宽频带高分辨率地震勘探方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对油气勘探开发中地面地震分辨率低,用地震资料不能有效识别薄层地层、薄层储层等难题,本文开展了宽频带高分辨率地震勘探方法研究,主要包括地震波高频衰减规律、地震波高频衰减的物理机制、地震波高频衰减的恢复方法及宽频带高分辨率地震应用等研究内容。
     本论文通过对传统的地震波衰减规律、地震波衰减物理机制和目前高分辨率地震勘探方法的调研,结合双井微地震测量数据中观察到的现象,系统分析、深入研究,取得如下四点新进展。1、认识到松辽盆地地震勘探中的高频衰减主要产生在近地表低速层及近震源区。2、提出地震波传播的基本单元是纳米级的质点,地震波高频衰减的物理机制主要是孔隙骨架之间的弹性视衰减。3、研制出恢复地震波高频衰减提高地震分辨率的新方法,可以将大药量激发地表接收的地面地震延拓成小药量激发高速层接收的宽频带地震。4、认识到薄层储层的反射振幅有随频带宽度的变化而变化(AVF)的特征,薄层储层调谐厚度是频率的函数,频带窄调谐厚度大,频带宽调谐厚度小。
     宽频带高分辨率地震方法在松辽盆地应用后见到好效果。宽频带高分辨率地震剖面的分辨率比常规地震剖面提高2倍。也就是说松辽盆地中部含油组合的地面地震分辨能力由9—15m提高到3—5m。在宽频带高分辨率地震剖面上见到丰富的构造、沉积等地质现象。在肇源南、江37等三维地震工区解释出一批薄层岩性圈闭,为松辽盆地油气勘探部署及油田开发提供了依据。
     本论文研究成果在油气勘探开发中的构造学研究、沉积学研究、油气储层预测等方面有重要的意义。
Recognition of thin inter-bed reservoirs using normal seismic data in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present an exploration method of broad frequency band and high resolution seismogram. It mainly include analysis of seismic wave attenuation rule, physical mechanism of seismic attenuation in a two-phase medium, seismic wave attenuation and recovering method, and application of broad frequency band and high resolution seismogram.
     In this paper, I present some research on high-frequency seismic attenuation and the exploration method of high resolution seismogram, and propose four points of views.
     1, After analyzing the near surface dual holes micro-seismogram survey data, it shows that the main reason of surface seismic data’s resolution is low is resulted from wave attenuation in near source area and near surface low velocity layers.
     2, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nanomass, and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves.
     3, A new deterministic deconvolution method, which improves the seismic resolution in a large scale, is proposed. Using MVSP from dual holes micro-seismogram survey deriving filter operator of near source area, ghost reflection and near surface low velocity layers, using the filter operator to do deconvolution to the surface seismic data and recover the mentioned several seismic wave decays.
     4, Based on forward modeling, we recognized that a thin bed seismic reflection is characterized by changing amplitude with changing frequency (amplitude versus frequency, AVF). Tuning thickness of thin bed reservoirs is a function of frequency. The narrower the frequency band, the larger the tuning thickness and, conversely, the broader the frequency band, the smaller the tuning thickness. Based on the AVF characteristics, we can identify the tuning amplitudes of thin bed reservoirs, confirm their tuning frequencies, calculate the bed thickness, and map the reservoir distribution.
     The technique has been applied in the 3D seismic area of Zhaoyuan in the northern part of the Songliao Basin. The seismic resolution is increased by two or three times over that of conventional seismic and many thin reservoirs have been identified.
引文
[1]李庆忠。走向精确勘探的道路[M]。北京:石油工业出版社, 1994。
    [2]熊翥。我国物探技术的进步及展望[J]。石油地球物理勘探, 2004,39:354-358。
    [3]刘光鼎。我国油气资源勘探开发中存在地主要问题及对策[J]。地球物理学进展,2005,20(1):1~3。
    [4]愈寿朋。高分辨率地震勘探[M]。北京:石油工业出版社,1993.3-13。
    [5] Hewitt M K. Seismic data acquisition. SEG Continuing Education Program,1982
    [6] Li Zishun, Wang jun。Near surface velocity interpretation and its application in Songliao basin[C]。Presented at 72th SEG Ann. 2002。
    [7] Brian J.Evans. Geophysical monograph series [M].USA Tulsa: Society of Exploration Geophysical, 1997, 232-234.
    [8] Williamson P R etal. Crosshole imaging in anisotropic media1[J]。The Leading Edge ,1993 ,12 (1) :19~23
    [9]李庆忠,王建花。井间地震勘探的误区及出路[J]。石油地球物理勘探2004, 39:1-11。
    [10]陈世军,刘洪。,周建宇等.井间地震技术的现状与展望[J]。地球物理学进展,2003, 3(18):524~529。
    [11] Sherif,R.E.,Geldart,L.P.,勘探地震学[M],初英李承楚等译。北京,石油工业出版社,1999,227-231。
    [12]刘建华,胥颐,郝天珧。地震波衰减的物理机制研究[J]。地球物理学进展,2004, 19:1-7.
