粉土中格栅结构复合地基的原理与技术方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层和超高层建筑的不断发展,要求地基土承担越来越高的荷载且变形也有更严格的限制。我国大部分城市内的地基土具备二元结构,其由表层土和下部硬土层组成。表层土因为力学性质较差大部分不能直接作为高层建筑的地基。传统的设计方法往往忽略表层土有侧限状态下强度和变形破坏机理的有利因素,而是直接采用经济造价高的桩基础穿越表层土,通过高强度桩身、高承载力持力层(硬土层)等实现荷载的传递和地基变形的控制。因此,高层建筑物地基基础埋深越来越大,不符合社会经济和土力学发展的方向和要求。
     随着地基土研究的深入和经济发展的需要,解决高层建筑的地基基础埋深大和利用表层土时没有合适地基类型等问题就越加突出和迫切。本文通过研究,提出有侧限结构复合地基设计原理从理论上解决了上述问题。为了使研究成果具有现实意义和客观性,选择二元结构特征明显的郑州地区表层粉土为研究对象并设计新的地基类型对其验证。采用大型的破坏性静载荷试验、室内外测试、原型桩试验和理论分析等手段,对表层粉土的变形破坏方式、格栅结构和土共同作用的机理等进行了系统性深入研究。在此基础上,结合一维固结理论、复合理论、均化理论、系统观点并采用大量的地基工程设计资料、原位测试数据、以及国内外已有的试验研究成果,建立了格栅结构复合地基的设计计算方法、施工工艺及质量控制体系。经过数年的努力,取得的主要成果如下。
     (1)通过工程勘察、室内外试验及测试、实例调查、理论分析等,对郑州市地基土的岩性组合类型、结构类型、地基土强度、变形破坏机理等进行了深入研究,得出集中大荷载作用下的粉土破坏并非沿着传统理论假设的剪切滑动面移动,也非地基土的冲剪破坏,而是粉土在基础下首先发生挤密和鼓胀侧扩,随着荷载增加产生隆起破坏,破坏土分布在基础底板周边很小的宽度内,归纳出粉土的变形破坏方式为“挤扩—隆起”。
     (2)粉土地基的整体失稳方式是通过地基中不同深度层次的局部化破坏而累积形成的整体变形破坏。这些局部化破坏的过程中包括渗流和挤扩——隆起等破坏。在无侧限条件下,局部化破坏过程没有限制因素,表层土中地下水渗流途径短、渗流压力较大,表层土侧向变形破坏经常发生,从而造成表层地基土中多发生局部化破坏。按照一定的方向、顺序分层压缩并分层挤扩隆起破坏就构成表层粉土地基的整体变形破坏。
     (3)根据复合地基中人工结构对地基土的侧限作用、地基土的变形破坏机理、室内外侧限试验的结果,首次将高层建筑地基分为有侧限结构地基和无侧限结构地基两大类型。无侧限结构地基中地基土的变形处在K_0状态(静止土压力)下,可发生无明显人工结构约束的侧向变形破坏。有侧限结构地基中由于人工结构对地基土构成侧限和垂直向的强度增强,强制表层土地基以垂直变形为主,控制侧向变形趋于零。根据一维固结理论和有侧限试验,建立了有侧限结构复合地基设计原理并对其中一种地基类型—水泥搅拌桩格栅结构复合地基进行研究。发现此类型地基对表层土的挤扩—隆起和渗流破坏、地基土强度提高的有效性和对高层建筑基础浅埋与表层土利用的适宜性。
     (4)通过对水泥土搅拌桩和格栅结构工程—力学性质的研究,首次提出格栅结构复合地基中采用单桩弱强度、垂向变强度和群桩整体高刚度的理念。在完善了设计方法和施工工艺后,通过桩在地基土中受力状况的分析,结合桩身应力应变测试数据和结论,推导出桩身变强度的具体计算公式为:q_u=(q-p_s)/ηA_P。该式表明桩任意深度处的截面强度q_u随着桩承担荷载p与桩身摩阻力q的差值减少而减少。满足这一计算公式的桩身强度即可实现地基中的附加应力的有效传递。
     (5)通过研究,指出桩与土、格栅结构、复合地基等变形模量涵义的区别性,以及搅拌桩格栅结构复合地基的变形模量与桩尺寸、桩端土模量E_2、桩周土模量E_s、格栅结构模量E_P等具有相关性,通过应力状态分析,以弹性理论为基础推导出地基模量计算公式为:E=mKK_1E_2+(1-m)E_s,K_1=p/(p-q),K=E_p/(E_p+E_2)。其相关性通过桩置换率m、桩端部土模量折减系数K、桩土间荷载折减系数K_1等表达。
     (6)推导出格栅结构复合地基的承载力f_(spk)、承载力折减系数β等指标的计算公式为:f_(spk)=β(1-m)f_(sk)+mR_α/A_P、β=1/(1+e)。消除了β取经验值的不确定性,并建立与地基土原始孔隙比之间的关系。
     (7)数栋高层建筑物的格栅结构复合地基运行符合各种规范规定,验证其原理和方法的正确性,据此,编写了一套适宜郑州地区高层建筑格栅结构复合地基的设计、施工、监理、检测的技术指南,为此地基类型设计、计算提供了依据。
The continuously developing high building or ultra high building request for foundation soil that can undertake more and more high load and whose deformation is much less. The foundation soil in most cities of our country has the binary medium model, which composes with the topsoil and the underneath soil. Because of the weaker strength and higher deformation of topsoil, it can't directly be the foundation of the high building or ultra high building. The traditional design method usually neglects the beneficial factors that the topsoil have a strength at the lateral confinement and the mechanism for deformation of the topsoil, but and directly adopts the expensive pile foundation that cuts through the topsoil, it delivers load and controls deformation to pass the high strength pile and the high bearing capacity soil. Therefore, it doesn't adapt with development direction and request of the social economy and soil mechanics that the foundation depth of the high and higher buildings is more and more deep.
