振动特征传感器理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国处于环太平洋地震构造系和大陆地震构造系的交汇部位,因此我国的地震频繁而强烈。地震除了造成工程破坏等直接损失之外,还会引起如火灾等次生灾害,造成巨大的经济损失。为了减少地震造成的损失,本文研究了振动特征传感器,该传感器可用于重大工程和生命线系统工程,该传感器每隔一段时间计算一次场地振动特征,根据计算的场地振动特征进行地震报警,防止由于仅依靠振动幅值进行地震报警而引起的误判。振动特征传感器计算的振动特征还可以指导地震后救灾活动。
     本文工作主要围绕特征传感器进行,重点放在特征传感器各个功能模块的选取上:信号预处理、振动特征的选取。此外,研究了根据场地地震加速度记录识别场地液化的方法。
     信号预处理部分:对于压电传感器测量的加速度信号,在分析信号之前,需要对信号进行预处理,信号预处理针对信号中的趋势项进行。分析几种常用的消除趋势项的滤波方法,得出结论:可以采用Butterworth高通滤波器和最小二乘法滤波对信号趋势项进行预处理。
     振动特征部分:分析了261条地震竖向记录,采用基于统计方法识别P波初动,并对P波初动后3秒内的振动特征进行分析,提出场地速度、谱成分、过零周期等振动特征区分地震与非地震振动;分析实测的489条非地震振动和1642条地震水平向记录,分析整个振动时程,提出谱成分、过零周期等振动特征区分地震与非地震振动。
     场地液化识别:参考现有的根据场地加速度记录分析场地液化的方法,采用小波分解和Hilbert谱分析求解场地的瞬时频率,根据场地瞬时频率识别场地的液化情况。
     最后,根据以上的研究,理论上提出了分析全时程振动的特征传感器结构示意图,以及特征传感器各部分的功能。
China locates in the joint of the Pacific earthquake zone and the continentalearthquake zone, so the earthquakes in our country are of high frequency and of highintensity, The earthquakes not only result in the structural destroys but also induce thesecond disasters, such as fire and so on, which inducing much lose. The vibrationcharacter sensor using the ground acceleration to quickly identify the earthquake isstudied in this paper. The vibration character sensor can be used by the importantengineering and the lifeline engineering. The vibration character sensor calculates thevibration characters though which the earthquake is recognized. The vibrationcharacter sensor can reduce the chance making false alarm and offer the earthquakerescue work guidance.
     The key work of this paper is studying the vibration character sensor andchoosing the calculation methods, such as the processing of the crude signal, and thevibration character. Then the methods identifying soil liquefaction through theearthquake acceleration time history record are studied.
     The processing of crude signals: the crude signals must be processed to removethe baseline drifts and to be filtered before used. Several methods are discussed, thehigh passing Butterworth filter can be used for real time signal processing, and theleast square error method can be used when real time signal processing is notrequired.
     Vibration character: 261 earthquake vertical records are used to identify the Pphase of the earthquake using the statistical method. And the 3 seconds records afterthe P phase arrival are analyzed to find some vibration characters, such as spectrum,ground velocity, zero crossing time. 489 records other than earthquake records and1642 earthquake horizontal records are analyzed to fmd some vibration characterssuch as spectrum and zero crossing time to identifying the earthquake from others.
     Soil liquefaction identifying: several methods identifying the soil liquefactionare discussed. This article chooses the wavelet transform and the Hilbert spectrumtransform to get the ground instantaneous frequency through which the soilliquefaction is identifying.
     In the end, the sketch map of the vibration character sensor which analyzes thewhole record and the functions of all the parts are theoretically constructed.
