用户名: 密码: 验证码:
钢筋混凝土桥墩抗震性态数值评价与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年的桥梁震害促进了桥梁抗震技术的快速发展,世界上主要桥梁抗震规范已采用延性设计,基于性态的抗震设计方法成为目前的研究热点和发展趋势,对桥梁体系非线性地震反应和破坏机理的深入了解和把握是性态设计的关键所在。本文首先详细总结和分析该领域的主要文献,其次从数值分析角度研究了利用简化塑性铰模型和弹塑性纤维梁柱单元,计算钢筋混凝土桥墩整体和局部地震损伤性态指标或参数的精度及可行性,最后从模型振动台试验角度研究和比较了基于现行规范设计、基于位移设计和可能发生弯剪破坏模式的钢筋混凝土短柱桥墩的抗震性能及破坏机理。论文在以下几个方面有所创新或有新的认识:
     1.开发了钢筋混凝土桥墩拟静力试验数值模拟与地震损伤评价程序DLUT-RC主要功能是进行钢筋混桥墩拟静力试验滞回性能的数值分析和利用真实试验数据及数值模拟结果进行桥墩抗震性态指标的计算。该程序包括两种分析模型:简化塑性铰模型和弹塑性纤维梁柱单元模型。塑性铰模型可考虑不同试验装置导致的P-△效应。纤维单元模型包括刚度法和柔度法单元,可考虑材料非线性、几何非线性和节点锚固钢筋粘结滑移影响。程序采用了较为精确反映钢筋、混凝土反复荷载下力学性能的Chang-Mander本构关系模型。以力学模型计算等效塑性铰长度,以Lehman基于应变的试验统计公式计算节点纵筋粘结滑移,建议了一种新的简化塑性铰模型。
     2.研究了钢筋混凝土桥墩地震反应数值模型与抗震性态评价指标的匹配关系利用简化塑性铰模型和纤维单元模型,主要计算了Lehman等完成的5根不同剪跨比及配筋率的钢筋混凝土桥墩的截面曲率、残余位移、混凝土和钢筋应变幅值、纵筋低周疲劳损伤指数等损伤评价指标,并与试验结果比较。认为不同模型计算的滞回曲线、残余位移可以和试验有很好吻合;塑性铰模型计算的极限曲率、纵筋应变幅值和试验结果较为接近,但对于剪跨比λ≥8的高墩,极限曲率计算值小于试验值,将导致偏于危险的结果:纤维单元模型,通过合理划分单元网格或确定合适的高斯积分点数,对截面曲率、纵筋应变幅值刚度法单元计算结果较为接近试验值,而柔度法单元明显大于刚度法单元。柔度法单元计算的纵筋疲劳指数要大于刚度法单元,但两者的统计离散性都很大。所有模型都很大程度低估了桥墩破坏时的混凝土压应变幅值,纤维模型要略好于简化塑性铰模型。此外,就目前常用的数值分析模型及其能力而言,认为混凝土压应变和纵筋低周疲劳损伤指数尚不适合作为钢筋混凝土桥墩的抗震性态评价指标。
     3.进行了延性弯曲破坏和脆性弯剪破坏的钢筋混凝土桥墩地震模拟振动台试验分别基于规范设计方法、基于位移设计方法以及考虑配箍率不足和剪跨比较小情况设计了一组(8根)钢筋混凝土桥墩试件,通过振动台试验从破坏形态、延性、耗能等多个方面评价比较了它们的抗震性能。表明按课题组建议的基于位移方法设计与按现行规范方法设计的桥墩二者抗震性能相当,但前者可明确预知(预设)桥墩在不同地震水准下的抗震性态,且在增加约束箍筋条件下可一定程度减少纵向钢筋使用量,能够达到预期的延性抗震要求;短柱桥墩在地震作用下反应位移延性系数较大,而耗能偏小,更易于破坏。
Investigations of recent earthquake disasters develope bridge seismic technologies, as a result, the main bridge seismic design codes in the world have adopted ductility design method. Performance based bridge seismic design method is current research focus, of which understanding of nonlinear seismic response and damage mechanism of bridge system is the key component. At first, the main documentations in this field are summarized and analyzed in this dissertation. Then feasibility and precision for simplified plastic hinge model and inelastic fiber beam-column element to calculate integral and local seismic damage performance parameters are studied. At last a shaking table test is designed and implementd to understand and compare the seismic performance and damage mechanism of RC bridge pier specimens designed by current seismic code, by displacement based seismic design method or likely to occur flexure-shear failure.
