433~453
    [2]《全国地质灾害通报(2008年1-12月)》. http://www.cigem.gov.cn/,2009.
    [3]何宏林,孙昭民,等.汶川M s8.0地震地表破裂带[J].地震地质,2008,30(2):359~362.
    [4]汪敏,,刘东燕.滑坡灾害风险分析研究[J].工程勘察,2001年第2期.
    [5]李新武,郭华东.航天飞机极化干涉雷达数据反演地表植被参数[J].遥感学报2002,6(6):424~429.
    [6]蒋弥,丁晓利,等.用L波段和C波段SAR数据研究汶川地震的同震形变[J].大地测量与地球动力学,2009,29(1):21~29.
    [7] CarraA.,Cardinali M.& Guzzetti F.Uncertainty in assessing landslide hazard and risk[J].
    [8]《四川省“5.12”地震42县应急排查报告》.四川省国土资源厅.
    [9]刘斌涛,陶和平,等.高分辨率SAR数据在5·12汶川地震灾害监测与评估中的应用[J].山地学报,2008,26(3).
    [10]谢全敏,刘鹏,夏元友.滑坡灾害风险评价研究[J].金属矿山,2006, 33(3)58~61.
    [11]张立海,张业成.中国地震次生地质灾害分布及地市级危险性区划研究[J].防灾减灾工程学报,2009,29(3).
    [12]陶和平,刘斌涛,刘淑珍,等.遥感在重大自然灾害监测中的应用前景[J].山地学报,2008,26(3):276~279.
    [13]成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护, 2003,第4期.
    [14]高庆华.中国的自然灾害与减灾系统工程[J].河北地质学院学报,1991,14(3):245~253.
    [15] A.K.Pachauri, P.V.Gupta, R.Chander.1998.Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology.1998,36(3~4).
    [16]张业成,张春山,张梁,等.中国地质灾害系统层次分析与综合灾度计算[J].中国地质科学院院报,1993,(27,28):139~154.
    [17]张业成,胡景江,张春山.中国地质灾害危险性分析与灾变区划[J].海洋地质与第四纪地质, 1995, 15 (3): 55~67.
    [18]张春山,张业成,马寅生.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J].地质力学学报2003, 9(2): 143~153.
    [19]张梁,张业成,罗元华,等.地质灾害灾情评估理论与实践[M].北京:地质出版社, 1998.
    [20]张春山,张业成,胡景江,等.中国地质灾害时空分布特征与形成条件[J].第四纪研究,2000,20(6):559~66.
    [21] A. Uromeihy, M.R. Mahdavifar, 2000. Landslide hazard zonation of the Khorshrostam area, Iran. Bulletin of Engineering Geology and the Environment 2000, 58: 207~213.
    [22] A.Uromeihy, M.R. Mahdavifar, 2001, Reply to Discussion on "Landslide hazard zonation of the Khorshrostam area, Iran"by A. Uromeihy and M.R. Mahdavifar, Bull Eng Geol Environ 58 :207-213. Bulletin of Engineering Geology and the Environment、2001. 60: 81
    [23] Candan Gokceoglu. 2001. Discussion on "Landslide hazard zonation of the Khorshrostam area, Iran" by A. Uromeihy and M.R. Mahdavifar, Bull Eng Geol Environ 58 :207~213. Bulletin of Engineering Geology and the Environment, 2001, 60:79~80.
    [24]黄润秋,A.W.Malone..香港的边坡安全管理与滑坡风险防范[J].山地学报, 2000,18(2):187~192.
    [25]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护, 2000,11(1):38~41.
    [26]沈芳,黄润秋,苗放等.地理信息系统与地质环境评价[J].地质灾害与环境保护,2000,11 (1).
    [27]沈芳,黄润秋,苗放等.区域地质环境评价与灾害预测的GIS技术[J].山地学报,1999,17 (4).
    [28]许强,黄润秋,向喜琼.地质灾害发生时间和空间的预测预报[J].山地学报,2000,18(增刊): 112~117.
    [29]黄润秋,许强,沈芳等.基于GIS的地质灾害区域评价与危险性区划系统研究[A].第三届海峡两岸三地环境灾害研讨会论文集[C].台北, 2001, 177~182.
