车载LiDAR点云中建筑物的自动识别与立面几何重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光雷达(Light Detection And Ranging, LiDAR)或激光扫描系统是一种非接触主动式的对地观测系统。LiDAR技术在三维空间信息的实时获取方面产生了重大突破,为高时空分辨率地球空间数据的获取提供了一种全新的技术手段。随着传感器、电子、光学、计算机等技术的发展,以车辆为搭载平台综合利用GPS、IMU、激光扫描仪、CCD相机,在多传感器同步集成与控制的基础上构建的车载LiDAR测量系统,已成为一种快速的空间数据获取手段,广泛运用于基础测绘、城市规划、交通、环保等领域。车载LiDAR系统能够在高速移动状态下获取道路以及道路两侧建筑物、树木等地物的表面数据。一方面而言,它具有数据获取速度快、点云密集、场景目标丰富的特点;另一方面,其获取的数据具有海量特性(激光扫描仪每秒可获取上万个点),且带有噪声并存在遮挡,这给车载LiDAR点云数据的处理方法带来了巨大的挑战。
     目前车载LiDAR点云数据处理的主要问题在于:场景复杂、目标丰富,不同目标的自动分类与识别智能化程度低;建筑物面片结构复杂,立面细节特征丰富,造成建筑物立面几何三维重构的自动化程度低。
     针对以上问题,本文重点研究了车载LiDAR点云数据中不同目标的快速有效自动分类与识别方法以及具有窗户细节特征的建筑物点云立面几何三维重建方法。具体研究内容如下:
     1、介绍了LiDAR技术的发展以及车载LiDAR系统在三维街景环境数据快速获取中的重大作用,针对现有车载LiDAR点云数据处理方面的不足和难点,确定了本文的研究目标。
     2、针对当前的车载LiDAR测量系统,详细介绍了其传感器组成与工作原理,并分析了当前国内外知名的商用车载LiDAR系统的组成、传感器搭载模式及相关技术指标。从数据量、数据排列方式、噪声、强度信息、多次回波信息、遮挡情况、点云密度、点云空间分布、扫描方式、场景复杂性、立面结构以及透射与孔洞等方面,详细说明了车载LiDAR点云数据与传统的机载LiDAR点云数据之间的异同。对目前国内外车载LiDAR点云目标的分类与识别、点云建筑物立面的几何重建两方面的相关研究进行了综述,归纳总结了目前车载LiDAR点云数据目标提取方面的不足及其发展趋势。
     3、分析了常用的辅助图像在车载LiDAR点云目标分类与识别中应用的不足,提出了一种区别于传统的距离图像、强度图像和CCD图像,且能够反映车载LiDAR点云数据中不同目标几何属性的地理参考点云特征图像生成方法。通过车载LiDAR点云数据生成扫描区域的地理参考点云特征图像,并对生成的图像的参数设置进行了详细分析,讨论了格网采样间隔与权值系数对生成的地理参考点云特征图像的影响。
     4、针对车载LiDAR点云目标分类与识别的迫切需求,提出了一种基于地理参考点云特征图像的车载LiDAR点云中建筑物目标的自动识别方法。采用由粗到细的策略,通过对地理参考点云特征图像进行阈值分割、目标轮廓边界提取,实现了原始车载LiDAR散乱点云中地面目标与非地面目标的分离。在点云空间中通过分析目标点云的空间分布特征,采用剖面分析与特征值分析相结合的方法,实现了非地面目标中建筑物目标点云的自动识别。通过实例数据验证了本文提出的建筑物目标自动识别方法,并对其识别准确率以及其与相关算法进行了分析比较。
     5、针对车载LiDAR点云数据中提取的建筑物点云,从立面几何位置边界、立面细节几何特征以及面片拓扑结构等三个方面入手,重点介绍了建筑物点云面片分割、立面细节的几何特征与语义描述以及面片之间的拓扑关系,提出了立面几何位置边界的自动提取方法,通过窗户、门洞等细节的几何特征与语义描述自动识别了建筑物点云中的不同几何结构面片,并提出了基于立面栅格图像和立面三角网的矩形窗户特征提取方法,通过构建建筑物面片之间的几何拓扑关系恢复了建筑物面片结构,实现了建筑物点云立面几何重建。
Laser scanning or light detection and ranging (LiDAR) provides an efficient solution for capturing spatial data in a fast, efficient, and highly reproducible way. It has been widely used in many fields, such as cultural heritage documentation, reverse engineering, three-dimensional (3D) object reconstruction, and digital elevation model (DEM) generation, as it can directly obtain the3D coordinates of objects. LiDAR can be divided into three categories, namely, airborne LiDAR, terrestrial LiDAR, and mobile LiDAR. Airborne LiDAR has been successfully used for digital elevation model (DEM) generation and reconstruction of building roofs. However, it has difficulties for capturing points of the facades of buildings. As mobile mapping technology has made a great progress, mobile LiDAR allows the rapid and cost-effective capturing of3D data from large street scenes including the dense points of building facades.
