HAZ-China地震灾害损失评估系统设计及初步实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去三十多年里,我国在震害预测、地震应急指挥、地震现场工作和灾后恢复重建等领域取得了丰硕的研究成果,完成了三十余个城市和大型企业的震害预测工作并建立了相应的信息管理与辅助决策系统,构建了较为完善的地震现场工作标准体系,基本建成了覆盖中国大陆的全国一体化的地震应急指挥技术系统网络,在应对汶川和玉树两次重特大地震的应急救援行动中发挥了积极作用,为国务院和各级政府防震减灾规划和地震应急指挥决策提供了重要依据和有力的技术支撑。
     然而,目前的国内研究仍存在以下问题:各类震害防御和应急指挥系统琳琅满目,系统重复建设造成资源浪费和闲置,维护更新困难;系统软/硬件建设投资费用大,部分用户无力承担;部分信息系统的结果展示和辅助决策效果不佳,许多已建成系统被束之高阁没有发挥应有的作用;大多数信息系统都是基于C/S模式开发,服务范围小;多局限于某城市的具体信息系统的研发和功能实现,技术没有得到统一,缺乏统一的系统平台。实际上,尽管这些技术系统操作界面和管理形式不同,但在基础数据、评估模型等方面都是相通的、类似的,不应人为地割裂开来。
     针对以上问题和不足,考虑我国防震减灾实际需求并充分吸收国内外最新成果,本文提出:基于WebGIS平台,集成震害预测、地震应急指挥、地震现场损失评估、房屋安全鉴定、灾后科学考察和恢复重建等业务功能,建立一个统一的HAZ-China(HAZards China)地震灾害损失评估系统,通过Internet为不同用户提供震前、震时、震后的综合地震信息服务。本文较全面的分析和研究了该系统建设中的关键技术问题,主要工作和取得的成果如下:
     (一)、分析了地震业务需求和系统需求,提出了系统的总体功能和架构设计思路,确定了系统的体系结构、开发技术、GIS平台、数据库软件和集成技术等。
     (二)、充分吸收《GB/T19428-201X地震灾害预测及其信息管理系统技术规范》(征求意见稿)的最新技术思路和方法,确定了震害预测技术服务系统的基本功能和工作分级原则;总结了全国和各省市范围地震动衰减关系,给出了地震动影响场的不同绘制方式和动态修改方法,提出了地震动影响场模块的功能设计思路;以地震动影响场模块为例,详细介绍了本系统所提出的地震模型模块化的实现流程,包括模型公式统一规范化、计算处理逻辑、接口设计等;提出了建筑物震害预测模块的功能设计思路,总结了不同工作级别的各类建筑物的调查方式、抽样率、易损性分析方法和结果展示方式,并建议了优先采用的单体和群体建筑物易损性分析方法;初步介绍了生命线工程震害预测模块的功能设计思路;提出了建筑物和生命线工程地震灾害经济损失估计模块的功能设计思路;梳理了国内外39类地震人员伤亡评估方法,并建议了4种优先采用的方法,提出了地震人员伤亡估计模块的功能设计思路;初步介绍了地震地质灾害评价模块、次生灾害分析模块、防震减灾对策建议模块的功能设计思路。
     (三)、阐述了地震应急信息服务系统的的总体功能结构、业务流程和数据流程,并以震害评估模型设计为例描述了UML在系统中的建模方式;定义了多种地震触发方式,介绍了地震触发模块的基本功能和流程设计;梳理了快速预评估各类功能点,介绍了快速预评估与动态跟踪模块的基本功能设计;梳理了各类地震应急辅助决策功能点和应急信息分类,介绍了地震应急辅助决策模块的基本功能和流程设计;初步介绍了地震灾情上报模块、地震现场灾害直接损失评估模块和地震现场建筑物安全鉴定模块的基本功能;总结了36类地震计算模型,并将其划分为震害评估模型、辅助决策模型和路径分析模型三大类,分别简述了其基本功能。
     (四)、初步介绍了恢复重建信息服务系统、综合信息管理系统、信息发布系统、模型管理系统、用户和权限管理等其他系统的基本功能设计,并分别给出了程序开发用例图。
     (五)、提出了多精度多尺度的数据库建设思路:以已有数据成果收集为主,辅以遥感影像提取和人口统计数据推演等新方法,并补充典型地区现场调查数据;根据数据用途和精度不同,系统数据库分为三个层次:详实型数据、欠详实数据和普适型数据,分别描述了各层次数据库的数据来源、数据内容、数据分类、数据存储格式等;定义了统一的数据结构规范;规定了空间数据处理要求;采用XML格式对系统各类参数和数据标准化处理;建立了数据库存储更新维护方案。
     (六)、实现了系统包括硬件部署、软件平台选择、数据库、开发框架、计算流程等内容的设计与集成;给出了界面原型设计方法,通过程序开发实现了系统首页界面、地震动影响场、建筑物震害预测等展示界面;初步实现了设定地震下的地震影响场绘制、建筑物震害预测、生命线工程震害预测、经济损失评估和人员伤亡评估的计算流程;实现了多种维度的评估结果查询与统计、文档和专题图的展示功能。
     (七)、首次提出了基于云计算的HAZ-China地震灾害损失评估系统的初步设想,给出了总体框架和基本功能;详细阐述了云计算的4个服务层次的基本功能,包括地震应用服务层、地震业务开发平台服务层、地震数据服务层和基础设施服务层;建立了系统的体系结构;最后指出了近期首要任务是实现地震应用服务层的功能。
In the past three decades, China has made great achievements in fields ofearthquake damage prediction, earthquake emergency rescue, earthquake fieldwork, and post-earthquake rehabilitation. Earthquake damage prediction hasbeen carried out in more than30cities and large enterprises, andcorresponding information management and aid decision making systemshave been built. Relatively complete standard system of earthquake field workhas been constructed. An integrative national technical system network ofearthquake emergency command which covers mainland China has beenbasically constructed, which plays an active role in emergency rescue workduring the great Wenchuan and Yushu earthquakes. The system has alsoprovided important basis and powerful technical support on earthquakedamage mitigation planning and emergency command decision making for theState Council and governments at all levels.
     