引文
[1] 汤木生,试论地震次生灾害的预防与控制,城市煤气.1999(4).19-22。
    [2] 韩渭宾,地震灾害基本特点及防震减灾对策的几点思考,四川地震,2004年9月,第3期,1-5。
    [3] 赵思健,任爱珠,熊利亚,城市地震次生火灾研究综述,自然灾害学报,2006年4月,15卷2期,57-67。
    [4] 朱福祥,郭迅,李山有,等,重大工程地震预警初步研究;世界地震工程,18卷3期,2002年9月,32—36。
    [5] 秦媛,唐山地震次生灾害源的防治,防灾博览,2002(4),12-13。
    [6] 范秀丽,城市与地震次生灾害,防灾博览,2002(3),30-31。
    [7] 赵思健,熊利亚,任爱珠,城市地震次生火灾的潜在危险性一基于城市地理信息系统网格的评价,自然灾害学报,2006年6月,15卷3期,76-84。
    [8] Shuzo TAKEMOTO, Geophysical applications of holographic and ESPI techniques; SPIE Vol. 1553 Laser interferometry IV: Computer-Aided interferometry(1991), 168-174.
    [9] 李志强,聂高众,苏桂武,数字城市和防震减灾信息管理系统,地震地质,Vol.27.No.1,2005年3月,164—171。
    [10] Hiroo Kanamori, real-time seismology and earthquake damage mitigation, Annu. Rev. Earth Planet. Sci. 2005, 33:195-214.
    [11] Richard M Allen, rapid magnitude determination for earthquake early warning, Workship on Multidisciplinary Approach to Seismic Risk Problems, Sant' Angelo dei Lombardi, 2003, 9, 23, 1-7.
    [12] Yih-Min Wu, Hiroo Kanamori, Richard M. Allen, Egill Hauksson, An onsite earthquake early warning method for the southern California Seismic Network, Bull. Seism. Soc. Am. Submitted, 2005: 1-24.
    [13] 杨文东,金星,李山有,等;地震定位研究及应用综述;地震工程与工程振动,2005,25(1):14-16。
    [14] 夏玉胜,杨丽萍,地震预警(报)系统及减灾效益研究,西北地震学报,第22卷第4期,2000年12月,452-457。
    [15] 李山有,金星,马强,等,地震预警系统与智能应急控制系统研究;世界地震工程,2004年12月,20卷4期:21-26。
    [16] 廖旭,黄河;企业地震预警系统应用研究;地震工程与工程振动,第22卷,第6期,2002年12月。142-149。
    [17] 赵鸿儒,孙进忠,唐文榜,等;全波震相分析,地震出版社,1991年。
    [18] 张晓东 张国民,关于地震预警的思考,国际地震动态,2004(6),42-46。
    [19] Friedemann Wenzel, Micheal Baur, Frank Fiedrich et al. Potential of Earthquake Early Warning Systems, Natural Hazards 23, 2001:407-416.
    [20] Yih-Min Wu, Ta-liang Teng, Near real-time magnitude determination for large crustal earthquakes, rectonophysics 390 (2004) 205-216.
    [21] Wu Y M, Shin r C, Tsai Y B. Quick and reliable determination of magnitude for seismic early warning[J]. Bull. Seism. Soc. Am., 1998, 88(5): 1254—1259.
    [22] Bakun W H, Fischer F G, Jensen E G, VanSchaack J. Early warning system for aftershocks[J]. Bull. Seism. Soc. Am., 1994, 84(2): 359—365.
    [23] C. Hsein Juang, Sunny Ye Fang, David Kun Li; Reliability Analysis of Soil Liquefaction Potential; Proceedings of the Geo-Frontiers 2005 Congress, January, 2005, Austin, Texas; 1—15.
    [24] Han yang, Sun Shaoping, Cui Yuping, some parameters for seismic design and analysis of buried pipelines. Proceedings of the ASCE International Conference on Pipeline Engineering and Construction, Baltimore, Maryland, 2003.7, 1135—1144.
    [25] Makoto Inaba, Masatoshi Ikeda, Nobuyuki Shimizu; New Seismic Design Criteria of Piping Systems in High-Pressure Gas Facilities; Journal of Pressure Vessel Technology, FEBRUARY 2004, Vol. 126: 9—17.
    [26] Gui-Zhong. Qi, Dongliang Liu, Information system for intelligent protection of earthquake-induced urban fires; Proceedings of SPIE Vol. 4330 (2001) (?)2001 SPIE, 11—17.
