非饱和黄土动力本构模型及其在地铁车站地震反应分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁是解决城市交通堵塞和环境污染的最有效方法之一,被许多大型城市所采用。一般认为,地铁作为地下结构具有良好的抗震性能,但阪神地震表明,地铁在地震作用下也会发生严重破坏,而且灾后修复困难代价高昂。地铁车站是地铁运营中的枢纽,设备和人员集中,一旦破坏,后果十分严重。随着经济的发展,国内地铁建设数量的增多,对地铁车站进行地震反应研究不仅必要而且紧迫。鉴于以往的研究主要集中在饱和土地区,而非饱和土地区研究较少。本文以非饱和黄土为研究对象,在静力三轴试验和动力三轴试验的基础上,对其非饱和性和结构性进行了研究并建立了相应的动力本构模型,利用所建立的模型对非饱和黄土地区的场地和地铁车站进行了有限元—无限元耦合地震反应分析,取得了以下主要成果:
     1、通过静力三轴试验,分别研究了四种含水率的重塑非饱和黄土和原状非饱和黄土在三种围压下的应力应变规律,分析了含水率和围压对土体的变形及强度的影响;通过动力三轴试验,研究了三种含水率非饱和黄土的动力变形规律,分别研究了含水率和围压对非饱和土的变形模量及阻尼比的影响,并分析了其产生的原因。通过重塑非饱和黄土和原状非饱和黄土的应力应变曲线对比,提出了结构应力分担比的概念,并研究了含水率和围压对其变化规律的影响,试验表明该参数可以合理有效的反映非饱和土的结构性。
     2、基于边界面弹塑性模型理论,引入含水率,建立了重塑非饱和黄土的动力本构模型,详细分析了本构模型中的各个参数及其确定方法;基于二元介质本构理论,在重塑非饱和黄土动力本构模型的基础上,引入结构应力分担比,建立了原状非饱和黄土的动力本构模型,并给出了结构应力分担比定量表达式及其确定的方法。所建模型具有参数易于确定便于工程应用的优点,模型以含水率作为参数反映土体的非饱和性,避免了基质吸力难以确定的问题;以结构应力分担比作为参数反映土体的结构性,克服了从微观角度研究结构性及其成果难以应用的缺点。
     3、给出了本构模型程序实现的思路和步骤,推导了相关的公式,并用FORTRAN语言开发编写了所建动力本构模型的子程序;利用有限元软件ABAQUS对静力和动力试验进行了模拟。结果表明,所建立的本构模型能较为准确的反映重塑非饱和黄土和原状非饱和黄土的力学特性,所开发的子程序具有较好的稳定性和较高的精度。
     4、利用本文建立的非饱和黄土动力本构模型,建立了有限元—无限元耦合模型,对非饱和黄土自由场地进行了地震反应分析,分析了在水平地震作用下上覆土层厚度、含水率、结构性对地震反应的影响,分析比较了单向地震反应和双向地震反应的不同;对非饱和黄土地区拟建的地铁车站进行了地震反应分析,给出了水平、竖向和双向地震反应分析结果,并对比分析了三种地震输入方式对结构反应的影响,研究了结构埋深对地震反应的影响,总结提出了相应的规律,对工程实践提出了有益的建议和指导。
The subway is one of the most effective methods to solve urban traffic congestion and pollution of the environment, used by many large cities. People generally considered that the subway as the underground structure has stronger anti-seismic capability. But Kobe earthquake and other earthqakes show that the subway may also occur severely damaged under the earthquake, and it is very difficult to repair. Subway station is the hub of metro operation. There are many equipments and persons. It will bring large economic and societal losses when it is destroyed. With the development of economy, the dimension of subway construction is extened increasingly. It is necessary and pressing to study on the response of the subway station under the earthquake. The study is usually in the saturated soil area, and it is a less in unsaturated soil area. On the basis of previous researches about the structure and unsaturation of unsaturated soils, this paper establishes the dynamic model of the unsaturated soils. The seismic response of the unsaturated soils field and the subway station in unsaturated soil area are analyzed by finite-infinite element coupling method with the establisded model. The main content of the paper including the followings five aspects:
     (1) The stress-strain of five kinds of water content unsaturated soil under three kinds of consolidtated pressures is studied through the soil of static triaxial shearing test. The effect of water content and consolidtated pressure to the strength and deformation is analyzed. The stress share ratio is defined to study the structure of unsaturated soil, the effect of two factors are analyzed. The stress-strain of three kinds of water content unsaturated soil is studied through the soil of dynamic triaxial shearing test. The damp and dynamic modul between water content are analyzed.