     Accompany with the extensive development of research about the foundation soil and the demand of economic development, the problems that the foundation depth of the high building or ultra high building is deeper and there is not suitable foundation type using of topsoil are more and more obvious and urgent. In this paper, it was been proposed that the design principle of composite foundation with the lateral confinement structure, and the above-mentioned problem had been resolved. That the research has realistic meaning and objectivity is emphasized, the silt at Zhengzhou that has the typical characteristic of binary medium model is made use of and verified by new foundation type. By many means, such as the large-scale destructive static load experiment, indoor and on-site testing, prototype pile experiment and theories analytical, the interaction mechanism of the grid structure and the soil have been studied thoroughly and systematically.
     Basing on these results, the design calculation method of grid structure composite foundation and the construction technology and quality control system of foundation had been established through theory of one dimension of solid, theory of compound, theory of average, system standpoint and the design data, In-situ testing data, a great deal of foundation engineering, the international experiment research results. Through author pays more than effort for few years, the main results are as follows:
     (1)Through engineering Investigation, the indoor and on-site experiment and test, case investigation, theories analysis etc, the thorough research on foundation at Zhengzhou had been conducted in the combinations types of rock and soil, structure types, strength of foundation soil, mechanism of deformation and failure etc. The conclusion had been drawn that the silt failure under the concentrated load carry is not along the suppose shear face of traditional theories to slide, but the silt take place compression firstly and expanded with the center bulge and the side, and swelled up for break soil as follow increasing load, and break soil is outer circle in the foundation, and the way of the silt to be breached is called "compression-expansion-swelled up" .
     (2)The instability of the silt in foundation is one accumulate deformation and failure that constituted from the different depth local failure. Its process includes the seepage and compression-expansion-swelled up. When there is not lateral confinement, the process of local failure doesn't have limitless factor that the seepage path of the groundwater is shorter and pressure of the groundwater is higher, therefore, the lateral deformation take place usually at the topsoil, and the partial failure at the topsoil takes place. The failure of compression-expansion-swelled up that is according to the certain direction and the order layering constitutes the deformation and failure in the topsoil foundation.