     In recent years, the processing of mobile LiDAR data has been focused mainly on objects extraction and facades reconstruction. To extract street-scene objects or detailed features of building facades, mobile LiDAR point clouds need to be classified into different categories (e.g., buildings, trees), which is a key step for accurate identification and3D reconstruction of street-scene objects. Moreover, facades reconstruction requires the detailed features of building facades like windows and facade footprints to be automatically recognized.
     On the one hand, mobile LiDAR systems capture high-accuracy, high-density points both at accuracies and resolutions, which beyonds those availablities through aerial Photogrammetry, and when using the terrestrial LiDAR is impractical. However, compared with advances in mobile LiDAR systems, automated algorithms and software tools for efficiently extracting3D street-scene objects of interest from mobile LiDAR point clouds rather fall behind, due to huge data volumes and complexity of urban street scenes, as well as the presence of occlusion. On the other hand, different from the approaches for airborne LiDAR data processing, methods for processing mobile LiDAR data have to deal with fully3D point clouds. Due to the non-unique correspondence between (X, Y) coordinates and Z coordinate, the algorithms for filtering and classifying airborne LiDAR data, such as triangulated irregular network (TIN)-based filtering method, are difficult in handling with the mobile LiDAR data because of data dimensionalities.
     This dissertation aims to fulfill two tasks, namely, the automated classification and buildings recognition from mobile LiDAR point clouds, the reconstruction of building facades with detailed features like facade footprints and windows from the point clouds of buildings.
     This dissertation proposes a novel method to generate the georeferenced feature image of mobile LiDAR data, which represents the spatial distribution of scanning points and preserves the local geometric features of street-scene objects. Then the approach based on the georeferenced feature image was proposed for automated extraction of buildings from mobile LiDAR data. The proposed approach consists of two steps:coarse classification of buildings in image space using image segmentation and contour extraction, accurate identification in3D space adopting profile analysis and eigenvalues analysis.
     Secondly, this dissertation focuses on facade footprints extraction, windows extraction from building facades, and geometric reconstruction of wire-frame building models. A coarse-to-fine approach using RANSAC planar segmentation was firstly proposed to automatically extract the facade footprints of building point clouds. The geometric features and semantic description of different planar patches of buildings were elaborated to distinguish facade walls from segmented planar patches. To extract detailed features from building facades, this dissertation presents a method combining facade raster images and facade TIN models to automatically extract rectangle windows in facade walls. Finally, the topology between different planar patches like facade walls and roofs were built to reconstruct the geometric wire-frame models of buildings.
     The proposed method of the georeferenced feature image generation transforms the extraction of street-scene objects like buildings from3D mobile LiDAR point clouds into the geometric features extraction from2D imagery space, thus simplifies the automated building extraction process. Four datasets captured by Optech's Lynx Mobile Mapper system were selected for assessing the performance of the proposed methods of buildings recognition and facades reconstruction. Experimental results demonstrate that the proposed methods provide promising solutions for automatically extracting street-scene buildings and building facade details like windows and footprints from mobile LiDAR point clouds.