    [30]邓辉,黄润秋,等InSAR技术在地形测量和地质灾害研究中的应用[J].山地学报,2003,21(3).
    [31]黄润秋,李为乐,等.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12).
    [32]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报, 2001, 28(1): 89~92.
    [33] [33]吴焕娟,郭明珠,张皎.遥感技术在防震减灾领域中的应用[J].地震工程与工程振动,2004,26(3):267~269.
    [34]马寅生,张业成,等.地质灾害风险评价的理论与方法[J].地质力学学报,2004,10(1):7~18.
    [35]乔建平,陈永波,等.滑坡灾害快速反应系统[J].自然灾害学报,2004,13(1);132~136.
    [36]乔建平,石莉莉,王萌.基于贡献权重叠加法的滑坡风险区划[J].地质通报.2008,27(11).
    [37]吴彩燕,乔建平,等.基于GIS与信息量模型的地层因素对三峡库区滑坡发育的影响关系[J].北京林业大学学报.2007,29(6).
    [38] Mantovani F, R Soeters, C J Van Westen. Remote sensing techniques for landslide studies and hazard zonation in Europe [J]. Geomorphology, 1996, 15:213~225.
    [39]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.62~79.
    [40] Dikau R, Cavallin A, Jager S. Databases and GIS for landslide research in Europe [J]. Geomorphology, 1996, 15(3~4): 227~239.
    [41] H. Go′mez, T. Kavzoglu. 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 2005, 78:11~27.
    [42]张继贤.3S支持下的滑坡地质灾害监测、评估与建模. [J].测绘工程,2005,14(2):1~5.
    [43]张继贤,李德仁.基于纹理质地子特征的影像纹理分形分析[J].测绘学报,1995,24(4):269~274.
    [44]杨武年,濮国梁,等.长江三峡库区地质灾害遥感图像信息处理及其监测和评估[J].地质学报.2005,79(3).
    [45]杨武年,濮国梁,等.长江三峡库区多类型、多时相遥感图像数字处理和地质构造信息提取[J].成都理工大学学报(自然科学版).2003,30(4):378~384.
    [46]秦四清,张悼元,王士天,等.滑坡非线性时间预报理论:工程地质研究进展.成都:西南交通大学出版社,1993: 171~181.
    [47]陈曦,张红,等.双基线极化干涉合成孔径雷达的植被参数提取[J].电子与信息学报,2008,30(12):2858~2861.
    [48]兰恒星,伍法权,王思敬.基于GIS的云南小江流域滑坡因子敏感性分析.岩石力学与工程学报, 2002,21(10): 1500~1506.
    [49]周翠英,林春秀,刘祚秋,等.基于GIS技术的区域性滑坡发生概率分析.岩石力学与工程学报, 2004,23(6): 911~914.
    [50]刘传正主编.长江三峡库区地质灾害成因与评价研究[M].地质出版社,2007.
    [51] B. Pradhan, R.P.Singh, M.F. Buchroithner. 2006. Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Advances in Space Research, 2006, 37:698~709.
    [52]李远华,姜琦刚,等.藏东林芝地区基于递进分析法(AMFP)理论的地质灾害评价系统实现[J].地质通报.2007,26(1):108~111.
    [53]李远华,姜琦刚,等.基于遥感调查与GIS分析的林芝地区地质灾害评价[J].地质通报.2006,68(2):57~60.
    [54] Janet E. Nichol, Ahmed Shaker, Man-Sing Wong. 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 2006, 76: 68~75.
    [55]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[R].2007.
    [56]韩玲玲,何政伟,等.长江三峡库区Landsat7 ETM+数据的处理方法探讨[J].遥感技术与应用,2003,18(4).
    [57]何政伟,黄润秋,等.基于ARCGIS的地质灾害防治信息与决策支持系统的研制[J].吉林大学学报(地球科学版),2004,34(4):601~606.
    [58]刘少军,何政伟,等.利用ArcGIS中VBA开发滑坡阶段综合预报功能[J]桂林工学院学报,2004,24(3).