     (3)According to the lateral confinement effect of the artificial structure on the foundation soil in the composite foundation, the deformation failure mechanism of the foundation soil, and the result of the indoor and outdoor lateral confinement experiment, the foundation of high-rise building is divided to two types including lateral confinement structure foundation and non-lateral confinement structure foundation firstly. In the non-lateral confinement structure foundation, when the foundation soil deformation is in the condition of K_0 (stationary soil pressure), the lateral deformation failure with obscure artificial structure constraint will happen. In the lateral confinement structure foundation, because the effect of artificial structure on the foundation soil, the lateral confinement of the foundation soil is formed and the strength in the vertical direction is enhanced, imperatively makes the vertical deformation of the superficial foundation soil the majority and controls the lateral deformation of which to zero gradually. Based on the one-dimension consolidation theory and the lateral confinement experiment, the design principle of the lateral confinement structure composite foundation is established, and the study on the cement agitation pile grid structure composite foundation, one type of the lateral confinement structure composite foundation, is carried out. It's indicated that the lateral confinement structure composite foundation has the availability in the compression -expansion- swelled up and seepage failure of topsoil and practicability in the shallow bury of high-rise building foundation and the utility of the topsoil.
     (4)According to the research of the engineering—mechanics property of the cement-soil churning pile and grid structure, the concept was put forward firstly, such as that a single pile is weak strength and is change strength and the foundation is high strength in the composite foundation. After perfected design method and construction craft, based to the analysis of stress and strain dint of the pile in the foundation soil and the test data and the conclusion of stress and strain of the pile, the deduced calculation formula of change strength of cement-soil churning pile is: rily depth noodles strength q_u that is decreased because the difference of the undertaken load p and resistance q of the pile is reduced. The pile strength that satisfies this calculation formula can immediately carry out the affixture stress in the foundation to deliver effectively.
     (5) Through the research, pointing out the differences between the pile and soil, grid structure, modulus of deformation implication of composite foundation and so on, and which has the relevance between the deformation modulus of grid structure composite foundation and the pile size,pile model measures E_2, the pile week earthen model measures Es,grill structure module E_p and so on. Through the stress condition analysis, inferring the subgrade modulus formula by taking thetheory of elasticity as the foundation is: E = mKK_1E_2 + (1- m)E_s, K_1= p /(p - q),K =E_p/(E_p+E_2). Its relevance through pile rate of displacement m, reductioncoefficient K in pile nose soil modulus, load reduction coefficient K_1 between pile earth expressions and so on.
     (6)Inferring the grid structure composite foundation bearing capacity f_(spk), the bearing capacity reduction coefficientβand so on. The target formulas is: f_(spk)=β(1-m)f_(sk)+mR_a/A_p ,β= 1/(1+e) , which eliminatedβhas taken theempirical value the uncertainty, and has established the foundation soil primitive void ratio relations.
     (7) Through some high building of grid structure composite foundation movement which conforms to each standard, that has confirmed its principle and the method accuracy, according to this, compiled a set to be suitable the Zhengzhou area high-rise construction grid structure composite foundation design, the construction, overseeing, the examination technical guide, and which provided the basis for this foundation type design, the computation.
引文
[1]Taylor,D.W.(1948) "Fundamentals of Soil Mechanics",John Wiley & Sons
    [2]Sowers,G.F.(1979) " Introductory Soil Mechanics and Foundations:Geotechnical Engineering",Macmillan Publishing Co.
    [3]Terzaghi,K.,Peck,R.B.(1948) "Soil Mechanics in Engineering Practice",John Wiley &Sons.
    [4]Lamb,T.W.,Whitman,R.V.(1979) "Soil Mechanics,SI Version",John Wiley & Sons.