     (2) The dynamic model of reconstituted unsaturated soil is established based on the theory of bounding surface model. It contains the parameter of water water content in order to express unsaturated. The itact unsaturated soil's dynamic model is established based on model of reconstituted unsaturated soil by introducing the parameter of stress share ratio.
     (3) The programming steps of the unsaturated soil's dynamic model is given and the detailed numerical calculation formula is deduced. The programm of the model is writen by Fortran language on the platform of the finite element software ABAQUS. The tests of soil are modeled to validate the established models.
     (4) On the basis of the established unsaturated soil's model, the seismic response of the unsaturated soils field and the subway station in unsaturated soil area are analyzed by finite-infinite element coupling method. The effects of some factors, such as water content, soil structure, depth are analyzed.
引文
[1]施仲衡.地下铁道与施工[M].西安:陕西科学技术出版社,1997
    [2]季倩倩,杨林德.地下铁道震害与震后修复措施[J].灾害学,2001,16(2):31-36
    [3]张庆贺,朱合华,庄荣等.地铁与轻轨[M].北京:人民交通出版社,2002
    [4]胡聿贤.地震工程学[M].北京:地震出版社出版社,2006
    [5]李国强.建筑结构抗震设计[M].北京:中国建筑工业出版社,2009
    [6]GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2001
    [7]GB50157-1992,地下铁道设计规范[S].北京:中国建筑工业出版社,1992
    [8]GB50157-2003,地铁设计规范[S].北京:中国建筑工业出版社,2003
    [9]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63
    [10]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,11:55-58
    [11]冯谦,黄江.大跨度地下结构震害特征及破坏机理探讨[J].大地测量与地球动力学,2009,29:98-101
    [12]Takeyasn Suzuki. Damages of Urban Tunnels due to the Southern Hyogo Earthquake of January 17,1995 and the evaluation of Seismic Isolation Efect[A]. Paper No.540, Proceeding of 11 WCEE[C]. Mexico,1996
    [13]Iida H., et al. Damage to Daikai Subway Station[J]. Soils Found.1996,18:283-300.
    [14]郑永来,杨林德,李文艺,周健.地下结构抗震[M].上海:同济大学出版社,2005
    [15]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990(3):1-10
    [16]林皋.地下结构抗震分析综述(下)[J].世界地震工程,1990(3):1-10
    [17]林皋.地下结构抗震设计[J].土木工程学报,1996,29(1):15-24
    [18]John C M S, Zahrah T F. Aseismic design ofunderground structures [J]. Tunnelling and Underground Space Technology,1987,2(2):165-197
    [19]Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground SpaceTechnology,2001,16(4):247-293.
    [20]Krauthammer T, Chen Y. Soil-structure interface effects on dynamic interaction analyis of reinforced concrete lifelines[J]. Soil dynamic and earthquake enginnering 1989,8(1): 32-42
    [21]曹炳政,罗奇峰等.神户大开地铁车站的地震反应分析[J].地震工程与工程震动,2002,22(4)102-107
    [22]李彬,刘晶波,刘祥庆等.地铁车站的强地震反应分析及设计地震动参数研究[J].地震工程与工程震动,2008,28(1)17-24
    [23]陈国兴,左熹,庄海洋等.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程震动,2008,28(1)157-163
    [24]李彬,刘晶波,刘祥庆等.双层地铁车站的强地震反应分[J].地下空间与工程学报,2005,1(5)779-786
    [25]Kirzhner F. Rosenhouse G. Numerical analysis of tunnel dynamic response to earth motions[J]. Tunnelling and Underground Space Technology,2000.15(3):249-258
    [26]Pakbaz M. C., Akbar Yareevand.2-D analysis of circular tunnel against earthquake loading[J]. Tunnelling and Underground Space Technology,2005,20:411-417
    [27]杨林德,王国波,郑永来等.地铁车站接头结构振动台模型试验及地震响应的三维数值模拟 [J].岩土工程学报,2007,29(12):1892-1897
    [28]杨林德,王国波,郑永来等.地铁车站结构振动台试验及地震响应的维数值模拟[J].岩石力学与工程学报,2007,26(8):1538-1543
    [29]王国波,杨林德,马险峰等.地铁车站结构三维地震响应及土非线性分析[J].地下空间与工程学报,2008,4(2):234-241
    [30]张栋梁,王国波,杨林德等.侧向连续开孔地铁车站结构的三维地震响应研究[J].地震研究,2009,32(1):46-50