     The main work of the study are:
     1. A computer program for numerical simulation and seismic damage evaluation of RC bridge piers subjected to cyclic loading—DLUT-RC is developed. The main functions of the program are hysteretic analysis of RC bridge piers and calculation of seismic performance indices from experimental or computing results. Two kinds of analysis models are employed in the program: simplified plastic hinge model and inelastic fiber beam-column element. P-A effects caused by variant test devices are considered in plastic hinge model. Fiber element includes stiffness-based element and flexibility-based element, in which material nonlinearity, geometry nonlinearity and bond slip effect of anchoring steel in joint are accounted for. Chang-Mander models for steel and concrete strain-stress relationship are employed, which reflect material mechanical property subjected to cyclic loading precisely. A new plastic hinge model is suggested, in which mechanics-based effective plastic hinge length is adopted and an experiment static formula based on strain suggested by Lehman is used to account for bond slip of steel in joint.
     2. The matching between seismic response analysis models and seismic performance indices for RC bridge piers is studied. Simplified plastic hinge model and fiber element are employed to compute damage evaluation indices of 5 bridge pier specimens by Lehman, such as section curvature, residual displacement, strain amplitude of steel and concrete, low cycle fatigue damage index of longitudinal steel etc. Comparison between experimental and simulating results is made, and it is concluded that the computed hysteretic curves and residual displacements by both models fit experiment results very well. With regard to plastic hinge model, limit curvature and longitudinal steel strain amplitude approximate experiment data, but the limit curvature is less than experiment whenλ≥8, which causes a dangerous design. With regard to fiber element model, section curvature and longitudinal steel strain amplitude calculated with stiffness-based element fit the experiment very well by proper dividing element. Low cycle fatigue damage indices of longitudinal steel computed by flexibility-based element are greater than that by stiffness-based element. Both models underestimate concrete compressive strain amplitudes when bridge piers fail, but fiber element is a little better than simplified plastic hinge model. According to the study of the dissertation, compressive strain of concrete and low cycle fatigue damage index of longitudinal steel are unfit for seismic performance indices of reinforced concrete bridge piers.
     3. Shaking table tests for RC bridge piers with ductile flexural damage model and with brittle flexure-shear damage model are studied. 8 RC bridge pier specimens are designed and fabricated by current seismic design code, by displacement-based seismic design method, and with low lateral reinforcement ratio and with low shear span ratio respectively for shaking table test. Damage states, displacement ductility and energy dissipation are compared to access their seismic performance. It is concluded that the specimens designed by displacement-based seismic design method have the equivalent seismic performance with those designed by current seismic design code, but the former can anticipate the seismic performance of bridge piers, reduce longitudinal steel amount by increasing lateral reinforcement and approach anticipated ductility. It is also shown that displacement ductility response of low shear span bridge piers is hige, and energy dissipation is low, which should be paid much attention to in bridge seismic design.
引文
[1]范立础,卓卫东 著.桥梁延性抗震设计.北京:人民交通出版社,2001.
    [2]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨.地震工程与工程振动,2005,25(1):43-48.
    [3]宋晓东.桥梁高墩延性抗震性能的理论与试验研究:(博士学位论文).上海:同济大学,2004.
    [4]阎贵平,项海帆.具有单排桩基梁式桥墩的实用延性抗震验算方法研究.土木工程学报,1993,26(2):48-56.