Yet there remain several problems in present domestic research work:1)There are various earthquake damage prevention and emergency commandsystems, and the repeated construction of these systems has caused resourcewaste and idleness, and difficulty on maintenance and updating.2) Thesoftware/hardware construction costs too much, which makes part of the usersunable to afford.3) The effects of result display and aid decision making ofpart of the information systems are not good, therefore, a lot of accomplishedsystems are left unused and their functions are laid aside and neglected.4)Most of the information systems are developed based on the C/S mode, whichleads to smaller scope of services.5) Most of the information systems arerestricted to development and function implementation of specific informationsystem of a certain city. The technology is not unified, and there is lack of auniform system platform. In fact, although the operation interfaces andmanagement forms of these technical systems are different, the basic data andassessment models are similar and interlinked, and should not be separatedartificially.
     Aim at the above problems, taking the actual demand of Chinaearthquake disaster mitigation into consideration, and fully absorb the newestachievements at home and abroad, this paper puts forward to build a unifiedHAZ-China (HAZards China) earthquake hazard loss estimation system basedon WebGIS platform. This system is set to integrate functions like earthquakedamage prediction, earthquake emergency command, earthquake field lossassessment, building safety appraisal, post-earthquake scientific investigation,and post-earthquake rehabilitation. The system would provide comprehensivepre-earthquake, co-earthquake and post-earthquake information services fordifferent users. This paper analyses and studies the key technical problems of the system relative comprehensively. The main work and achievements arelisted as follows:
     1. This paper analyses earthquake business requirements and systemrequirements, and proposes the idea of overall function and architecturedesign of the system. It also confirms the architecture, developmenttechnology, GIS platform, database software, and integration technology ofthe system.
     2. After fully absorbing the latest technology thought and method of‘Code for Earthquake Disaster Evaluation and Its Information ManagementSystem(Opinion Soliciting Draft)’(GB/T19428-201X), this paper gives outthe overall function orientation and the task grading principle of the technicalservice system of earthquake damage prediction. It summarizes thenationwide and provincial or city range attenuation relationships of groundmotion, giving out different drawing ways and dynamic modification methodsof earthquake influence field, putting forward the functional design thought ofearthquake influence filed module. Finally, the paper takes the earthquakeinfluence field module as an example, particularly introduces the realizationflow of earthquake model modularization which is proposed by the system.The realization flow consists of model and formula unified standardization,calculation processing logic, interface design, etc. The paper also proposes thefunctional design thought of earthquake damage prediction module forbuildings, summarizing the survey ways, sample rates, vulnerability analyticalmethods, and result display ways of various buildings at differentclassification grades, and suggests the prior adoptive vulnerability analyticalmethods for single building and building groups. The paper preliminarilyintroduces the functional design thought of earthquake damage predictionmodule for lifeline engineering, putting forward the functional design thoughtof earthquake hazard loss estimation module for lifeline engineering andbuildings, combing39earthquake casualty assessment methods at home andabroad and suggests4prior adoptive ones, proposes the functional designthought of earthquake casualty assessment module. The paper alsopreliminarily introduces the functional design thought of earthquakegeological disaster assessment module, secondary disaster analytical module,and earthquake damage mitigation countermeasure suggestion module.