    [5]Terzaghi K.Die Berechnung der Durchlaessigkeitszifter des Tones aus dem Verlauf der Hydrody-namishen Spannungeserschcinungen,Sitsbcr.Akad.Wiss.Vienna,Abt.Ⅱ a,1923,132
    [6]Terzaghi K.Principles of soil mechanics,Eng.Naws Record,Dec.17.1925
    [7]Fellenius W.Erdstatische Berechnungen,Berlin,W.Erndt u.Sohn,1927
    [8]Taylor D W.Stability of earth slope,Boston Soc.Civil Engrs.1937.24:197-246
    [9]Bishop A W.Use of the slip circle in the stability analysis of slopes,Geotechnique,1955.5
    [10]Blot,M.A.,General theory of three-dimension consolidation,J.Appl.Phys.12,155,1941
    [11]Schmertmann J H.The mechanical aging soils.Proc ASCE,1991,117(GT9):1288-1330
    [12]张学言,岩土塑性力学(1993)[M],人民交通出版社,北京:102
    [13]沈珠江,岩土破损力学:理想脆弹塑性模型[J],岩土工程学报,2003,25(3):253-257;
    [14]葛修润等,岩土损伤力学(宏细观试验研究)[M],科学出版社,2004,北京
    [15]王年香,魏汝龙,沿海软粘土取土质量的对比分析[J],工程地质学报,1994,2(2):66-75
    [16]张诚厚,两种结构性粘土的土工特性[J],水利水运科学研究,1983(4):65-71
    [17]魏汝龙,软土地基中孔隙压力的现场观测及其规律[J],水利水运科学研究,1980(4):61-73
    [18]陈仲颐、周景星,王洪瑾,土力学[M],北京:清华大学出版社,1994
    [19]张诚厚等,塑料排水板深层处理段研究成果述评[M],北京:中国建筑工业出版社,1997.96-106;
    [20]Henkel D J.The relationship between the stress,pore water pressure and volume change characteristics of saturated clays.Geotechnique,1959,9(3):119-135
    [21]Tavenus F,Leroueil S.Behaviour of embankment on clay foundations.Can Geotech J.1980,17(2):236-260
    [22]Schmertmann J H.The mechanical aging soils.Proc ASCE,1991,117(GT9):1288-1330
    [23]Roscoe K H,Schofield A N,Thurairajah A.Yielding of clays in the state wetter than critical.Geotechnique,1963,13(3):211-240
    [24]张学言,岩土塑性力学[M],人民交通出版社(1993)北京
    [25]Arthur,j.r.f.Induced anisotropy in a sand,Geotechhique 1977,27(1):13-30
    [26]Tavenus F,et al.Lateral displacements in clay foundations under embankments.Can Geotech J,1979:16(3):532-550
    [27]沈珠江,当前土力学研究中的几个问题,岩土学报,1986.8(5):1-8
    [28]Skempton A W.The pori pressure coefficient A and B,Geotechnique,1954.(4):143-147
    [29]Janbu,N.(1963),Soil compressibility as determined by Odometer and triaxial teste,Proc.European Conf on Soil Mech.& Found.Engrg.N1,19
    [30]Bjerrum L.Engineering geology of normally consolidated marine clays as related to the settlement of buildings.Geotechnique,1967,17(2):83-118
    [31]Leroueil,et al.Construction Pore Pressures in clay foundations under embankment.Can Geotech J,1978,15(1):66-82
    [32]Tavenus F,et al.Lateral displacements in clay foundations under embankments.Can Geotech J,1979:16(3):532-550
    [33]Terzaghi K.Theoretical soil mechanics,1943.
    [34]Mindiin R D.Force at a point in the interior of a semi-infinite soild,Physics,1936:195-202
    [35]H G & Davis E H.Pile foundation analysis and design,New York:John Wiely and Sons.1980
    [36]黄文熙等,水工建筑无土壤地基的沉降量与地基中的应力分布,水利学报,1957.(3):1-60
    [37]宰金珉,宰金璋,高层建筑基础分析与设计[M],中国建筑工业出版社,1994.6,317-341