    [5]朱唏,弓俊青.钢筋混凝士桥梁延性抗震设计的研究及发展.桥梁建设,2000(1):1-5.
    [6]卓卫东.桥梁延性抗震设计研究:(博士学位论文).上海:同济大学,2000.
    [7]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量.土木工程学报,2002,35(5):47-51.
    [8]程雷.在役桥梁的延性评价:(硕士学位论文).西安:长安大学,2005.
    [9]中华人民共和国行业标准 著.公路桥梁抗震设计规范征求意见稿(JTJ004-2005).2005.
    [10]范立础.城市桥梁抗震设计规范中若干问题.工程力学(增刊),2000(1):74-85.
    [11]范立础,王君杰.桥梁抗震设计规范的现状与发展趋势.地震工程与工程振动,2001,21(2).
    [12]孙利民.阪神地震后日本桥梁抗震设计规范的改订.同济大学学报,2001,29(1):60-64.
    [13]中华人民共和国交通部标准.公路工程抗震设计规范[JTJ004-89].北京:人民交通出版社,1990.
    [14]Priestley M J N,Park R.Strength and ductility of concrete bridge columns under seismic loading.ACI Structural Journal,1987,84(1):61-76.
    [15]Pinho R,Casarotti C,Antoniou S.A comparison of single-run pushover analysis techniques for seismic assessment of bridges.Earthquake Engineering and Structural Dynamics(in press),
    [16]Abeysinghe R S,Gavaise E,Macro R.Pushover analysis of inelastic seismic behavior of Greveniotikos bridge.Journal of Bridge Engineering,ASCE,2002,7(2):115-126.
    [17]Zheng Y,Usami T,Ge B.Seismic response predictions of multi-span steel bridges through pushover analysis.Earthquake Engineering and Structural Dynamics,2003,32(8):1259-1274.
    [18]John k B,James M L,Neil M H.Seismic vulnerability assessment of wall pier supported highway bridges using nonlinear pushover analyses.Engineering Structures,2005,27(14):2044-2063.
    [19]Faraskeva T S,Kappos A J,Sextos A G.Extension of modal pushover analysis to seismic assessment of bridges.Earthquake Engineering and Structural Dynamics,2006,35(10):1269-1293.
    [20]范立础.梁桥非线性地震反应分析.土木工程学报,1981,14(2):41-51.
    [21]朱伯龙,董振祥 著.钢筋混凝土非线性分析.上海:同济大学出版社,1985.
    [22]Reihorn A M,Simeonov V,Mylonakis G.IDARC-BRIDGE:a computational platform for seismic damage assessment of bridge structures.University at Buffalo,State University of New York,1998,MCEER Report:98-0011.
    [23]Kim T H,Lee,K M,Yoon C.Inelastic behavior and ductility capacity of reinforced concrete bridge piers under earthquake.Ⅱ:numerical validation.Journal of Structural Engineering,ASCE,2003,129(9):1208-1219.
    [24]Hang H.,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004,37(6):47-51.
    [25]张菊辉,胡世德.桥梁地震易损性分析的研究现状.结构工程师,2005,21(5):76-80.
    [26]Mander J B,Dhakal R P,Mashiko N.Incremental dynamic analysis applied to seismic financial risk assessment of bridges(in press).Engineering Structures,
    [27]Vamvatsikos D,Cornell C A.Incremental dynamic analysis.Earthquake Engineering &Structural Dynamics,2002,31(3):491-514.
    [28]范立础,李建中,王君杰 著.高架桥梁抗震设计.北京:人民交通出版社,2001.
    [29]朱文正,刘健新.公路桥梁防落梁系统研究现状评述.广州大学学报(自然科学版),2005,4(4):347-356.
    [30]张伟,刘建新,张茜,等.大跨径连续刚构桥地震反应分析.工程抗震与加固改造,2005,27(6):75-78.
    [31]周锡元,李中锡.规则型隔震桥梁结构的简化分析方法.土木工程学报,2001,34(3):53-58.