     3. This paper expounds the overall functional structure, business process,and data flow of the earthquake emergency information service system, anddescribes the modeling way in the system of UML by taking earthquakedamage assessment pattern design as an example. It defines various triggermodes of earthquake, and introduces the basic function and process design ofearthquake trigger module. It combs different types of function points ofprompt pre-assessment, and introduces the basic functional design of promptpre-assessment and dynamic tracking module. It combs various functionpoints of earthquake emergency aid decision making and classification of emergency information, and introduces the basic function and process designof earthquake emergency aid decision making module. It preliminarilyintroduces the basic function of earthquake disaster situation reporting module,direct loss assessment on earthquake field module, and building safetyappraisal on earthquake field module. It summarizes36types of earthquakeassessment models, dividing them into three broad heading as earthquakedamage assessment module, aid decision making module, and path analysismodule, and respectively describes the basic function of these broad heading.
     4. The paper preliminarily presents the basic functional design ofrehabilitation information service system, comprehensive informationmanagement system, information publication system, model managementsystem, user and privilege management system, etc., and respectively givesout the use case diagrams for program development.
     5. The paper proposes the construction thought of multi-precision andmulti-scale database: mainly based on collection of the existing dataachievements, assisted by new methods like remote sensing image extractionand population statistics data deduction, supplemented by field investigationdata of typical districts. According to different data usages and precisions, thesystem database is divided into three layers: detailed data, less detailed data,and general data. The paper respectively describes the data sources, datacontents, data classification, and data storage formats of each database layer.The paper also defines the unified data structure standard, rules the specialdata processing requirements, adopts XML format to standardized processvarious parameters and data of system, builds the scheme for databasestoraging, updating and maintenance.
     6. Design and integration of system including contents such as hardwaredeployment, software platform selection, database, framework development,computing process have been accomplished. The prototype design method of interface was given out. The interfaces of home page, earthquake influence field, earthquake damage prediction, etc. have been built through program development. The computing processes of earthquake influence field drawing for setearthquakes, earthquake damage prediction for buildings, earthquake damageprediction for lifeline engineering, economic loss assessment, and casualty assessment have been initially realized. And functions such as query and statistic of assessment results with various dimensionalities, and display of documents and thematic maps have already been realized.
     7. The preliminary assumption of HAZ-China earthquake lossestimation system based on Cloud Computing platform is firstly put forwardin this paper, and the overall framework and basic function were given out.The paper expounds the basic function of4service layers of CloudComputing platform. The4layers are Earthquake Software-as-a-Service,Earthquake Platform-as-a-Service, Earthquake Data-as-a-Service, andEarthquake Infrastructure-as-a-Service. The architecture of the system has already been established. Finally, the paper indicates that the recent primarytask is the implementation of Earthquake Software-as-a-Service function.
引文
[1] Ben-Chieh Liu等著,国家地震局震害防御司译.美国新马德里地区地震灾害损失预测研究[M].北京:地震出版社,1993.
    [2]陈洪富,戴君武,孙柏涛,王艳茹.玉树7.1级地震人员伤亡影响因素调查与初步分析[J].地震工程与工程振动,2011,31(4):18-25.
    [3]陈洪富,孙柏涛,孙得璋.地震经济损失评估之装修破坏损失比厘定研究[J].震灾防御技术,2010,5(2):248-256
    [4]陈洪富.城市房屋建筑装修震害损失评估方法研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2008.
    [5]陈有库,谢礼立,杨玉成.群体震害的快速预测方法[J].地震工程与工程振动,1992,12(4):81-87.
    [6]陈颙,陈鑫连,傅征祥等.十年尺度地震灾害损失预测研究[M].北京:地震出版社,1995.