    [59]刘少军,何政伟,等.基于组件式GIS的滑坡预报系统的研究[J].灾害学,2005,20(1).
    [60]姜琪文,许强,何政伟,等.基于SVM多类分类的滑坡区域危险性评价方法研究[J].地质灾害与环境保护,2005,16(3):238~330.
    [61]沈开俊,刘严松,何政伟,等.四川兴文县滑坡发育特征及影响因素分析[J].中国地质灾害与防治学报,2007,18(4):120~122.
    [62]吴伯清,何政伟,等.基于GIS的信息量法在九龙县地质灾害危险性评价中的应用[J].测绘科学,2008,33(4).
    [63]尹江涛,何政伟,等.天山公路地质灾害决策支持地理信息系统的设计研究[J].物探化探计算技术,2008,30(6):514:517.
    [64]韩玲玲.遥感技术在长江三峡库区奉节县滑坡灾害调查中的应用[R].2004.
    [65]谢韬.遥感和GIS技术支持下的大石峡水电站库区滑坡敏感性评价[R].2007.
    [66]石菊松,吴树仁,等..遥感在滑坡灾害研究中的应用进展[J].地质论评,2008,54(4).
    [67]王文俊,向喜琼,黄润秋,等.区域崩塌滑坡的易发性评价—以四川省珙县为例[J].中国地质灾害与防治学报.2003,14(2).
    [68]向喜琼,巨能攀等.数字高程模型在滑坡地表排水设计中的应用[J].成都理工大学学报.2003,30(4).
    [69]汤国安,刘学军,等.数字高程模型及地学分析的原理与方法[M].科学出版社,2006.
    [70] Sergios Theodoridis,Konstantinos Koutroumbas,等.Pattern Recognitoin[M].Publishing House of Electronics Industry,2004.
    [71]何满潮.工程地质数值法[M].科学出版社,2006.
    [72]白迪谋.工程建筑物变形观测何变形分析[M].西南交通大学出版社,2002.
    [73] GRAHAM L C.Synthetic Interferometer Radar for Topographic Mapping [A].Proceeding of the IEEE ,1974 ,62 (6) [C] . [ s. l. ] : [ s. n. ] ,1974. 763~770.
    [74] ZEBKER H A , GOLDSTEIN R M.Topographic Map2 ping from Interferometric Synthetic Aperture Radar Observations [ J ] . J Geophys Res , 1986 , 91 (B5) : 4 993~4 999.
    [75] GOLDSTEIN R M , ZERBER H A ,WERNER C L.Satellite Radar Interferometry :Two dimensional Phase Unwrapping[J ] . Radio Science ,1988 ,23 (4) :713~720.
    [76] Mark D. Pritt,1996. Phase unwrapping by means of multigrid techniques for interferometric SAR,IEEE Transaction On Geoscience And Remote Sensing,Vol.34,NO.3,pp728-738,May,1996.
    [77] Qian Lin,John F. Vesecky,Howard A. Zebker, 1992. New approaches in interferometry SAR data processing , IEEE Transaction On Geoscience And Remote Sensing,Vol.30 ,NO.3,pp560-567,May,1992.
    [78] Zebker H A,Goldstein R M1 Journal of Geophysical Research , 1986 , 91 : 4993.
    [79] Massonnet D,Rossi M , Carmona C , et al1 Nature ,1993 , 34 (6433) : 138.
    [80] Massonnet D , Feigl M , Rossi M , et al1 Nature , 1994.
    [81] Derauw D. & Moxhet J,1996.Preliminary results of Tandem SAR interferometry and differential interferometry over the Dead Sea area. http://www.geo.unizh.ch/ rsl/fringe96/papers/derauw,1996.
    [82] Wegmuller U,Werner C L , Rosen P A1 Derivation of ter2 rain slope from SAR interferometric phase gradient1 In :2nd ERS21 User Symp1 , Hamberg , Germany : Oct119931 711.
    [83] Hagberg J O,Ulander L M H , Askne J1 I EEE TransGeosci Remote Sensing , 1995 , 33 ~331.