    [32]范立础,王志强.我国桥梁隔震技术的应用.振动工程学报,1999,12(2):173-181.
    [33]徐忠根,周福霖.日本桥梁隔震规范评述.世界地震工程,1999,15(1):25-33.
    [34]王志强.隔震桥梁分析方法及设计理论研究:(博士学位论文).上海:同济大学,2000.
    [35]廖文义,罗俊雄,万绚.隔震桥梁承受近断层地震之反应分析.地震工程与工程振动(国际结构控制与健康诊断专辑),2002,21(4):95-102.
    [36]张俊平,周福霖,廖蜀樵.桥梁隔震体系振动台试验研究(Ⅳ):隔震桥梁的设计方法探讨.地震工程与工程振动,2002,22(3):149-153.
    [37]黄建文,朱晞.隔震连续梁桥结构以位移为基础的抗震设计方法.中国安全科学学报,2004,14(1):65-70.
    [38]普瑞斯特雷,塞勃勒等 著.袁万城等 译.桥梁抗震设计与加固.北京:人民交通出版社,1997.
    [39]范立础 著.桥梁抗震.上海:同济大学出版社,1997.
    [40]Boroschek R L,Moroni M O,Sarrazin M.Dynamic characteristics of a long span seismic isolated bridge.Engineering Structures,2003,25(12):1479-1490.
    [41]Dicleli M,Buddaram S.Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges.Earthquake Engineering and Structural Dynamics,2006,35(2):233-250.
    [42]Jankowski R,Wilde K,Fujino Y.Pounding of superstructure segments in isolated elevated bridge during earthquakes.Earthquake Engineering & Structural Dynamics,1998,27(5):487-502.
    [43]Kunde M C,Jangid R S.Effects of pier and deck flexibility on the seismic response of isolated bridges.Journal of Bridge Engineering,ASCE,2006,11(1):109-121.
    [44]Liao W I,Loh C H,Lee B H.Comparison of dynamic response of isolated and non-isolated continuous girder bridges subjected to near-fault ground motions.Engineering Structures,2004,26(14):2173-2183.
    [45]Murat D.Supplemental elastic stiffness to reduce isolator displacement for seismic-isolated bridges in near-fault zones.Engineering Structures,2007,29(5):763-775.
    [46]Vasant A M,Jangid R S.Seismic response of simply supported base-isolated bridge with different isolators.International Journal of Applied Science and Engineering,2006,4(1):53-69.
    [47]Warn G P,Whittaker A S.Property modification factors for seismically isolated bridges.Journal of Bridge Engineering,ASCE,2006,11(3):371-377.
    [48]董学武,周世忠.希腊里翁-安蒂里翁大桥的设计与施工.世界桥梁,2004(4):1-4.
    [49]陈诗平,林立,谢红兵.里翁-安蒂里翁大桥的防震保护.世界桥梁,2006(2):46-53.
    [50]曹多善.铅芯橡胶支座在布谷孜大桥施工中的应用与思考.西部探矿工程,2001,70(3).
    [51]邱法维.结构抗震实验方法进展.土木工程学报,2004,37(10):19-27.
    [52]郭迅.地震工程试验联网最新进展.地震工程与工程振动,2006,26(4):37-41.
    [53]王自法.地震工程研究的科学大平台.地震工程与工程振动,2007,27(6):1-9.
    [54]杨鸥,杨广强,Spencer b.F.,等.基于NEESgrid网络的子结构拟动力实验:Mini-MOST实验.地震工程与工程振动,2006,26(6):44-49.
    [55]茹继平,肖岩.美国地震工程模拟网系统NEES计划及在我国实现远程协同结构试验的设想.建筑结构学报,2002,23(6):91-94.
    [56]Pinto A V,Pegon P,Magonette G.Pseudo-dynamic testing of bridge using non-linear substructuring.Earthquake Engineering and Structural Dynamics,2004,33(11):1125-1146.