    [27] Yoshiyuki Mohri, Toshinori Kawabata, Nobuo Fujita; Large-Scale Experiment on Shallow Cover for Buried Pipeline Reinforced with Geosynthetics; Pipeline 2001: Advances in Pipelines Engineering & Construction, San Diego, California, July 2001, 1—13.
    [28] Ignacio Arango, Magnitude scaling factors for soil liquefaction evaluation, Journal of geotechnical engineering, 1996.11, 929-936.
    [29] Shih B J. Emergency response framework of energy supply systems in Chinese Taipei[A]. APEC Earthquake Response Cooperation Program on Energy Supply Systems, Seminar on Earthquake Disaster Management of Energy Supply Systems[C]. September 5—6, 2001, Chinese Taipei.
    [30] Espinosa-Aranda, J., A. Jimenez, Glbarrola, F. Alcantar, et al, Mexico City seicmic alert system, Seismological Reschear Letters, 66, 42-53.
    [31] 吴逸民,地震预警之研究及现状,2004年台湾活动断层与地震灾害研讨会,台湾,2004年10月,1-11。
    [32] 刘林,阎贵平,辛学忠;京沪高速铁路地震预警系统的方案及关键参数研究;中国安全科学学报;2002年8月;第12卷第4期,75-79。
    [33] Yutaka NAKAMURA; UrEDAS, URGENT EARTHQUAKE DETECTION AND ALARM SYSTEM, NOW AND FUTURE; 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada, August, 2004, 1—9.
    [34] 郭恩栋,李山有,赵振东,等,燃气供应网络地震紧急处置系统初探,世界地震工程, 21卷2期,2005年6月,44—47。
    [35] Nakamura, Y, "Research and Development of Intelligent Earthquake Disaster Prevention System UrEDAS and HERAS", Journal of structural mechanics and earthquake engineering, Japan society of civil engineers, No. 531/I-34, January 1996, pp.1-33.
    [36] Nakamura, Y., "On the Urgent Earthquake Detection and Alarm System (UrEDAS)", 9th world conference on earthquake engineering, Vol. Ⅶ, August, 1988, pp. 673-678.
    [37] Kou Takubo, Takashi Yanada, Hiroyuki Furukawa, et al; INNOVATIVE SPECTRAL INTENSITY TRANSDUCER USING THREE-AXIAL MICROMACHINING ACCELEROMETER FOR EARTHQUAKE CRISIS MANAGEMENT, 1999 7th IEEE International Conference on Emerging Technolgies and Factory Automation, Barcelona, Catalonia, Spain; 379—384.
    [38] Martin WIELAND, Lothar GRIESSER, Christoph KUENDIG, Seismic early warning for an nuclear power plant, eismic early warning for an nuclear power plant, Proc. of 12th world conference on earthquake engineering, Auckland, 2000, 1781:1-8.
    [39] 俞载道,结构动力学基础,同济大学出版社,1987年。
    [40] 长发,李国宽,实用小波方法,华中科技大学出版社,2004年。
    [41] 蓝金辉,周兆英,蓝天;机动目标地震动信号的神经网络识别;Proceedings of the 3rd World Congress on Intelligent Control and Automation:2000年6月,中国合肥,1062—1064。
    [42] 史习智,信号处理与软计算,高等教育出版社,2003。
    [43] 姚清林,高建国,制约地震紧急救灾效果的关键因素与改经途径,灾害学,2005年9月,第20卷第3期,48—52。
    [44] 杨马陵,沈繁銮,王正尚,预警等级预报—一种新的地震预警预报发布形式和对策的思考,国际地震动态,2004年8月,第8期,1—12。
    [45] 赵荣国,李卫平,张虹,2005年地震灾害综述,国际地震动态,2006年1月,第1期,20—23。
    [46] 葛学礼,王亚勇,朱立新,建筑抗震设防是减轻地震灾害的根本途径,工程抗震,2003年6月,第2期,30—35。
    [47] 廖旭,黄河,石化企业地震次生火灾评估,东北地震研究,2001年3月,第17卷第1期,52—57。
    [48] 马宗晋,中国的地震减灾系统工程,灾害学,2005年6月,第20卷第2期,1—5。
    [49] 翟永梅,沈祖炎,李文艺,等,上海市煤气系统和供水系统抗震防灾对策研究,地震研究,2001年7月,第24卷第3期,267—231。
    [50] 陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见.地震工程与工程震振动,2002,22(1):141~151。
    [51] J.E. Hurtado, J.M. Londono, M.A. Meza, On the applicability of neural networks for soil dynamic amplification analysis, Soil Dynamics and Earthquake Engineering 21 (2001) 579-591.