    [7]陈颙,刘杰,陈棋福等.地震危险性分析和震害预测[M].北京:地震出版社,1999.
    [8]程家喻,杨哲.唐山地震人员阵亡率与房屋倒塌率的相关分析[J].地震地质,1993,15.
    [9]程家喻,杨哲.评估地震人员伤亡的软件系统[J].地震地质,1996,18(4).
    [10]戴君武,王艳茹等.基于GIS的地震灾区恢复重建科学化决策辅助系统[R].哈尔滨:中国地震局工程力学研究所地震行业科研专项经费项目研究报告,2012.
    [11]地震工程委员会地震损失估计小组,国家地震局震害防御司译.未来地震的损失估计[M].北京:地震出版社,1989.
    [12]地震应急救援发展规划编制组.“十二五”地震应急救援发展规划(送审稿)[R].北京:中国地震局,2011.
    [13]《地震应急联动协同灾情数据库收集与数据库格式规范(试行稿)》[S].北京:中国地震局地质研究所,2011.
    [14]丁伯阳.介绍两种震害损失估算方法[J].灾害学,1991,6(2).
    [15]范灵春,范开红,王悦,等.深圳市经济特区防震减灾信息管理与应急辅助决策系统技术报告[R].成都:四川省地震局,2009.
    [16]方洪.地震应急辅助决策支持系统的研究与实现[D].成都:电子科技大学硕士论文,2011.
    [17]冯启民,等.GB/T19428-2003《地震灾害预测及其信息管理系统技术规范》宣贯教材[M].北京:地震出版社,2004.
    [18]傅征祥,李革平.地震生命损失研究[M].北京:地震出版社,1993.
    [19]高孟潭,任利生.我国城市地震安全基础工作回顾与展望[M].邢台地震四十周年学术研讨会文集,2006,364-367.
    [20]高杰,冯启民,莫善军.城市地震灾害预测及其信息管理通用程序研究[J].世界地震工程,2005,21(1):75-80.
    [21]高杰,冯启民,张海东.城市群体建筑物震害模拟方法研究[J].震灾防御技术,2007,2(2):193-200.
    [22]国家地震局灾害防御司,未来地震灾害损失预测研究组.中国地震灾害损失预测研究[M].北京:地震出版社,1990
    [23]国家地震局震害防御司.未来地震的损失估计方法[M].北京:地震出版社,1991.
    [24] GB21734-2008.地震应急避难场所场址及配套设施[S].北京:中国标准出版社,2011.
    [25] GB/T18204.1-2006.地震现场工作第1部分:基本规定[S].北京:中国标准出版社,2006.
    [26] GB/T18204.2-2001.地震现场工作第2部分:建筑物安全鉴定[S].北京:中国标准出版社,2001.
    [27] GB/T18204.3-2011.地震现场工作第3部分:调查规范[S].北京:中国标准出版社,2011.
    [28] GB/T18208.4-2011.地震现场工作第4部分:灾害直接损失评估[S].北京:中国标准出版社,2011.
    [29] GB/T19428-201X.地震灾害预测及其信息管理系统技术规范(征求意见稿)[S].哈尔滨:中国地震局工程力学研究所,2012.
    [30] GB/T19428-2003.地震灾害预测及其信息管理系统技术规范[S].北京:中国标准出版社,2003.
    [31] GB/T24335-2009.建(构)筑物地震破坏等级划分[S].北京:中国标准出版社,2009.
    [32] GB/T24336-2009.生命线工程地震破坏等级划分[S].北京:中国标准出版社,2009.
    [33] GB/T24888-2010.地震现场应急指挥信息共享技术标准[S].北京:中国标准出版社,2010.
    [34] GB/T24889-2010.地震现场应急指挥管理信息系统[S].北京:中国标准出版社,2010.
    [35] GB/T27932-2011.地震灾害间接经济损失评估方法[S].北京:中国标准出版社,2011.
    [36] GB/T27933-2011.震后恢复重建工程资金初评估[S].北京:中国标准出版社,2011.
    [37]胡少卿.建筑物的群体震害预测方法研究及基础设施经济损失预测方法探讨
    [D].哈尔滨:中国地震局工程力学研究所博士论文,2007.
    [38]金波.分布式防震减灾信息和辅助决策系统[D].哈尔滨:中国地震局工程力学研究所博士论文,2005.
    [39]李树桢.地震灾害评估[M].北京:地震出版社,2006.