    [57]Faria R,Pouca N V,Delgado R.Simulation of the cyclic behavior of RC rectangular hollow section bridge piers via a detailed numerical model.Journal Of Earthquake Engineering,2004,8(5):725-748.
    [58]Priestley M J N,Park R.Strength and ductility of concrete bridge columns under seismic loading.ACI Structural Journal,1987,84(8):61-76.
    [59]Chang G A,Mander J B.Seismic Energy Based Fatigue Damage Analysis of Bridge columns:Part 1.University of Buffalo,State University of New York,1994,Technical Report NCEER-94-0006.
    [60]薛伟辰,周氐.吕忠涛.混凝土杆件结构滞回全过程分析.工程力学,1996,13(3):8-16.
    [61]Spacone E,Filippou F C,Taucer F F.Fiber beam-column model for nonlinear analysis of R/C frames.Earthquake Engineering & Structural Dynamics,1996(25):711-742.
    [62]陈滔.基于有限元柔度法的钢筋混凝土框架三维非弹性地震反应分析:(博士学位论文).重庆:重庆大学,2003.
    [63]陈滔,黄宗明.基于有限元柔度法的材料与几何双重非线性空间梁柱单元.计算力学学报,2006,23(5):524-545.
    [64]陈滔,黄宗明.基于有限元柔度法的钢筋混凝土空间框架非弹性地震反应分析.建筑结构学报,2004,25(2):49-84.
    [65]陈滔,黄宗明.基于有限元柔度法和刚度法的非线性梁柱单元比较研究.工程力学,2003,20(5):24-31.
    [66]艾庆华,王东升,李宏男.低周反复荷载下钢筋本构关系边界面模型的初步研究.第十四届全国结构工程学术会议(第一册),山东烟台,2005:201-205.
    [67]Kawashima K,Macrae G A,Hoshiluma J.Residual displacement response spectrum.Journal of Structure Engineering,ASCE,1998,124(5):523-530.
    [68]Brown J,Kunnath S K.Low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge columns.University at Buffalo,State University of New York,2000,Technical Report MCEER-00-0007.
    [69]Esmaeily G A,Xiao Y.Seismic behavior of bridge columns subjected to various loading patterns.University of California,2002,PEER Report 2002/15.
    [70]Panthaki F D.Low cycle fatigue behaviro of high strength and ordinary reinforcing steels.MS-thesis,Suny/Buffalo,1991.
    [71]过镇海 著.钢筋混凝土原理.北京:清华大学出版社,1999.
    [72]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系.建筑结构学报,1992,13(6):41-48.
    [73]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model-for confined concrete.Journal of Structural Engineering,1988,114(8):1804-1826.
    [74]Mander J B,Priestley M J N,Park R.Observed stress-strain behavior of confined concrete.Journal of Structural Engineering,1988,114(8):1827-1849.
    [75]Park R,Paulay T.Reinforced concrete structures.New York:John Wiley,1975.
    [76]Scott B D,Park R,Priestley M J N.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates.Journal of the American Concrete Institute,1982,79(1):13-27.
    [77]Mander J B,Priestley M J N,Park R.Seismic design of bridge piers,department of civil engineering,University of Canterbury,1984,Report 84-2,Feb-84,483 pp.
    [78]Sheikh S A,Yeh C C.Flexural behavior of confined concrete columns.Journal of the American Concrete Institute,1986,83(3):389-404.
    [79]Karsan I D,Jirsa J O.Behavior of concrete under compressive loadings.Journal of the Structural Division,ASCE,1969,95(ST12):2543-2563.
    [80]Spooner D C,Dougill J W.A quantitative assessment of damage sustained in concrete during conpression loading.Magazine of Concrete research,1975,27(92):151-160.
    [81]Tanigawa Y,Uchida Y.Hysteretic characteristics of concrete in the domain of high compressive strain.Annual Concention,AIJ,1979:449-450.