    [52] 杨欣荣,智能传感器原理、设计与发展;中南大学出版社,2003。
    [53] 单成祥,传感器的理论与设计基础及其应用,国防工业出版社,1999年。
    [54] M.D. Trifunac, V.W. Lee, M.I. Todotocska, Common problems in automatic digitization of strong motion accelerograms, Soil Dynamics and Earthquake Engineering, 1999, 1-14.
    [55] Navin C. Nigam, Paul C. Jenings; Digital calculation of response spectra from strong-motion earthquake record;California Institute of technology, earthquake engineering research laboratory.
    [56] A.F. Shakal, M.J. Huang, V.M. Graizer, CSMIP STRONG-MOTION DATA PROCESSING, Proc. Invitational workshop on strong motion record processing, 2004.5, COSMOS, Richmond California, 1-12.
    [57] MARIA I. TODOROVSKA, VINCENT W. LEE, STRONG MOTION DATA PROCESSING AND RECORDING AT UNIVERSITY OF SOUTHERN CALIFORNIA, Proc. Invited Workshop on Strong-Motion Record Processing, Consortium of Organizations for Strong-Motion Observation Systems (COSMOS), May Richmond California, 2004, 1-12.
    [58] 胡广书,数字信号处理,清华大学出版社,2003年。
    [59] S.M.Bozic,数字滤波和卡尔曼滤波,科学出版社,1984年。
    [60] 石春香,HHT变换及其在结构分析中的应用,同济大学博士学位论文,2004年2月。
    [61] Norden E. Huang, Zheng Shen, Steven R. Long et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. fond. A, (454):903-995.
    [62] 李杰,李国强,地震工程学导论,地震出版社,1992年。
    [63] 王喜珍,小波变换在地震数据压缩和震相到时提取中的应用研究,[中国地震局地球物理研究所博士学位论文,导师:高孟谭,腾云田],2004年7月。
    [64] Tan Yi, F. Alejandro Nava, automatic seismic wave detection and autoregressive model method, Mathematical Geology, Vol. 20, No.l, 1988, 37-48.
    [65] Hengchang Dai, Colin Macbeth, Arrival type identification in local earthquake date using an artificial neural network, Geophys. J. Int. 120, 758-774.
    [66] 刘希强,周惠兰,沈萍,等,用于三分向记录震相识别的小波变换方法,地震学报,2000年3月,22卷第2期,126—131。
    [67] Chao Ying Bai, B. L. N. Kennett, Automatic phase identification by full use of a single three-component broadband seismogram, Bulletin of the seismological society of America, 90, 1, 2000.2, 187-198.
    [68] Christos D. Saragiotis, Leontios J. Hadjileomtiadis, Stavros M. Panas, PAI-S/K: a robust automatic seismic P phase arrival identification scheme, IEEE Transactions on geoscience and remote sensing, Vol. 40, No. 6, 2002, 6:1395-1404.
    [69] Christos D. Saragiotis, Leontios J. Hadjileomtiadis, Stavros M. Panas, Automatic P phase picking using maximum Kurtosis and k-statistics criteria, IEEE Geoscience and Remote Sensing Letters, Yol. 1, No. 3, 2004.6:147-151.
    [70] T Lokajicek, K Klima, A first arrival identification system of acoustic emission (AE) signal by means of a high-order statistics approach, Meas. Sci. Technol. 17 (2006)2461-2466.