    [38]Sandier I S.Dimaggio F L & Baladi G Y.Genaralized cap model for geological materials,J.GED,ASCE,1976.102(GT7):683-105
    [39]沈珠江,易进栋,海滩软土路基的固结变形分析[J],岩土工程学报,1987,9(6):39-45
    [40]魏汝龙,软粘土的强度和变形[M],北京:人民交通出版社,1987.74:
    [41]D.G弗雷德隆德(加拿大),H.拉哈尔佐(印度尼西亚)等著,陈仲颐等译,非饱和土力学[M],(1997)中国建筑工业出版社,北京
    [42]郑颍人,龚晓南,岩土塑性力学基础[M],中国建筑工业出版社(1989)北京
    [43]沈珠江,结构性粘土的非线性损伤力学模型[J],水利水运科学研究,1993(3):247-255;
    [44]Mitchell,J.K.(1966),The Fabric of Soil-Cement and Its Formation,Proe.the 14~(th) National Conference on clay and Clay Minerals
    [45]Kawamura,M.,A Role of the Interaction of Clay Minerals with Portland Cement in Soil-Cement Mixtures,Transaction of J.S.C.E,1969,2
    [46]Broms,B.& Broman,P,lime Columns-A New Foundation Method,Journal of the Geotechnical Engineering Division,ASCE,1979,4
    [47]#12
    [48]#12
    [49]J.M.Duncan,C.Y.Chang,Nonlinear analysis of stress and strain in soils Proc.ASCE,Journal of SMF.,Vol.96,No.SMS.,1970;
    [50]曾国熙,《地基处理手册》[M],北京,中国建筑工业出版社,1988
    [51]周国钧、胡安、刘允召、沙炳春,深层搅拌法加固软粘土技术[J],岩土工程学报,1981,4
    [52]周国钧、杨晓刚、刘毅、劭永锦等,天津无缝钢管总厂的滨海平原上探讨了大面积堆载下搅拌桩复合地基[J]1993,26-28
    [53]《建筑地基处理技术规范》JGJ79—2002,[S]条文说明,中国建筑科学研究院
    [54]龚主华等《岩土工程施工方法》[M],沈阳,辽宁科技出版社,1990.9
    [55]陈仲颐、叶书麟等《基础工程学》北京,中国建筑工业出版社(1990)
    [56]林宗元主编《岩土工程治理手册》[M],沈阳,(1993年)辽宁科学技术出版社
    [57]上海市市政工程管理局《软土市政地下工程施工技术手册》[S]1990
    [58]1990年浙江省标准《建筑软弱地基基础设计规范(DBJ10-1-90)》[S]杭州:浙江大学出版社,1990
    [59]1991年冶金部出版《软土地基深层搅拌加固技术规程(YBJ225-91)》[S],北京,冶金工业出版社,1990
    [60]沙炳春、刘允召、周国钧,深层搅拌法加固软粘土的机械及施工[J],施工技术,1981,2
    [61]龚晓南等,地基处理,中国土木工程学会第六届土力学及基础工程学术会论文集[C],上海:同济大学出版社,1991
    [62]郑代华,杨庆生,复合材料在土木工程中的应用现状[J].北方交通大学学报,1999,(4):96-100.
    [63]欧阳仲春,现代土工加筋技术[M],北京:人民交通出版社,1991.12-14
    [64]杨庆生、郑代华.多相夹杂材料的有效性能[J],北方交通大学学报,1999,23(1):20-23,
    [65]周国钧、陆贻杰,深圳机场联络道软土地基深层搅拌法加固工程中,中国土木工程学会土力学即基础工程学会地基处理学术委员会第三届地基处理学术讨论会论文集[C],100-10
    [66]叶观宝、叶书麟,上海核工程研究设计院核辐射检验大楼深层搅拌桩试验及分析,,浙江省建工勘察科技情报站、浙江省工程勘察学术委员会[C],28-33。
    [67]曾国屏,自组织的自然观[M],北京:北京大学出版社,1996.90.
    [68]钱学森等,论系统工程[M].长沙:湖南科学技术出版社,1982,245.
    [69]H.哈肯,协同学讲座[M],西安:陕西省科学技术出版社,1987.3.
    [70]Dobry R,Powell D J,Yokel F Y,etal.Liquefaction Potential of saturated sand—The stiffness method[A],Mult.Proc.7th World Conference on Earthquake Engineering[C].Detroit:A SCE,1980,25-32.
    
    [71]Rowe,P.W.Measurement of the coefficient of Consolidation of Lacustrine Clay,Geotechnique,vol.9,No.3,1959.
    [72]M.A.Biot,General Theorty of Three-Dimensional Consolidation,J.APP.Phys.Vol.12,1941
    [73]沈珠江,易进栋,海滩软土路基的固结变形分析[J],岩土工程学报,1987,9(6):39-45.
    [74]孙亦松,甘德福,天然地基建筑物沉降量的Gan-Chen计算模式计算法[J],水文地质工程地质,2004,1:105-107
    [75]朱俊高,卢海华,殷宗泽等,土体侧向变形性状的真三轴试验研究[J],河海大学学报,1995,23(6):28-33
    [76]Dena E T R.Specific length and some constitutive models[J].Geo technique,1998,48(1):1-32
    [77]殷宗泽,土体的侧向变形[A],见:岩土力学的理论与实践[C],南京:河海大学出版社,1998,1-6
    [78]Lambe T W.Stress path method of Soil Mech.and Found.Div.ASCE[J].J.,1967,93(SM6):268-277.