    [82]Tanabe T A.Comparative performance of seismic design codes for concrete structures.Boulevard(UK):ELSEVIER SCIENCE Ltd,2000.
    [83]Sacramento C D 0 T.Caltrans seismic design criteria(versionl.2).California,U.S.A.:2001.
    [84]Kawashima K.Seismic design and retrofit of bridge.12WCEE,New Zealand,2000,Reference NO.2828.
    [85]Berry M,Eberhard M.Performance models for flexural damage in reinforced concrete columns.University of California,Berkeley,2003,PEER Report 2003/18.
    [86]Lehman D E,Jack P M.Experimental evaluation of the seismic performance of reinforced concrete bridge columns.Journal of Structural Engineering,ASCE,2004,130(6):869-879.
    [87]Lehman D E,Moehle J P.Seismic performance of well-confined concrete bridge columns.University of California,Berkeley,1998,PEER Report:98-01.
    [88]Kunnath S K.Cumulative seismic damage of reinforced concrete bridge piers.University at Buffalo,State University of New York,1997,NCEER Report:97-0006.
    [89]司炳君,李宏男,王东升,等.基于位移设计钢筋混凝土桥墩抗震性能试验研究(Ⅰ):拟静力试验.地震工程与工程振动,2008,28(1):123-129.
    [90]王东升.钢筋混凝土梁式桥地震破损研究:[D].哈尔滨:中国地震局工程力学研究所,2002.
    [91]Calvi G M,Kingsley G R.Displacement-based seismic design of Multi-Degree-of-Freedom bridge structures.Earthquake Engineering & Structural Dynamics,1995(24):1247-1266.
    [92]Wael A Z,Hiroshi M.Residual displacement of concrete bridge piers subjected to near field earthquakes.ACI Structural Journal,2002,99(6):740-749.
    [93]Elnashai A S,Mcclure D C.Effects of modeling assumptions and input motion characteristic on seismic design parameters of RC bridge piers.Earthquake Engineering & Structural Dynamics,1996,25:435-463.
    [94]梁智壵.非规则高墩桥梁抗震设计理论研究:(博士学位论文).上海:同济大学,2007.
    [95]牛松山,郑罡,唐光武,等.反复循环载荷作用下钢筋混凝土矩形桥墩塑性铰区弯矩曲率关系试验研究.公路交通技术,2005(5):91-95.
    [96]Kowalsky M J A.displacement-based approach for the seismic design of continuous concrete bridges.Earthquake Engineering & Structural Dynamics,2002,31:719-747.
    [97]Calvi G M.Recent experience and innovative approaches in design and assessment of bridges.13WCEE,Canada,2004,Reference NO.5009.
    [98]董乐义,罗军,程礼.雨流计数法及其在程序中的具体实现.计算机技术与应用,2004,24(3):38-40.
    [99]陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展.世界地震工程,2002,18(1):91-96.
    [100]Felipe J P,Richard S,Stephen P.Analytical and experimental lateral load behavior of unbonded posttensioned precast concrete walls.Journal of Structural Engineering,ASCE,2007,133(11):1531-1540.
    [101]Ali R K,T S.Localization analysis of reinforced concrete members with softening behavior.Journal of Structural Engineering,ASCE,2002,128(9):1148-1157.
    [102]Yutian S,Amir M.Nonlinear cyclic response of laminated glass FRP tubes filled with concrete.Composite Structures,2004,65:91-101.
    [103]Tai-kuang L,Austin D E P.Analysis of composite beam-columns under lateral cyclic loading.Journal of Structural Engineering,ASCE,2001,127(2):186-193.
    [104]John F H,Challa V R M.Beam-column modeling.Journal of Engineering Mechanics,ASCE,1995,121(12):1284-1291.
    [105]Aval S B B,Saadeghvaziri M A,A G A.Comprehensive composite inelastic fiber element for cyclic analysis of concrete-filled steel tube columns.Journal of Engineering Mechanics,ASCE,2002,128(4):428-437.