    [40]李树桢,贾相玉,朱玉莲.震害评估软件EDEP-93及其在普洱地震中的应用[J].自然灾害学报,1995,1(4):39-46.
    [41]李小军,阎秀杰,潘华.中小震近场地震动估计中地震动衰减关系的适用性分析[J].地震工程与工程振动,25(1),l-7.
    [42]林均岐,钟江荣.地震灾害产业关联损失评估[J].世界地震工程,2007,23(2):37-40.
    [43]林均岐,钟江荣等.地震企业停减产损失评估[J].世界地震工程,2006,22(4):18-21.
    [44]刘锡荟,李荷.地震损失估计和经济决策模型[J].地震工程与工程振动,1985(4).
    [45]罗军舟,金嘉晖,宋爱波等.云计算:体系架构与关键技术[J].通信学报,2011,32(7):3-21.
    [46]罗俊雄,叶锦勋.HAZ-Taiwan地震灾害损失评估系统[J].国立台湾大学台大工程学刊,2001,85:13-31.
    [47]马玉宏,谢礼立.地震人员伤亡估算方法研究[J].地震工程与工程振动,2000,20(4):140-147.
    [48]马玉宏,谢礼立.关于地震人员伤亡因素的探讨[J].自然灾害学报,2000,9(3):84-90.
    [49]马玉宏,赵桂峰.地震灾害风险分析及管理[M].北京:科学出版社,2008.
    [50]马玉宏.基于性态的抗震设防标准研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2000.
    [51]聂树明.基于GIS的地震影响场设计与应用[J].应用基础与工程科学学报,2008,16(4):546-555.
    [52]中国地震局震灾应急救援司.《区域级抗震救灾指挥部地震应急基础数据库格式规范(修订稿)》(中震救函[2006]41号)[S].2006.
    [53]帅向华,姜立新,王栋梁.国家地震应急指挥软件系统研究[J].自然灾害学报,2009,18(3):99-103.
    [54]帅向华,杨天青,马朝晖等.国家地震应急指挥技术系统[M].北京:地震出版社,2009.
    [55]孙柏涛,陈洪富.计及城市房屋建筑装修破坏的地震经济损失评估方法[J].地震工程与工程振动,2009,29(5):164-169.
    [56]孙柏涛,胡少卿.基于已有震害矩阵模拟的群体震害预测方法研究[J].地震工程与工程振动,2005,25(6):102-108.
    [57]孙柏涛,孙得璋.建筑物单体震害预测新方法研究[J].北京工业大学学报,2008,34(7):701-707.
    [58]孙柏涛等.国家“十五”项目中国数字地震观测网络应急分项软件“区域震害评估系统”研究报告[R].哈尔滨:中国地震局工程力学研究所,2008.
    [59]汤爱平.城市灾害管理与震后应急反应辅助决策研究[D].哈尔滨:中国地震局工程力学研究所博士论文,1999.
    [60]陶正如.城市地震风险评估和管理中的两个问题[D].哈尔滨:中国地震局工程力学研究所硕士学位论文,2003.
    [61]汪素云,俞言祥,高阿甲等.中国分区地震动衰减关系的确定[J].中国地震,2000,16(2),99-106.
    [62]王晓青,丁香.地震现场灾害损失评估地理信息系统[M].北京:地震出版社,2002.
    [63]王晓青.基于GIS的地震现场灾害损失评估系统[J].自然灾害学报,2004,13(1):118-125.
    [64]王艳茹.震后恢复重建工程资金评估方法研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2010.
    [65]温瑞智.基于GIS的防震减灾系统[D].哈尔滨:中国地震局工程力学研究所博士论文,1999.
    [66]肖光先.地震工程中的经济问题[J].世界地震工程.1986(1).
    [67]肖光先.地震损失的预测方法[J].地震学刊,1987(1).
    [68]肖光先.震后损失快速评估[J].灾害学,1991,6(4).
    [69]肖兰喜,袁一凡等.大中城市震害预测与辅助决策的空间分析[J].自然灾害学报,2002,11(3):76-82.
    [70]谢礼立,尹之潜.中国大陆未来地震的震害评估技术研究.第二届两岸地震学术研讨会论文集,1996.
    [71]谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1).
    [72]杨玉成等.鞍山市城市综合防灾系统的示范研究知识工程总体设计[C].城市与工程减灾基础研究论文集,北京:中国科学技术出版社,1996,145-154.