    [31]陈健云,温瑞智,于品清等.浅埋软土地铁车站地震响应数值分析[J].世界地震工程,2009,25(2):46-51
    [32]Cundal P A. A computer mode for simulating progressive large scale movements in blocky systems [A]. Proceeding of the Symposium of the Inlernational Sociely of Rock Mechanics, Nancy, Francc,1971
    [33]潘别桐,曹美华.龙门石窟边坡岩体动力稳定性离散元分析[A].全国第三次工程地质大会论文选集,1988:103-109
    [34]鲍鹏,李丽.离散元法土-地下结构动力相互作用分析[J].河南大学学报:自然科学版,1988:429-433
    [35]张丽华陶连金.节理岩体地下沿室群的地震动力响应分析[J].世界地震工程,2002,18(2):158-162
    [36]刘亚安,孙尚明.边界元法分析地震波作用下自然边坡稳定性[A].滑坡监测技术讨论会论文汇编,1988:103-109
    [37]Wolf J P, Song C M. Dynamic-stiffness matix of unbounded soil by finite element multi-cell cloning[A]. Earthqake Eng. Struct. Dyn. Proceedings of world conference on eathqake engineering,1992,1645
    [38]吕能锋.土-复合地基-结构相互作用地震反应的边界元法分析[D].天津:天津大学硕士论文,1998
    [39]Szavits N, Kovacevic M S. Modeling of anchored diaphragm wall [A]. In:Detournay, Hart. Flac and Numerical modeling in Geomechanics. Rotterdam:Balkema,1999.451-458
    [40]冯仰德,章梓茂.强震作用下地埋结构的数值模型[J].中国安全科学学报,2001,11(6):16-19
    [41]尤红兵,赵凤新,李方杰.层状场地中局部不均体对平面P波的散射[J].岩土力学,2009,10(5):3133-3138
    [42]曹留伟,孙伟.应用边界元方法求解地下洞室三维开挖问题[J].贵州大学学报:自然科学版,2009,26(5):105-111
    [43]姜忻良,徐余,郑刚.地下隧道—土体系地震反应分析的有限元与无限元耦合法[J].地震工程与工程振动,1999,19(3):22-26
    [44]张玉娥,牛润明.引入无限元的地铁区间隧道地震反应分析[J].石家庄铁道学院学报,2001,14(3):71-74
    [45]Huo H, Bobet A. Seismic design of cut and eover rectangular tunnels-evaluation of observed behavior of Dakai stmion during Kobe earthquake,1995[C]//Proceedings of 1st Wodd Forum of Chinese Scholars in Geotechnieal Engineering. Shanghai, China,2003: 456-466
    [46]刘卫丰,刘维宁,Gupta S, Degrande G.地铁振动预测的周期性有限元-边界元耦合模型[J].振动工程学报,2003,24(5):800-80
    [47]金峰王光纶.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001, 1(5):24-28
    [48]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996(5):7-16
    [49]Phillips J S, Luke B A Tunnel damage resulting from seismic loading. Proc, Znd intern, conf, on Rec Adv, in geot, earthq, Eng. And Soil Dyn. March 11-15,1991, St. Louis, Missouri, Paper No.2.4 pp207-217
    [50]Shunzo Okamoto, Choshiro Tamura. Behavior of subaqueous tunnels during earthquakes [J]. Earthquke engineering and structual dynamics,1973,1(1):253-266
    [51]Goto Y, Matsuda Y. Influence of distance between Juxtaposed shield tunnels on their sesmic responses. [A]. Pro,9th World Conf. On Earthq, Eng,1988,569-574
    [52]Iwatate T, Kobayashi Y, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu eatthquake[J] 12WCEE,2000,1043
    [53]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间,2002,22(4):320-324
    [54]王国波.软土地铁车站结构三维地震响应计算理论与方法的研究[D].同济大学博士论文,2007
    [55]陈国兴,庄海洋,杜修力.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程震动,2007,27(2):157-163
    [56]Takahashi A, Takemura J. Liquefaction-induced large displacement of pile-supported wharf[J]. Soil Dynamics and Earthquake Engineering,2005 (25):811-825
    [57]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427
    [58]刘晶波,刘祥庆,王宗纲.地基-地下结构系统动力离心模型试验相似设计方法研究[J].岩土工程学报,2008,24(3):1-4
    [59]刘晶波,刘祥庆,王宗纲.砂土地基—地下结构系统离心机振动台模型试验[J].第十届全国岩石力学与工程学术大会论文集,威海,2008:145-151
    [60]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):6-9
    [61]王杰贤.动力地基与基础[D].北京:科学出版社,2000
    [62]Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analyses. Report No. EERC70-10, Earthquake Engineering Research Center, University of California, Berkeley,1970
    [63]Hardin B 0, Drnevich V P. Shear modules and damping in soil measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1972,98(6):603-624