    [106]Shao Y,Zhu Z,Mirmiran A.cyclic modeling of FRP-confined concrete with improved ductility.Cement & Concrete Composites,2006,28:959-968.
    [107]Marco P,Paolo E P,Vincenzo C.Fiber element for cyclic bending and shear of RC structures.Ⅰ:theory.Journal of Engineering Mechanics,ASCE,1999,125(9):994-1001.
    [108]Marco P.Fiber element for cyclic bending and shear of RC structures.Ⅱ:Verification.Journal of Engineering Mechanics,ASCE,1999,125(9):1002-1009.
    [109]Zhu Z,Ahmad I,A M.Fiber element modeling for seismic performance of bridge columns made of concrete-filled FRP tubes.Engineering Structures,2006,28:2023-2035.
    [110]Shao Y,Aval S,Mirmiran A.Fiber-element model for cyclic analysis of concrete-filled fiber reinforced polymer tubes.Journal of Structure Engineering,ASCE,2005,131(2):292-303.
    [111]Shaat A,Fam A.Fiber-element model for slender HSS columns retrofitted with bonded high-modulus composites.Journal of Structural Engineering,ASCE,2007,133(1):85-95.
    [112]陈滔,陈娟,黄宗明.不同加载路径对钢筋混凝土L形柱抗震性能的影响.地震工程与工程振动,2007。27(3):58-63.
    [113]王耀伟,杨再富,黄宗明.采用纤维模型梁柱单元对粘钢加固混凝士梁的模拟分析.工业建筑,2006,36(增刊):1022-1023.
    [114]薛伟辰,程斌,李杰.低周反复荷载下高性能混凝土震损框架的抗震性能.地震工程与工程振动,2003,23(3):107-112.
    [115]薛伟辰,程斌,李杰.低周反复荷载下预应力高性能混凝土梁的抗震性能.地震工程与工程振动,2003,23(1):78-83.
    [116]陈娟,陈滔,黄宗明.钢筋混凝土L形柱分析时平截面假定的适用范围.地震工程与工程振动,2006,26(1):111-115.
    [117]薛伟辰,张志铁.钢筋混凝士结构非线性全过程分析方法及其应用.计算力学学报,1999,16(3):334-341.
    [118]伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用.东南大学学报(自然科学版),2005,35(增刊Ⅰ):129-132.
    [119]朱杰江,吕西林.上海环球金融中心火厦弹塑性时程分析.自然灾害学报,2006,15(2):49-56.
    [120]粱智壵,李建中.桥梁高墩合理计算模型探讨.地震工程与工程振动,2007,27(2):91-98.
    [121]监凯维奇著.尹泽勇,柴家振译.有限元法(上册).北京:科学出版社,1985.
    [122]监凯维奇著.尹泽勇,柴家振 译.有限元法(下册).北京:科学出版社,1985.
    [123]朱伯芳 著.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [124]Zhilong Z,Murray D W.An incremental solution technique for unstable equilibrium paths of shell structures.Computers & Structures,1994,55(5):749-759.
    [125]Feng Y T,Perie D,Owen R J.A new criterion for determination of initial loading parameter in arc-length methods.Computers & Structures,1996,58(3):479-485.
    [126]刘毅,魏巍,王志军,等.采用截面分层及弧长法的钢筋混凝土杆系结构非线性分析.重庆建筑大学学报,2000,22(增):152-157.
    [127]李元齐,沈祖炎.弧长法中初始荷载增量参数符号确定准则的改进.工程力学,2001。18(3):34-39.
    [128]向天宇,赵人达,刘海波.混凝土结构全过程非线性分析的弧长法研究.铁道学报,2002,24(3):67-70.
    [129]陈明政,黄音,王正霖,等.基于弧长法的预应力框架结构非线性分析.华南理工大学学报(自然科学版),2006,34(7):109-113.