    [84] Greenway D R. Vegetation and slope stability [A]. In: slides investigation and mitigation, Transportation Research Anderson, M.G.,Richards, K.S. (Eds.), Slope Stability[C].Wiley, New York,1987. 187~230.
    [85] Wegmuller U,Werner C L1 I EEE Trans Geosci RemoteSensing , 1997.
    [86] Walsh S j, D R Bulter. morphometric and multispectral image analysis of debris flows for natural hazard assessment[J]. Geocarto International, 1997, 12(1): 59~70.
    [87] Wadge G, APWislocki, E JPearson. Spaial analysis in GIS for natural hazard assessment [A]. Environmental Modellling with GIS[C]. (M. F., Goodchild, B.O., Parks and L.T. Steyaert, editors) Oxford University Press, Oxford, 1993. 332~338.
    [88] Dhakal AS. Lamdslide hazard mapping and the application of GIS in the Kulehani watershed Nepal[J]. Mountain Research and Deveplopment. 1999, 19(1):3~16.
    [89] Urs Wegmuller,Charles Werner,1997. Retrieval of vegetation parameters with SAR interferometry,IEEE [90]Transaction On Geoscience And Remote Sensing,Vol.35,NO.1,pp18-35,January,1997.
    [90] Wei Xu,Ian Cumming,1999. A region-rowing algorithm for InSAR phase unwrapping,IEEE Transaction On Geoscience And Remote Sensing,Vol.37,NO.1,pp124-134,January,1999.
    [91]苏世东,孙希龙,等..利用InSAR生成DEM技术现状及发展趋势[J].SCIENCE &TECHNOLOGY INFORMATION,2009,9.
    [92]侯建国,张勤,等.InSAR技术及其在地质灾害中的应用[J].测绘与空间地理信息,2007,30(6).
    [93]沈国状.廖静娟,等.面向对象技术用于多极化SAR图像地表淹没程度自动探测分析[J].遥感技术与应用,2007,22(1).
    [94]云日升,彭海良,等.干涉合成孔径雷达复图像配准精度分析和方法[J].测试技术学报,2003,17(1):10~14.
    [95]杨存建,周成虎,等.星载SAR图像中居民地专题信息增强的方法探讨[J].遥感技术与应用,1998,13(4).
    [96]李新武,郭华东,等.干涉雷达地表相干特性分析及土地类型分类[J].高技术通信,2002,05:1~4.
    [97]陈尔学,李曾元,等.基于极化合成孔径雷达干涉测量的平均树高提取技术[J].林业科学.2007,43(4).:66~70.
    [98]王超,张宏,等.雷达差分干涉测量[J].地理学与国土研究,2002,18(3):13~17.
    [99]王超.利用航天飞机成象雷达干涉数据提取数字高程模型[J].遥感学报,1997,1(1):46~49.
    [100]王超.[J]. SAR图像处理新进展.遥感学报,2009,14(1):1~2.
    [101]欧阳越,种劲松,吴一戎,等.基于合成孔径雷达图像内波参数反演方法[J].测试技术学报,2009,23(2):168~172.
    [102]姜景山,吴一戎,等.中国微波遥感发展的新阶段新任务[J].中国工程科学,2008,10(6).
    [103]吴一戎,洪文,等.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1259~1262.
    [104]李德仁,杨杰,等.从卫星雷达提取地面高程信息的原理与应用[J].大地测量与地球动力学,2002,22(2):1~6.
    [105]曾琪明,马洪兵,等.水稻微波后向散射模型研究与计算[J].北京大学学报(自然科学版),2000,36(1):131~141.
    [106]曾琪明,焦健,等.星载SAR图像的稻田耕地系数实验研究[J].国土资源遥感,2003,58(4):13~34.
    [107]曾琪明,等.合成孔径雷达遥感原理及应用简介[J].遥感信息,1998,(4).
    [108]梁家琳.欧空局干涉合成孔径雷达差分测量与相关特性的应用[J].测绘通报,1998,1:5~6.
    [109]梁家琳.雷达卫星的遥感应用及发展[J].测绘通报,1999,3:12~13.