    [73]姚保华.基于WebGIS的防震减灾系统研究及其实现[D].哈尔滨:中国地震局工程力学研究所博士论文,2002.
    [74]叶锦勋.地震灾害境况模拟方法与应用软件整合研究[R].台湾地震工地研究中心报告,NCREE-02-009,2002.
    [75]叶锦勋.台湾地震损失评估系统-TELES[R].台湾地震工地研究中心报告,NCREE-03-002,2003.
    [76]尹之潜.地震灾害损失预测研究[M].中国地震工程研究进展,北京:地震出版社,1992.
    [77]尹之潜,杨淑文.地震损失分析与设防标准[M].北京:地震出版社,2004.
    [78]尹之潜.震害与地震损失预测方法[J].地震工程与工程振动,1990,10(1).
    [79]尹之潜.地震灾害及损失预测方法[M].北京:地震出版社,1996.
    [80]应用技术委员会[美]编,曹新玲等译.加利福尼亚未来地震的损失估计[M].北京:地震出版社,1991.
    [81]余世舟.地震次生灾害的数值模拟[D].哈尔滨:中国地震局工程力学研究所硕士论文,2004.
    [82]余世舟等.地震次生毒气泄漏与扩散的数值模拟的参数分析[J].地震工程与工程振动,2002.22(6):150-155.
    [83]俞言祥,汪素云.中国东部和西部地区水平向基岩加速度反应谱衰减关系[J].震灾防御技术,2006,1(3),206-217.
    [84]张风华.城市防震减灾能力评估研究[D].哈尔滨:中国地震局工程力学研究所博士论文,2003.
    [85]张桂欣.两种多参数影响的建筑物群体震害预测方法研究[D].哈尔滨:中国地震局工程力学研究所硕士论文,2010.
    [86]张桂欣,孙柏涛.多因素影响的建筑物群体震害预测方法研究[J].世界地震工程,2010,26(1):26-30.
    [87]张令心,孙柏涛等.建(构)筑物地震破坏等级划分标准有关问题研究[J].地震工程与工程振动,2010,30(2):39-44.
    [88]张兴华.基于J2EE的地震现场房屋安全鉴定系统设计与实现[D].哈尔滨:中国地震局工程力学研究所硕士论文,2011.
    [89]章在墉,肖光先.城市地震损失评估方法研究中的几个基本问题[C].中国地震工程研究进展,北京:地震出版社,1992.
    [90]章在墉,肖光先.地震灾害损失分析[C].中国工程抗震研究四十年,北京:地震出版社,1989.
    [91]赵振东等.地震次生毒气泄漏与扩散的数值模拟与动态仿真[J].地震工程与工程振动,2002.22(5):137-142.
    [92]赵振东等.地震人员伤亡状态研究[C].第五届全国地震工程会议论文集(Ⅰ),1998.
    [93]赵振东等.建筑物震后火灾发生与蔓延危险性分析的概率模型[J].地震工程与工程振动,2003,23(4):183-187.
    [94]国家地震社会服务工程震害防御规范编写组《.震害防御信息服务数据采集规范(试行稿)》[S].2011.
    [95]郑向远.地震人员伤亡的动态评估[D].哈尔滨:中国地震局工程力学研究所硕士论文,1999.
    [96]钟江荣,赵振东,余世舟.基于GIS的毒气泄漏和扩散模拟及其影响评估[R].自然灾害学报,2003,12(4),106-110.
    [97]周雍年.设防标准研究中的结构易损性分析方法[R].哈尔滨:国家地震局上程力学研究所报告,1995.
    [98]周正华.基于GIS的地震衰减烈度信息系统[D].哈尔滨:中国地震局工程力学研究所硕士论文,1995.
    [99]邹其嘉,毛国敏等.地震人员伤亡易损性研究[R].自然灾害学报,1995,14(3).
    [100]左惠强.基于GIS的地震危险性分析[D].哈尔滨:中国地震局工程力学研究所博士论文,1996.
    [101] Amr S. Elnashai, Lisa J. Cleveland, Theresa Jefferson, John Harrald. Impact ofNew Madrid Seismic Zone Earthquakes on the Central USA[R]. Volume I ofMAE Center Report, No.09-03, October2009.
    [102] Allen T. I., Marano K. D., Earle P. S., Wald D. J. PAGER-CAT:A compositeearthquake catalog for calibrating global fatality models[J]. Seism Res Lett,2009,80(1):57-62.