    [64]Martin G R. Effects of system compliance on liquefaction tests. Journal of Geotechnical Engineering Division,1978,104 (4):463-480
    [65]Prevost J H, Catherine M K. Shear stress2strain curve generation from simple material parameters[J]. Geotechnical Engineering,1967,34 (3):11-19
    [66]Pyke R. Nonlinear soil models for irregular cyclic loading[J]. GED,1979,105(6): 715-726
    [67]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹性模型[J].岩土工程学报,1980,2(3):10-20
    [68]尚守平,刘方成,王海东.基于阻尼的地震循环荷载作用下黏土非线性模型[J].土木工程学报,2007,40(3):74-80
    [69]Iwan W D. On a class of models for the yielding behavior of continuous and composite system[J]. ASME,1967,34 (3):21-33
    [70]Carter J P, Booker J R, Wrothu C P. A critical state soil model for cyclic loading. In:Pande G N, Zienkiewicz 0 C, eds. Soil Mechanics2Transient and Cyclic Loadings. London:John Wiley and Son,1982.35-62
    [71]刘祖典,党发宁.土的弹塑性理论基础[M].西安:世界图书出版西安公司,2002
    [72]周健,白冰,徐建平.土动力学理论与计算[D].北京:中国建筑工业出版社,2001
    [73]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析.西安:陕西科学技术出版社,1995
    [74]熊玉春,房营光,徐国辉.软黏土的动力损伤模型及其应用[J].岩土工程学报,2006,25(1):3152-3158
    [75]Mroz Z. On the description of anisotropic work hardening[J]. Journal of the Mechanics and Physics of Solids.1967,15(3):163-175
    [76]Dafalias Y E. and Popov E. P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanic.1975,21:905-916
    [77]DafaliasY F, and Hemnannl L R. A bounding surface soil plasticity model[A] Inter. Symposium on Soils under Cyclic and Transient Loading, Swansea, January,1980,335-345
    [78]Dafalias Y R, and Herrmann L R. Bounding formulation of soil plasticity[J]. Soil Mechanic Transient and Cyclic Loads. Wiley, New York; 1982,253-282
    [79]Matsuoka H. Stress2strain relationship of sand based on the mobilized plane[J]. Soil and Foundations,1974,14 (2):1-27
    [80]Aubry D, Hujeux J G, Lassoudiere F, et al. A double memory model with multiple mechanisms for cyclic soil behavior[J]. Proc Inter Symp on Numeral Models in Geomechanics,1982,134-139
    [81]Kabilamany K, Ishihara K. Stress dilatancy and hardening laws for rigid granular model of sand[J]. Soil Dynamics and Earthquake Engineering,1990,9(2):66-77
    [82]Provest J H. Multi2mechanism elasto2plastic model for soils[J]. J of Engineering Mechanics,1990,116 (9):1924-1944
    [83]Pastor M, Zienkiewicz 0 C, Chen H C. Generalized plasticity and the modeling of soil behavior[J]. In:Inter T. Nume Anal Methods in Geotechnics.1990.151-190
    [84]丰土根.饱和砂土不排水动力特性及多机构边界面塑性模型研究[D].南京:河海大学博士论文,2002
    [85]杨超,崔玉军,黄茂松,Jean-Michel Pcreira, Jean-Paul Karam.循环荷载下非饱和结构性黄土的损伤模型研究[J].岩石力学与工程学报,2008,27(4):805-810
    [86]杨超.非饱和结构性土体动力本构模型研究[D].上海:同济大学博士论文,2008
    [87]JGJ89-92,原状土取样技术标准[S].北京:中华人民共和国建设部,1993
    [88]GB/T50123-1999,土工试验方法标准.北京:中华人民共和国建设部,1999
    [89]殷宗泽,周建,赵仲辉.非饱和土本构关系及变形计算[J].岩土工程学报,2006,28(2):137-141
    [90]凌华.非饱和土强度变形实用计算方法[D].南京:河海大学博士论文,2006
    [91]凌华,殷宗泽,蔡正银.非饱和土的应力-含水率-应变关系试验研究[J].岩土力学,2008,29(3):651-655
    [92]李广信.土的清华弹塑性模型及其发展[J].岩土工程学报,2006,28(1):1-10
    [93]司韦.非饱和土的增湿试验及模型研究[D].北京:清华大学,2006
    [94]骆亚生,张爱军.黄土结构性的研究成果及其新进展[J].水力发电学报,2004,23(6):66-69
    [95]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J]岩土工程学报.1996,18(1):95-97
    [96]苗天德,王正贵.考虑微结构失稳的湿陷性和黄土变形机理[J].中国科学(B).1990,(1)86-96
    [97]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径,岩土工程学报[J].1999,21(6):651-656.