    [79]Dobry R,Powell D J,Yokel F Y,etal.Liquefaction Potential of saturated sand—The stiffness method[A],Mult.Proc.7th World Conference on Earthquake Engineering[C].Detroit:A SCE,1980,25-32.
    [80]Rhee Y.ExPermental evaluation of strain softening behaviour of normally,consolidated Chicago clay in Plane strain comPression[D].Evanston:Northwestern University,1991,212-214
    [81]Viggarni G,Finno R J,Harris W W.Experimental observations of stain localization in strain compression of a stiffclay[A].Proc 3rd Int Workshop Localisation Theory for Soils and Rocks Aussois[C].Rotterdam:Balkema,1993,189-198.
    [82]Desrues J,Chambon R,Mokni M,Mazerolle F.Void ratio evolution inside shear bands in triaxial sand sPecimens studied bycomPuted tomograPhy[J].Geotechnique,1996,46(3):529-546
    [83]Skempton A W.The Pore-pressure coefficients A and B.Geotechnique,1954,4(4)
    [84]兹洛切夫斯卡娅·Л И,科罗列夫·В А.不同密度饱水粘土物理-力学和物理-化学性质形成中的温度因素[M],北京:地质出版社,1992.45-48
    [85]施斌,姜洪涛等,在外力作用下土体内部裂隙发育过程的CT研究[J],岩土工程学报,2000(5):537-540
    [86]李晓军,张等良等,路基填土单轴受压细观结构CT检测分析[J],岩土工程学报2000,22(2):205-209
    [87]M.A.Biot,General Theorty of Three-Dimensional Consolidation,J.APP.Phys.Vol.12,1941
    [88]方晓阳等,基础工程手册[M],北京:中国建筑工业出版社,1986
    [89]王靖涛,曹红林,丁美英,程涛等,基于数码相机的土三轴式样变形的数字图象测量[J],华中科技大学学报(城市科学版),2004(2):1-4
    [90]黄博,陈云敏,殷建华,等。控制试样剪切模量的动三轴液化试验[J]。岩土工程学报,2000,22(6):682-685.
    [91]黄博,陈云敏,殷建华,吴世明,等。粉土和粉砂的动力特性试验研究[J]。浙江大学学报(工学版),2002,36(2):143-14
    [92]赵锡宏,张启辉,土的剪切带试验与数值分析[M],北京:机械工业部出版社,2003
    [93]王靖涛,曹红林,丁美英,程涛,基于数码相机的土三轴式样变形的数字图象测量[J],华中科技大学学报(城市科学版),2004(2):1-4
    [94]Desrues J,Chambon R,Mokni M,Mazerolle F.Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J],Geotechnique,1996,46(3):529-546.
    [95]Peter J F,Lade P V,Bro A.Shear band formation in triaxial and plane tests.Advanced Triaxial Testing of Soil and Rock.In:Robert T et al,Eds.ASTM STP977.ASTM,Philadelphia,1988,604-627
    [96]沈珠江,岩土破损力学与双重介质模型[J],水利水运工程学报流.2002,12(4):1-6
    [97]弗洛林土体压密理论1中国科学院水利部北京水利科学研究院译[M]1 北京:中国工业出版社,19641
    [98]沈珠江,结构性粘土的非线性损伤力学模型[J],水利水运科学研究,1993,3:247-255
    [99]沈珠江,结构性粘土的弹塑性损伤模型[J],岩土工程学报,1993,15(3)222-226
    [100]沈珠江,土体变形特性的损伤力学模拟,第五界全国岩土力学数值分析与解析方法讨论会论文集[C],1994,1-8
    [101]沈珠江,岩土力学理论的某些进展[J],江苏力学,1994,35-36
    [102]沈珠江,土体结构性的数学模型——21世纪土力学的核心问题[J],岩土工程学报,1996,18(1):95-97
    [103]Desrues J,Chambon R,Mokni M,et al.Void ratio evolution inside shear bands in triaxial and specimens studied by computed tomograPhy.Geotechnique,1996,46(3):529-546
    [104]Finno R J,Harris W W,Mooney M A,et al.Shear bands in plane stain compression of loose sand.Geotechnique,1997,47(1):149-165
    [105]沈珠江,一个计算砂土液化变形的等价粘弹性模型.中国土木工程学会土力学及基础工程学会主编.第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社,1986.199207
    [106]沈珠江,理论土力学[M],北京,中国水利水电出版社,2000
    [107]徐志英,沈珠江,地震液化有效应力二维动力分析方法,华东水利学院学报,1981(3)
    [108]Dena E T R.Specific length and some constitutive models[J].Geo technique,1998,48(1):1-32
    [109]Anthoine A.Derivation of the in2plane elastic characteristics ofmasonry through homogenization theory[J].Int J Solids and Structures,1995,32(2):137-163.