    [103] Allen T. I., Wald D. J., Earle P. S., et al. An atlas of shakeMaps and populationexposure catalog for earthquake loss modeling [J]. Bull. Earthq. Eng.,2009, v.7,DOI:10.1007/s10518-009-9120-y.
    [104] ATC. ATC13Earthquake Damage Evaluation Data for California[R]. AdvancedTechnology Council,1985.
    [105] CATS. http://cats.saic.com/cats/models/cats_earthquake.html.
    [106] Chen H. F., Sun B. T. Investigation on Earthquake-induced Buildings Decorationand Indoor/outdoor Properties Losses in Urban Zones of Wenchuan Ms8.0GreatEarthquake and Study on Decoration Damage Loss Ratio [J]. Key EngineeringMaterials,2010, Vols.417-418(2010) pp821-824.
    [107] Coburn A. W., Spence R. J., Pomonis A. factors determining human casualtiesmortality prediction in building collapse [A]. The Tenth World Conference onEarthquake Engineering[C],1992,10:5989-5994.
    [108] Brookshire D. S., et al. Direct and indirect economic losses from earthquakedamage [J]. Earthquake Spectra,1997,13(4):683-701.
    [109] Earle P. S., Wald D. J., Allen T. I., et al. Rapid exposure and loss estimates forthe May12,2008MW7.9Wenchuan earthquake provided by the U.S.Geological Survey's PAGER system[C]. Proc.14th World Conf. Earthqu. Eng,2009, Beijing, China, Paper, pp8.
    [110] Earle P. S., Wald D. J., Jaiswal K. S., et al. Prompt assessment of globalearthquakes for response (PAGER): A system for rapidly determining the impactof global earthquakes worldwide[R]. U.S. Geological Survey Open-File Report,2009-1131.
    [111] FEMA&NIBS. Earthquake loss estimation methodology—HAZUS1999[R].Washington, DC: Federal Emergency Management Agency and National Instituteof Building Science,1999.
    [112] FEMA. Multi-hazard Loss Estimation Methodology (HAZUS-MH) technicalmanual[R]. Washington, DC: Federal Emergency Management Agency,2003.
    [113] Google Earth. http://earth.google.com,2010.
    [114] http://www.wapmerr.org/publications.html
    [115] Jaiswal K. S., Wald D. J. Development of a semi-empirical loss model within theUSGS Prompt Assessment of Global Earthquakes for Response (PAGER)System[C]. Proc. of the9th US and10th Canadian Conference on EarthquakeEngineering: Reaching Beyond Borders, July25-29,2010, Toronto, Canada.
    [116] Jaiswal K. S., Wald D. J. An Empirical Model for Global Earthquake FatalityEstimation[J]. Earthquake Spectra,2010,26(4):1017-1037.
    [117] Jaiswal K. S., Wald D. J. Rapid estimation of the economic consequences ofglobal earthquakes[C]. U. S. Geological Survey Open-File Report,2011,1116:47.
    [118] Jaiswal K. S., Wald D. J. A semi-empirical approach for rapid earthquakecasualty and damage estimation[C]. U. S. Geological Survey Open-File Report.
    [119] Jaiswal K. S., Wald D. J., Hearne M. Estimating casualties for large worldwideearthquakes using an empirical approach[C]. U. S. Geological Survey Open-FileReport2009-1136.
    [120] Jaiswal K. S., Wald D. J., Earle P. S., et al. Earthquake Casualty Models Withinthe USGS Prompt Assessment of Global Earthquakes for Response (PAGER)System[C]. Proceedings of the2nd International Disaster Casualty Workshop,Cambridge, England,8pp.
    [121] LESSLOSS. http://www.lessloss.org.
    [122] M. Erdik, K. Sesetyan, M. B. Demircioglu, et al. Rapid earthquake lossassessment after damaging earthquakes [J]. Soil Dynamics and EarthquakeEngineering,2011,31:247-266.
    [123] Murakami H. O., A simulation model to estimate human loss for occupants ofcollapsed buildings in an earthquake [A].1992,10.
    [124] Marano K. D., D. J. Wald, T. I. Allen. Global earthquake casualties due tosecondary effects: a quantitative analysis for improving rapid loss analyses. Nat.Hazards., V.49, DOI:10/1007/s11069-009-9372-5.