    [110]赵士鹏,周成虎,谢又予,等.泥石流危险性评价的GIS与专家系统集成方法研究[J].环境遥感,1996,11(3):212~218.
    [111]范青松,汤翠莲,等.GPS与InSAR技术在滑坡监测中的应用研究[J].测绘科学,2006,31(5):60~65.
    [112]孙建宝,梁芳,等.汶川Ms 8.0地震InSAR形变观测及初步分析[J].地震地质,2008,30(3).
    [113]单新建,屈春燕,等.汶川MS 8.0级地震InSAR同震形变场观测与研究[J].地球物理学报,2009,52(2).
    [114] ]刘斌涛,陶和平,等.高分辨率SAR数据在5·12汶川地震灾害监测与评估中的应用[J].山地学报,2008,26(3)
    [115]王治华,周英杰,等.“5.12”汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查[J].国土资源遥感,2008,7(2).
    [116]黄润秋,等.“5·1 2"汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育,2008,2.
    [117]徐素宁,秦伟,等.“5·12”汶川地震典型地质灾害高分辨率遥感调查[J].河北遥感,2008.3
    [118]王峰,荆燕,等.运用Radarsat与ETM数据融合探测隐伏断裂[J].地震研究,2004127(4):369~373.
    [119] A. Guenther, A. Carstensen, W. Pohl. Slope stability management using GIS. INSTABILITY planning and management 265~272.
    [120]石菊松,张永双,董诚等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报, 2005, 26 (3): 275~282.
    [121]郭嘉仁.四川泥石流灾害规律探讨[J].中国减灾,1997,7(3):42~44.
    [122]韦方强,谢洪,钟敦伦.四川省泥石流危险度区划[J].水土保持学报,2000,14(1):59~63.
    [123]唐文清,刘宇平,等.龙门山断裂构造带GPS研究[J].大地测量与地球动力学,2004,24(3):57~59,83.
    [124]陈智梁,张选阳,沈凤,等.中国西南地区地壳运动的GPS监测[J].科学通报,1999,44(8):851~854.
    [125]王鸿,许强,刘天翔.四川省九龙县地质灾害形成机制及防治对策研究[J].地质灾害与环境保护,2007,(03)
    [126]林良俊,方成,李小杰,徐建宇,刘传正. 5.12汶川地震灾区地质灾害情况初步分析[J].水文地质工程地质, 2008,(04)
    [127]张景雄主编.空间信息的尺度、不确定性与融合[M].武汉大学出版社,2008.
    [128] HAROLD MOTT.Remote Sensing with Polarimetric Radar[M].National Defense Industry Press,2008.
    [129]唐益群,吕西林.地震引发青川县地区主要地质灾害浅析[J].结构工程师.2008,24(3).
    [130]吴章利,徐光黎,吴强.风险评估在西五路滑坡评价中的应用[J].地质灾害与环境保护.2008,19(4).
    [131]刘东.滑坡地质灾害监测方法综述[J].采矿技术.2009,9(3).
    [132]王治华.滑坡遥感调查、监测与评估[J].国土资源遥感.2007,1.
    [133]周中,刘宝琛.滑坡预测预报的Verhulst反函数残差修正模型[J].中国铁道科学.2009,30(4).
    [134]汪华斌,吴树仁.滑坡灾害风险评价的关键理论与技术方法[J].地质通报.2008,27(11).
    [135]李铁锋,丛威青.基于Logistic回归及前期有效雨量的降雨诱发型滑坡预测方法[J].中国地质灾害与防治学报.2007,17(1).
    [136]金文正,汤良杰.龙门山冲断带构造特征研究主要进展及存在问题探讨[J].地质论评.2008,54(1).
    [137]金江军,潘懋,李铁锋.区域滑坡灾害风险评价方法研究[J].山地学报.2007,25(2).
    [138]王涛,马寅生,龙长兴,谭成轩,吴树仁.四川汶川地震断裂活动和次生地质灾害浅析[J].地质通报.2008,27(11).
    [139]谢全敏,夏元友.滑坡灾害评价及其治理优化决策新方法[M].武汉理工大学出版.2008:24~25.