    [110]Wang J G,Leung C F,Ichicawa Y.A simplified homogenization method for composite soils[J].Computers and Geotechnics,2002.
    [111]沈珠江,陈铁林,岩土破损力学——结构类型与荷载分担[J],岩石力学与工程学报,2004,23(13):2137-2142
    [112]陈家瑾,陈甦,韩静云,陈越,陈旭元对,水泥土(砼)抗压试件尺寸表面约束对强度的影响[J],岩土力学,2003,25(1):132-136
    [113]潘殿琦,陈勇,深层搅拌桩强度的影响因素与改善措施[J],岩石力学与工程学报,2004,(11):1154-1157
    [114]汤怡新,刘汉龙,朱伟,水泥固化土工程特性试验研究[J],岩土工程学报,2000,22(9):549-554.
    [115]吴迈,窦远明,王恩远,水泥土组合桩荷载传递试验研究岩[J],岩土工程学报,2004,26(3):432-434.
    [116]吴雄志,水泥土桩单桩荷载传递及临界桩长研究[J],岩土力学,2004,25(9):1491-1494
    [117]张忠坤,殷宗泽,曹正康,复合地基临界桩长的研究[J],岩土工程学报,1999,21(2):184-188.
    [118]舒翔,王福忠,确定柔性桩复合地基有效桩长的简化方法[J],工业建筑,2001,31(11):16-17.
    [119]吴保全,李天斌,多层地基土中水泥搅拌桩强度计算的方法[J],岩土工程技术,2007,21(6)271-274
    [120]《建筑地基处理技术规范》(JGJ79—2002)[S],北京:中国建筑工业出版社
    [121]曾国熙,卢肇钧,等.地基处理手册[M].北京:中国建筑工业出版社,1993,6:399-422.
    [122]张士乔,龚晓南,裘慰伦,等.水泥土桩复合地基复合模量计算[A].第三界地基处理学术讨论会论文集[C].1992,6:140-143.
    [123]秦然,陈征宙,董平.水泥土桩复合地基桩土应力比的一种解析算法[J].岩土力学,2001,22(1):96-98.
    [124]闫明礼,王名山,等.多桩型复合地基设计计算方法探讨[J].岩土工程学报,2003,(3): 352-355.
    [125]周国钧,陆贻杰,的三届地质处理学术讨论会论文集[M],浙江大学出版社,1992.5,100-103
    [126]方晓阳等,基础工程手册[M],北京:中国建筑工业出版社,1986(改为88)
    [127]JGJ6-99,高层建筑箱形与筏形基础技术规范[S]
    [128]地基处理手册编写委员会,地基处理手册(第二板)[M],北京:中国建筑工业出版社,2000,449-453
    [129]张利新,吴金维,王亚东,复合地基褥垫层技术的工程应用实例分析[J],地基处理,1999,(3):76-77
    [130]叶洪东,复合地基桩间土承载力这件系数的分析与取值[J],岩土力学,2004,(4)663-670
    [131]黄春霞,张鸿儒,桂国庆,水泥土搅拌桩复合地基承载力公式中折减系数B取值分析[J],工程地质学报,2003,(04):385-389
    [132]吴保全,李天斌等,格栅状复合地基压缩模量的计算[J].岩土力学,2007,28(10):2183-2187
    [133]吴保全,李天斌,浅层地基土利用的新途径[J],水文地质工程地质,2006(4)23-27
    [134]吴保全,李天斌,粉土的破坏方式浅探[J],岩土工程界,2008,11(1)45-47
    [135]霍林.摩擦学原理[M].北京:机械工业出版社,1975
    [136]吴保全,李天斌,格栅结构地基承载力折减系数计算方法研究[J],路基工程,2008,140(5)136-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700