    [125] MELL P., GRANCE T. The NIST Definition of Cloud Computing [R]. NationalInstitute of Standards and Technology.2011.
    [126] Molina S., Lindholm C. D. A Capacity Spectrum Method based Tool developedto properly include the uncertainties in the seismic risk assessment under a logictree scheme[C]. ECI. Geohazards-Technical, Economical and Social RiskEvaluation. June2006, Lillehammer, Norway,18–21.
    [127] NERIES. http://www.orfeus-eu.org/neries/NERIES-proposal.htm.2010.
    [128] PAGER. http://earthquake.usgs.gov/eqcenter/pager/.2010.
    [129] Pane S., Weimin D. Simulation model for earthquake casualty estimation [A].The5th US. National Conference on Earthquake Engineering, Vol.3, EERI.
    [130] Panel on Earthquake Loss Estimation Methodology, Committee on EarthquakeEngineering Commission on Engineering, Technical System&National ResearchCouncil.1989estimating losses from future earthquake [R]. Issued by FEMA(FEMA-177), USA.
    [131] Porter K., K. Jaiswal, D. Wald, et al. Fatality models for the U. S. GeologicalSurvey's Prompt Assessment of Global Earthquakes for Response (PAGER)system[C]. Proc.14th World Conf. Earthq. Eng., Beijing, China,8pp.
    [132] R. V. White, et al. Development of a national earthquake loss estimationmethodology [J]. Earthquake Spectra,1997,13(4):643-661.
    [133] RADIUS. http://www.geohaz.org/radius/RADIUSIntro.html.
    [134] Risk Management Solutions, Inc. Earthquake Loss Estimation Method-HAZUS97Technical Manual [R]. National Institute of Building Sciences, Washington D.C.,1997.
    [135] S. Okada. Indoor-zoning map on dwelling space safety during an earthquake [A].The Tenth World Conference on Earthquake Engineering [C].1992,10:6037-6042.
    [136] Sergio M., Dominik H. L., Conrad D. L. User and Technical Manual v4.1ofSELENA v4.1[R].NORSAR, Kjeller, Norway,2009.
    [137] SHAKEMAP. http://earthquake.usgs.gov/eqcenter/shakemap.2010.
    [138] Sun B. T., Chen H. F. Study on loss assessment of building damages of urbanearthquake[C]. The14th World Conference on Earthquake Engineering, Beijing,China,2008, October.
    [139] Sun B. T., Chen H. F. An earthquake loss assessment method to buildings inurban zones and its application in Wenchuan Ms8.0Great earthquake. KeyEngineering Materials [J],2010,417-418:817-820.
    [140] Sun B. T., Zhang G. X. The Wenchuan earthquake creation of a rich database ofbuilding performance[J]. Science China Technological Sciences,2010,53(10):2668-2680.
    [141] Wald D. J., Jaiswal K. S., Marano K. D., et al. Developing casualty and impactalert protocols based on the USGS Prompt Assessment of Global Earthquakes forResponse (PAGER) System[C]. Proceedings of the1st International DisasterCasualty Workshop, Cambridge, England, pp10.
    [142] Wald D. J., K. Jaiswal, K. S., Marano K. D., et al. Advancements in casualtymodeling facilitated by the USGS Prompt Assessment of Global Earthquakes forResponse (PAGER) System[C]. Proceedings of the2nd International DisasterCasualty Workshop, Cambridge, England, pp8.
    [143] Wald D. J., P. S. Earle, T. I. Allen, et al. Development of the U. S. GeologicalSurvey's PAGER system (Prompt Assessment of Global Earthquakes forResponse)[C]. Proc.14th World Conf. Earthq. Eng., Beijing, China, pp8.
    [144] Wald D. J., Jaiswal K. S., Marano K. D., et al. PAGER-Rapid assessment of anearthquake’s impact[C]. U.S. Geological Survey Fact Sheet2010–3036, p4.
    [145] Weimin D. Earthquake models for catastrophe risk and their application toinsurance [J]. Earthquake Engineering and Engineering Vibration,2002,1(1):145-151.
    [146] Yeh CH., Loh CH., Tsai KC. Overview of Taiwan earthquake loss estimationsystem [J]. Nat Hazards.2006,37(1-2):23-37.
    [147] ZEUS-NL. http://www.mae.ce.uiuc.edu/software_and_tools/zeus_nl.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700