    [71] Christos D. Saragiotis, Leontios J. Hadjileomtiadis, Alexandros S. Savvaidis, Automatic S-Phase arrival determination of seismic signals using nonlinear filtering and higher-order statistics, Proc. IGARSS, vol. 1, 2000.8, 292-294.
    [72] 蒋溥,戴丽思;工程地震学概论;地震出版社,1993年。
    [73] 金星,马强,李山有:四种计算地震反应数值方法的比较研究:地震工程与工程振动,第23卷第1期,2003年2月,18—30。
    [74] Kanamori H, Maechling P, Hauksson E. Continuous Monitoring of Strong Motion Parametem[J]. Bull. Seism. Soc. Am., 1999, 89(i): 311—316.
    [75] 李大华,计算地震反应谱的连锁公式,地震工程与工程振动,1990年6月,10卷2期,47—52。
    [76] Nigam N C, Jennings P C, Calculation of response spectra from strong earthquake records, Bull. Seism. Am., 1969, 59: 909-992.
    [77] 门福录,岩土力学研究观点、方法若干问题之我见,岩土工程学报,2001年5月,第23卷,第3期,380—382。
    [78] 程国勇,王建华,应用剪切波速判别砂土液化的研究综述,世界地震工程,20卷1期,2004年3月,112—116。
    [79] 孙锐,袁晓铭,第11届国际土动力学和地震工程会议砂土液化研究综述,世界地震工程,2006年3月,22卷1期,15—20。
    [80] 胡韦贤,地震工程学,地震出版社,1988年。
    [81] 鲁晓兵,谈庆明,王淑云,等,饱和砂土液化研究新进展,力学进展,2004年2月,第34卷,第1期,87—96。
    [82] 张一,阴国胜,王俊卿,等,地震液化判别标准浅析,中国水利学会勘测专业委员会2002年学术研讨会论文集,2002.11.01,南昌,71-74。
    [83] 朱小林,杨桂林;土体工程;同济大学出版社,1996年。
    [84] Yoshihisa SHIMIZU, A new technology for earthquake disaster prevention New SI sensor and SUPREME, Civil Engineering, JSCE 2000, 38—41.
    [85] Mladen V. Kostadinov, Fumio Yamazaki, Detection of soil liquefaction from strong motion records; Earthquake engineering and structural dynamics, 2001, 30:173-193.
    [86] 孙锐,袁晓铭,液化土层对地表加速度反应谱的影响,世界地震工程,20卷3期,2004年9月,33-38。
    [87] M. V. Kostadinov, F. Yamazaki, K. Subo, Comparative study on the methods for detection of liquefaction from strong motion records, 8th ASCE specialty conference on probabilistic mechanics and structural reliability, PMC2000-092, 1-6.
    [88] 张郁山,希尔伯特—黄变换(HHT)与地震动时程的希尔伯特谱——方法与应用研究;[中国地震局地球物理研究所博士学位论文,导师:胡聿贤,梁建文],2003。
    [89] 胡聿贤,张郁山,梁建文,应用HHT方法从竖向地震动记录识别场地液化的物理过程, 地震工程与工程振动,2004年6月,第24卷第3期,1—11。
    [90] 程正兴,小波分析算法与应用,西安交通大学出版社,1997年。
    [91] 谢强,建筑结构健康监测若干基础问题的试验研究及分析,同济大学博士学位论文,2001年6月。
    [92] 胡昌华,张军波,夏军,等,基于MATLAB的系统分析与设计——小波分析,西安电子科技出版社,1999年。
    [93] 公茂盛,谢礼立,HHT方法在地震工程中的应用之初步探讨,世界地震工程,2003年9月,19卷3期,39—43。
    [94] 张郁山,梁建文,胡聿贤,应用自回归模型处理EMD方法中的边界问题,自然科学进展,2003年10月,第13卷,第10期,1054—1059。
    [95] 胡聿贤,张郁山,梁建文,基于HHT方法的场地液化的识别,土木工程学报,2006年2月,第39卷,第2期,66—72。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700