    [140]易庆林,易武,尚敏.三峡库区某滑坡变形影响因素分析[J].中国水土保持.2009(7).
    [141] Changjang LI,Tuhua ma,etc. Forecasting of Landslides Triggered by Rainfall:Theory,Methods&Applicaions[M]. Geological Publishing House.2008:24~25.
    [142]王治华.RS+GPS获取滑坡信息[J].中国地质灾害与防止学报.2004,15(1).
    [143] Panizza M. Environmental Geomorphology. Amsterdam: Elsevier, 1996.1~268.
    [144]薛东剑,何政伟等.改进的小波变换在多源遥感图像融合中的应用[J].计算机应用.2009,29(9).
    [145] ]United Nations, Department of Humanitarian Affairs. Mitigating Natural Disasters: Phenomena, Effects and Options AManual for Policy Makers and Planners. New York: United Nations, 1991.1~164.
    [146] United Nations, Department of Humanitarian Affairs. Internationally Agreed Glossary of Basic Terms Related to Disas-ter Management, DNA/93/36, Geneva, 1992.
    [147]刘希林,等.泥石流易损度评价[J].地理研究.2002,21(5).
    [148]李国砚,等.基于多尺度分析的遥感影像融合研究[J].测绘科学,2008,33(1).
    [149] Huang Wei,Jing Zhongliang.Multi-focus image fusion using pulse coupled neural nerwork[J].Patter Recogniton Letters, Jul.2007,28(9).
    [150] Jia Y H.Fusion of landsat TM and SAR images based on principal component analysis [J].Remote Sensing Technology and Application ,1998,13(1):46-49.
    [151]程英蕾.多源遥感图像融合方法研究[M].北京:西北工业大学,2006
    [152]李忠,曲力群,于萧等.工程地质概论[M].北京:中国铁道出版社,2007
    [153]黄润秋,许向宁等.地质环境评价与地质灾害管理[M].北京:科学出版社,2008
    [154]谭卓英,吴恒等.城市地质环境质量信息权综合评价方法研究[J].广西大学学报.1999,24(2):140~144.
    [155]周成虎,骆剑乘等.遥感影像地学理解与分析[M].科学出版社.1999.
    [156]宋晓宇,刘良云,李存军,等.基于单景遥感影像的去云处理研究[J].光学技术,2006,32(2):299~303.
    [157]赵忠明,朱重光.遥感图像中薄云的去除方法[J].环境遥感,1996,11(3):195-199.
    [158]赖格英,辜晓青.基于ERDASIMAGINE的遥感图像去云方法[C].GIS协会第六界年会论文集.成都:GIS协会,2001.
    [159]叶勤,李翔,李鹰.基于统计特性方法的航空遥感图像质量评定研究[J].遥感信息,2006,5.
    [160]贾永红. TM和SAR影像主分量变换融合法[J].遥感技术与应用,1998,13(1).
    [161]薛东剑,何政伟等.数学模型在矿产资源供需分析中的应用[J].中国矿业,2008,11.
    [162]薛东剑,何政伟等.基于EML与SML实现遥感影像融合质量评价及应用研究[J]].遥感信息.2009,106(6).
    [163]翁友玲,田庆久.遥感数据融合方法分析与评价综述[J].遥感信息,2003,3.
    [164]陈晓利,冉洪流,等.1976年龙陵地震诱发滑坡的影响因子敏感性分析[J].北京大学学报(自然科学版),2009,45(1):104~110.
    [165]郭雷,李晖晖,等.图像融合[M].北京:电子工业出版社,2008.[6]
    [166]朱良峰,吴信才,等.基于GIS的中国滑坡灾害风险分析[J].岩土力学,2003,10:221~230.
    [167]刘希林.区域泥石流风险评价研究[J].自然灾害学报,2000,9(1):54~60.
    [168]刘希林,赵源,等.四川德昌县典型泥石流灾害风险评价[J].自然灾害学报,2006,15(1):11~16.
    [169]韩中庚,数学建模方法及其应用[M].高等教育出版社.2009.
    [170]张春山.黄河上游地区地质灾害形成条件与风险评价研究[R].2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700