    [98]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,No,10
    [99]谢定义.考虑土结构性的本构关系[J].土木工程学报[J],2000,33(4):35-40
    [100]陈存礼,胡再强,高鹏.原状黄土结构性及其变形特性关系研究[J].2004,26(4):522-525
    [101]陈存礼,何军芳,杨鹏.考虑结构性影响的原状黄土本构关系[J].岩土力学,2007,28(11):2284-2287
    [102]陈存礼,高鹏,何军芳.考虑结构性影响的原状黄土等效线性模型[J].岩土工程学报2
    [103]王永淼,林在贯.中国黄土的结构特征及精理力学性质[M].北京:科学技术出版社,1990:194-1999
    [104]杨和平,张锐,郑健龙.非饱和膨胀土总强度指标随饱和度变化规律[J].土木工程学报,007,29(4):1330-1334
    [105]骆亚生,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].2004,26(4):522-525
    [106]胡伟.饱和黄土动力本构模型及其在桩-土-结构体系地震动力相互作用中的应用[D].西安:西安建筑科技大学博士论文,2008
    [107]沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002,(4):1-6
    [108]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253-257
    [109]刘恩龙,沈珠江.结构性土强度准则探讨[J].工程力学,2007,24(2):1-8
    [110]陈惠发.土木工程的材料方程[D].武汉:华中科技大学出版社,2001
    [111]陈正汉.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):62-69
    [112]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000
    [113]凌华,殷宗泽.非饱和土强度随含水率的变化[J].岩石力学与工程学报,2007,25(7):1499-1503.2006,34(4):58-63
    [114]BISHOPA W, ALPAN I, BLIGHTG E, etal. Factors controlling the shear-strength of partly saturated cohesive soils[C]//ASCE Conference on Shear of Cohesive Soils. Boulder. CO:University of Colorado,1960:503-532.
    [115]FREDLUND D G, M ORGENSTERN N R, W IDGER R A. The shear strength ofunsaturated soils [J]. Canadian Geotechnical Journal,1978,15(3):313-321.