引文
[1]Abuhadrous, I., Ammoun, S., Nashashibi, F., Goulette, F. and Laurgeau, C.,2004. Digitizing and 3D modeling of urban environments and roads using vehicle-borne laser scanner system. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.76-81.
    [2]Ahmadi, S., Valadan Zoej, M.J., Ebadi, H., Moghaddam, H.A. and Mohammadzadeh, A.,2010. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours. International Journal of Applied Earth Observation and Geoinformation,12:150-157.
    [3]Akel, N.A., Filin, S. and Dovtsher, Y.,2009. Reconstruction of Complex Shape Buildings from LiDAR Data Using Free Form Surfaces. Photogrammetric Engineering & Remote Sensing, 75(3):271-280.
    [4]Ameri, B. and Fritsch, D.,2000. Automatic 3D building reconstruction using plane-roof structures. Proceedings of the American Society for Photogrammetry and Remote Sensing Conference, Washington, D.C.
    [5]Awwad, T.M., Zhu, Q., Du, Z.Q. and Zhang, Y. T.,2010. An improved segmentation approach for planar surfaces from unstructured 3D point clouds. Photogrammetric record,25(129): 5-23.
    [6]Axelsson, P,2000. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2000,33 (PartB4):110-117.
    [7]Barber, D., Mills, J. and Smith, V. S.,2008. Geometric validation of a ground-based mobile laser scanning system. ISPRS Journal of Photogrammetry and Remote Sensing,63: 128-141.
    [8]Barnea, S. and Filin, S.,2008. Segmentation of Terrestrial Laser Scanning Data by Integrating Range and Image Content. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,37(Part B5):745-750.
    [9]Bater, C.W. and Coops, N. C.,2009. Evaluating error associated with LiDAR-derived DEM interpolation. Computers & Geosciences,35:289-300.
    [10]Becker, S.,2009. Generation and application of rules for quality dependent facade reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing,64:640-653.
    [11]Becker, S. and Haala, N.,2007. Refinement of building facades by integrated processing of LiDAR and image data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,36 (Part 3/W49A):7-12.
    [12]Becker, S., Haala, N. and Fritsch, D.,2008. Combined knowledge propagation for facade reconstruction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,37 (Part B5):423-430.
    [13]Belton, D. and Bae, K.H,2010. Automating post-processing of terrestrial laser scanning point clouds for road feature surveys. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,38 (Part 5):74-79.
    [14]Belton, D. and Lichti, D.D.,2006. Classification and segmentation of terrestrial laser scanner point clouds using local variance information. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(Part 5):44-49.
    [15]Besl, P.J.,1988. Surface in Range Image Understanding. Perception Engineering. Springer-Verlag, New York.
    [16]Besl, P.J. and Jain, R.C.,1988. Segmentation through variable-order surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence,10(2):167-192.
    [17]Bezdek, J.C.,1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York.
    [18]Biosca, J.M. and Lerma, J.L.,2008. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry & Remote Sensing,63(1):84-98.
    [19]Brandtberg, T., Warner T., Landenberger, R. and McGraw, J.,2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density LiDAR data from the eastern deciduous forest in North America. Remote Sensing of Environment,85:290-303.
    [20]Brenner, C.,2000. Towards fully automatic generation of city models. The International Archives of Photogrammetry and Remote Sensing,32(Part 3):85-92.
    [21]Brenner, C.,2009. Extraction of Features from Mobile Laser Scanning Data for Future Driver Assistance Systems. In M. Sester et al, editors, Advances in GIScience, Lecture Notes in Geoinformation and Cartography, pp.25-42.
    [22]Bretar, F. and Roux, M.,2005. Hybrid Image Segmentation Using LiDAR 3D Planar Primitives. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36 (Part 3/W19):72-78.
    [23]Brovelli, M.A. and Cannata, M.,2004. Digital terrain model reconstruction in urban areas from airborne laser scanning data:the method and the example of the town of Pavia (Northern Italy). Computers & Geosciences,30:325-331.
    [24]Canny, J.F.,1986. A Computational Approach to Edge Detection. IEEE Trans, on Pattern Analysis and Machine Intelligence,8:679-698.