    [13] Angus Best ,Seismic attenuation and pore fluid viscosity monitoring in reservoir rocks,Presented at 77th SEG Ann. 2007
    [14] Walsh J B. Seismic waves attenuation in rock due to friction[J ]. J G R , 1966 ,71 :2591.
    [15] Johnston D H , Toksoz M N. Attenuation of seismic wave in dry and saturated rocks : II mechanisms [J ] . Geophysics , 1979 ,44 : 691.
    [16] Biot, M. A. Mechanics of deformation and acoustic propagation in porous media[J]. J. Appl. Phys. 1962,33, 1482-1498.
    [17]张中杰滕吉文。EDA介质中地震波速度、衰减与品质因子方位异性研究[J]。中国科学(E辑),1999,29(6):569-574
    [18] Wang Y. Quantifying the effectiveness of stabilized inverse Q filtering[J]. Geophysics, 2003,68:337-345.
    [19] M.schoenberger and F.K.levin.apparent attenuation due to intrabed multiples[J].Geophysics,1978,43:730-737.
    [20] Maria-Daphne Mangriotis*, and James W. Rector III, Scattering versus intrinsic attenuation: measurements from permanent down-hole geophones. Presented at 77th SEG Ann. 2007。
    [21]王大兴、辛可锋等,地层条件下砂岩含水饱和度对波速及衰减影响的实验研究[J],地球物理学报, 2006 ,49 (3) :908~914.
    [22] Michael S. King. Rock-physics developments in seismic exploration: A personal 50-year perspective[C]. SEG Annual Meeting, 2005.
    [23]马在田,地震成像技术[M]。北京:石油工业出版社,1989。
    [24] White, J. E., Mikhaylova, N. G., Lyakhoritsky, F. M. Low-frequency seismic waves in fluid-saturated layered rocks[J]. Izvestija Academy of sciences USSR, Phys. Sold Earth, 1975,11: 654-659.
    [25]陈大明,纳米陶瓷复合材料的制备与性能[J].材料导报, 1997,05.
    [26]崔鑫,吴健,应力条件下单壁氮化硼纳米管结构、力学和电学性质[J]。清华大学学报(自然科学版),2005 ,45 (6 ):828-830
    [27]戈革,地震波动力学基础[M].北京:石油工业出版社,1980。
    [28] Li Zishun, Cui Baowen.Predicting the distribution of thin bed reservoir by broad frequency band seismic[C]. Presented at 2006 SPE Asia Pacific Conference.SPE-100882.
    [29] Toksoz, M.N., and D.H. Johston . Seismic Wave Attenuation [M].SEG Geophysical Reprint Series 2. Tulsa: SEG, 1981。
    [30] Robinson, E. A., and S. Treitel, 1967, Principles of digital wiener filtering: Geophysical Prospecting, 15, 311–333.———, 1980, Geophysical signal analysis: Prentice-Hall Book Co.
    [31] [美]渥.伊尔马滋。地震数据处理[M]。黄绪德,袁明德译。北京:石油工业出版社,1994.71-79。
    [32] Peacock, K. L., and S. Treitel, 1969, Predictive deconvolution? Theory and practice: Geophysics, 34, 155–169.
    [33] Arya and Holden. A geophysical application: deconvolution of seismic data [J]. 1979. pp 324-338, Western periodicals Co., N. Hollywood.
    [34]Wang xiaoping,LingYun,Zhang rujie:“The application of the tuning effect to the detection of the thin bed less than 1/4—an example in northwest China,”paper SEG presented at 2003 Annual Technical conference and Exhibition. pp. 502-505
    [35]Gochioco, L.M.:“Tuning effect and interference reflections from thin beds and coal seams,”Geophysics(1991) 56:1288-1295.
    [36]张军华,印兴耀等:“振幅、时间联合反演厚度方法的改进及应用,”Geophysical prospecting for petroleum(1997)36:67-72
    [37] Tatham, R. H., Canbom, S. H,“Seismic Parameters and Their Estimation: Progress in Estimation and Interpretation,”Segment 6, Society of Exploration Geophysicists Continuing Education course on the Convolutional Model of the Reflection Seismogram and Measurement of Subsurface Seismic Parameters, edited by Norman Neidel, SEG, (1979).
    [38] Taner, M. T., 1978, Complex seismic trace analysis: Geophysics, 44, 1041–1063.
    [39] Giroldi, L., and F. Alegria, 2005, Using spectral decomposition to identify and characterize glacial valleys and fluvial channels within the Carboniferous section in Bolivia: The Leading Edge, 24, 1152–1159.
    [40] Partyka, G., J. Gridley, and J. Lopez,1999, Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, 18, 353–360.
    [41] Borgos, H. G., T. Skov, and L. Sonneland, 2005, Automated structural interpretation through classification of seismic horizons, in A. Iske and T. Randen, eds., Mathematical methods and modelling in hydrocarbon exploration and production: Springer Verlag, 89–106.
    [42] Lin, J. C., 2005, Geoscience visualization with GPU programming: Visualization and Data Analysis, 126–134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700