    [116]张伯平,袁海智,王力.含水率对黄土结构强度影响的定量分析[J].西北农业大学学报,1994,22(1):54-57
    [117]西北水利科学研究所.西北黄土的性质[M].西安:陕西人民出版社,1959:96-103
    [118]缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水率的关系[J].岩土力学,1999,20(2):71-75
    [119]缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,20(3):1-6
    [120]刘洋.合肥膨胀土抗剪强度与含水率的关系研究及工程应用[D].太原:合肥工业大学硕士,2003
    [121]程斌.陕北Q_3黄土抗剪强度与含水率的关系及工程应用[D].西安:煤科总院西安分院硕士论文,2007
    [122]党进谦,李靖.含水率对非饱和黄土强度的影响[J].西北农业大学学报,1996,24(1):56-60
    [123]党进谦,阁宁霞,李靖.非饱和黄土的强度和变形.中国岩石力学与工程学会第七次学 术大会论文集,2002
    [124]赵慧丽,张弥,李兆平.含水率对北京地区非饱和土抗剪强度影响的试验研究[J].石家庄铁道学院学报,2001,14(4):30-33
    [125]杨雪辉.非饱和重塑黄土强度特性的试验研究[D].西安:西北农林科技大学硕士,2008
    [126]陈立.黄土的结构强度及其与结构屈服压力的关系[D].西安:西北农林科技大学硕士,2008
    [127]Hillel D. Soil and water, Physical Principles and Process,1971
    [128]Hillel D. Computer Simulation of Soil-water Dynamies.渥太华:渥太华国际发展研究中心,1977
    [129]GB5007-2002,建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002
    [130]GB50021-2001,岩土工程勘察规范[S].北京:中国建筑工业出版社,2002
    [131]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997:6-8
    [132]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004
    [133]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社.2002
    [134]孔亮,花丽坤,郑颖人.土的循环塑性模型研究进展[J].水利水运工程学报,2004:4(4),61-64
    [135]Mroz Z. On the dseription of anisotronie hardening[J]. J Meeh Phys Solids,1967, 15:163-175
    [136]Zienkiewicz-Pande O C, Naylor D J. Discussion on the Adaption of Critical State Soil Mechanics Theory for Use Infinite Element. Stress-Strian Behavicr of Soils. Roscoe Memorial Symposium, Cambrige Univ,1971
    [137]Zienkiewicz-Pande O C, The Finite Element Method in Engineering Science. Mcgraw-Hill London,1979
    [138]张腾.非饱和黄土的结构性及其弹塑性本构模型研究[D].西安理工大学硕士论文2006
    [139]李广信.高等土力学[M].北京,清华大学出版社,2004
    [140]钱家欢.土工原理与计算[M].南京,中国水利水电出版社,1995
    [141]刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析[D].上海:同济大学博士论文,2006
    [142]Hibbitt, Karlsson & So rensen, Inc. ABAQUS user's manuals version 6.6[M]. Rhode Island: Hibbitt, Karlsson & So rensen, Inc,2006
    [143]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2009
    [144]陈卫忠ABAQUS在隧道与地下工程中的应用[M].北京:中国水利水电出版社,2009
    [145]费康,刘汉龙.边界面模型在ABAQUS的开发应用[J].解放军理工大学学报,2009:10(5),447-451
    [146]王刚,张建民.边界面模型在MARC中的开发实现及应用[J].岩土力学,2006:27(9),1535-1539
    [147]何光渝,高永利Visual Fortran常用数值算法集[M].北京:科学出版社,2002
    [148]窦立军,雷艳,宫刚.关于时程分析的几点建议[J].工程力学,2001,增刊
    [149]窦立军,杨泊坡,雷艳,宫刚.根据场地条件确定地震时程的方法[J].世界地震工程,2001:17(2),46-50
    [150]刘立平.水平地震下桩-土-上部结构弹塑性动力相互作用分析[D].重庆大学博士论文,2004
    [151]廖振鹏,刘晶波.波动有限元模拟的基本问题[J].中国科学(B辑),1992,35(8):874-882
    [152]刘晶波,吕彦东.结构—地基动力相互作用问题分析的一种直接方法[J].土木工程学报, 1998,31(3):55-64
    [153]王明洋,赵跃堂,钱七虎.用波动有限元法分析上与结构相互作用时设置人工边界的两个问题[J].岩上工程学报,1995,17(1):92-95
    [154]Lysmer J, Kulemeyer R L. Fnite dynamic model for infinite media [J]. Journal of Engineering Mechanics, ASCE,1969,95 (EM4):859-877
    [155]Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bull Seism Soc Amer,1977,76:1529-1540.
    [156]Clayton R,Engquist B.Absorbing boundary conditions for wave equation migration [J]. Geophysics,1980,45:895-904.
    [157]Smith W. A non-reflecting plane boundary for wave propagation problems [J]. J Comp Phys, 1973,15:492-503.
    [158]Kunar R R, Marti J. A non2reflecting boundary for explicit calculations[J]. Computational Methods for Infinite Domain Media-Structure Interactio, ASME, AMD46,1981:183-04.
    [159]关慧敏,廖振鹏.局部透射边界和叠加边界的精度分析与比较[J].力学学报,1994,6(3):303-311
    [160]Deeks A J, Randolph M F. Asymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25-42
    [161]吕爱钟,蒋斌松,尤春安.位移反分析有限元网格划分范围的研究[J].土木工程学报,1999,32(1):26-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700