    [25]Chen, S.Y. Lin, W.C. and Chen, C.T.,1991. Split-and-merge image segmentation based on localized feature analysis and statistical tests. CVGIP-Graphical models and Image Processing,53(5):457-475.
    [26]Chen, Y., Zhao, H. and Shibasaki, R,2007. A mobile System Combining Laser Scanners and Cameras for Urban Spatial Objects Extraction. International Conference on Machine Learning and Cybernetics, pp.1729-1733.
    [27]Cornelis, N., Leibe, B., Cornelis, K. and Van Gool, L.,2008.3D urban scene modeling integrating recognition and reconstruction. International Journal of Computer Vision,78 (2-3):121-141.
    [28]Dick, A.R., Torr, P.H., Ruffle, S.J. and Cipolla, R.,2001. Combining single view recognition and multiple view stereo for architectural scenes. In:Proceedings of the 8th IEEE International Conference on Computer Vision, Vancouver, Canada,9-12 July, pp.268-274.
    [29]Dold, C. and Brenner, C.,2004. Automatic Matching of Terrestrial Scan Data as a Basis for the Generation of Detailed 3D City Models. The International Archives of Photogrammetry and Remote Sensing,35(Part B3):1091-1096.
    [30]Filin, S.,2002. Surface clustering from airborne laser scanning data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,34 (Part 3 A): 117-124.
    [31]Filin, S. and Pfeifer, N.,2005. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing,60(2): 71-80.
    [32]Filin, S. and Pfeifer, N.,2006. Neighborhood systems for airborne laser scanning data. Photogrammetric Engineering & Remote Sensing,71(6):743-755.
    [33]Fischler, M. A. and Bolles, R. C.,1981. Random Sample Consensus:A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM,24(6):381-395.
    [34]Forlani, G, Nardinocchi, C., Scaioni, M. and Zingaretti, P.,2004. Building reconstruction and visualization from LiDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,34(Part 5/W12):151-156.
    [35]Forlani, G., Nardinocchi, C., Scaioni, M. and Zingaretti, P.,2006. Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Analysis Application,8: 357-374.
    [36]Frueh, C., Jain, S. and Zakhor, A.,2005. Data processing algorithms for generating textured 3D building facade meshes from laser scans and camera images. International Journal of Computer Vision,61 (2):159-184.
    [37]Geibel, R. and Stilla, U.,2000. Segmentation of laser altimetry data for building reconstruction:different procedures and comparison. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,33(B3):326-334.
    [38]Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P. and Gomez-Lahoz, J.,2009. An automatic procedure for co-registration of terrestrial laser scanners and digital cameras. ISPRS Journal of Photogrammetry and Remote Sensing,64:308-316.
    [39]Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S. and Laurgeau, C.,2006. An integrated on-board laser range sensing system for on-the-way city and road modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,34(Part 3):1-6.
    [40]Haala, N. and Brenner, C.,1999. Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry & Remote Sensing,54:130-137.
    [41]Haala, N. and Kada, M.,2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing,65:570-580.
    [42]Haala, N., Peter, M., Kremer, J. and Hunter, G.,2008. Mobile LiDAR Mapping for 3D Point Cloud Collection in Urban Areas-A Performance Test. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,37:1119-1124.
    [43]Hammoudi, K., Dornaika, F., Soheilian, B. and Paparoditis, N.,2010a. Extracting Outlined Planar Clusters of Street Facades from 3D Point Clouds. In 2010 Canadian Conference Computer and Robot Vision, pp.122-129.
    [44]Hammoudi, K., Dornaika, F., Soheilian, B. and Paparoditis, N.,2010b. Extracting wire-frame models of street facades from 3D point clouds and the corresponding cadastral map. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38 (Part 3A):91-96.
    [45]Hesami, R., BabHadiashar, A. and HosseinNezhad, R.,2010. Range segmentation of large building exteriors:A hierarchical robust approach. Computer Vision and Image Understanding,114:475^490.