    [130]熊铁华.结构非线性分析中的可控制方向的弧长法.武汉大学学报(工学版),2001,34(1):53-55.
    [131]徐爱敏,陈衡治,谢旭.结构极限承载力计算方法及其收敛性.中国公路学报,2006,19(5):65-70.
    [132]楼铁炯,项贻强.体外预应力梁的弧长法分析与二次效应评估.浙江大学学报(工学版),2006,40(4):668-671.
    [133]宋少沪,曾玉山.张佩军.修正Newton-Raphson方法和弧长法在结构推覆分析中的联合应用.上海大学学报(自然科学版),2006,12(1):101-106.
    [134]Crisfield M A.A fast incrementral/iterative solution procedure that handles "snap-through".Computers & Structures,1981,13:55-62.
    [135]胡海良.有理Gauss-Lobatto求积公式.海南师范学院学报(自然科学版),2006,19(2):121-125.
    [136]王东升,李宏男,赵颖华.Ay-Dy格式地震需求谱及其在结构基于性能抗震设计中的应用.建筑 结构学报,2006,27(1):60-65.
    [137]王东升,李宏男,赵颖华.钢筋混凝土桥墩基于位移的抗震设计方法.土木工程学报,2006,39(10):80-86.
    [138]吕西林,邹昀,卢文胜,等.上海环球金融中心大厦结构模型振动台抗震试验.地震工程与工程振动,2004,24(3):57-63.
    [139]朱杰江,吕西林,邹昀.上海环球金融中心模型结构振动台试验与理论分析的对比研究.土木工程学报,2005,38(10):18-26.
    [140]叶爱君,袁万城,胡世德.高墩振动台试验研究.同济大学学报,1996,24(6):606-612.
    [141]叶献国,刘涛,徐勤.振动台三维模拟地震试验研究.合肥工业大学学报(自然科学版),1998,21(增):1-6.
    [142]韦晓.桩-土-桥梁上部结构相互作用振动台试验研究:(博士学位论文).上海:同济大学,1999.
    [143]Park S W,Yen W P,Cooper J D.A comparative study of U.S.-Japan seismic design of highway bridges:Ⅱ.Shake-Table model tests.Earthquake Spectra,2003,19(4):933-958.
    [144]Saiidi M,Itani A,Johnson N,et al.Shake table response of bridge columns.Earthquake Resistant Engineering Structures,(Ⅳ):69-78.
    [145]Patrick N L,David H S,Saiidi M S.Performance of concrete bridge columns under shake table excitation.ACI Structural Journal,2005,102(3):438-444.
    [146]张敏政,孟庆利,刘晓明.建筑结构的地震模拟试验研究.工程抗震,2003(4):31-35.
    [147]张敏政.地震模拟试验中相似律应用的若干问题.地震工程与工程振动,1997,17(2):52-58.
    [148]中华人民共和国建设部标准 著.建筑抗震试验方法规程(JGJ101-96).北京:中国建筑出版社,1997.
    [149]中华人民共和国交通部标准 著.公路工程抗震设计规范(JTJ004-89).北京:人民交通出版社,1990.
    [150]黄建文,朱晞.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计.土木工程学报,2005,38(4):84-90.
    [151]汪晶,倪永军,程绍革.连续梁桥基于位移的抗震设计.工程抗震,2004(2):6-12.
    [152]朱晞,倪永军.桥梁结构基于位移的抗震设计方法研究进展.国外桥梁,2000(1):24-26.
    [153]Chopra A K,Goel R K.Direct displacement-based design:Use of inelastic vs.elastic design spectra.Earthquake Spectra,2001,17(1):47-64.
    [154]Clough R W,Penzien J D.Dynamics of structures.New York:McGraw-Hill Inc,1993.
    [155]Kobayashi H,Unjoh S.Development of an earthquake damage detection system for bridge structures.Proc.of North American Euro Pacific Workshop for Sensing Issues in Civil Structural Health Monitoring,Hawaii,USA,2004:165-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700