    [46]Hoffman, R. and Jain, A.K.,1987. Segmentation and classification of range images. IEEE Transactions on Pattern Analysis and Machine Intelligence,9(5):608-620.
    [47]Hofmann, D. A.,2004. Analysis of tin-structure parameter spaces in airborne laser scanner data for 3-d building model generation. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,35 (Part B3):302-307.
    [48]Hohmann, B., Krispel, U., Havemann, S. and Fellner, D.,2009. CityFit-high-quality urban reconstructions by fitting shape grammars to images and derived textured point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,38 (Part 5/W1):1-8.
    [49]Hofmann, D. A., Maas, H. G. and Streilein, A.,2002. Knowledge-based building detection based on laser scanner data and topographic map information. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,34 (Part 3 A):169-174.
    [50]Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D. and Bowyer, K., 1995. Range Image Segmentation:The User's Dilemma. Proceedings of IEEE International Symposium on Computer Vision, Florida, USA,19-21 November, pp.323-328.
    [51]Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D.W., Fitzgibbon, A. and Fisher, R.B.,1996. An experimental comparison of range image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,18 (7):673-689.
    [52]Huang, H. and Brenner, C.,2011. Rule-based Roof Plane Detection and Segmentation from Laser Point Clouds. In:Stilla, U., Gamba, P., Juergens, C., Maktav, D. (Eds), JURSE 2011, Joint Urban Remote Sensing Event, Munich, Germany, April 11-13, pp.293-296.
    [53]Hunter, G., Cox, C. and Kremer, J.,2006. Development of a commercial laser scanning mobile mapping system-StreetMapper. In 2nd International Workshop on the Future of Remote Sensing, October 17-18,2006, Antwerp, Belgium.
    [54]Jiang, X., Bowyer, K., Morioka, Y., Hiura, S., Sato, K., Inokuchi, S., Bock, M., Guerra, C., Loke, R.E. and du Buf, J.M.H.,2000. Some Further Results of Experimental Comparison of Range Image Segmentation Algorithms.15th International Conference on Pattern Recognition, ICPR'00, Barcelona, Spain,3-8 September,4:877-881.
    [55]Kada, M.,2009. The 3D Berlin project. In:Fritsch, D. (Ed.), Photogrammetric Week 2009. Wichmann Verlag, Heidelberg, pp.331-340.
    [56]Kang, Z.Z.,2008. Automatic registration of terrestrial point cloud using panoramic reflectance images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,37(Part B5):431-436.
    [57]Kass, M., Witkin, A. and Terzopoulos, D.,1988. Snakes:active contour models. International Journal of Computer Vision,1(4):321-331.
    [58]Khoshelham, K.,2007. Extending Generalized Hough Transform to Detect 3D Objects in Laser Range Data. ISPRS Workshop on Laser Scanning 2007 and SilvilLaser 2007, Espoo, September 12-14,2007, Finland,36(Part 3/W52):206-210.
    [59]Kraus, K. and Pfeifer, N,1998. Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data. ISPRS Journal of Photogrammetry and Remote Sensing,53 (4): 193-203.
    [60]Kremer, J. and Hunter, G.,2007. Performance of the StreetMapper Mobile LiDAR Mapping System in "Real World" Projects. In Photogrammetric Week'07,2007, pp.215-225.
    [61]Krishnapuram, R. and Keller, J.M.,1996. The possibilistic C-means algorithm:insights and recommendations. IEEE Transactions on Fuzzy Systems,4(3):385-393.
    [62]Lalonde, J.F., Vandapel, N., Huber, D.F. and Hebert, M.,2006. Natural Terrain Classification Using Three-Dimensional Ladar Data for Ground Robot Mobility. Journal of Field Robotics, 23(10):839-861.
    [63]LANDMark,2012. LANDMark Marine, retrieved from www.applanix.com/solutions/marine/landmark-marine.html. Last accessed on September 19th,2012.
    [64]Lee, S.C. and Nevatia, R.,2004. Extraction and integration of window in a 3D building model from ground view images. In:IEEE Conference on Computer Vision and Pattern Recognition,2:113-120.
    [65]Lee, I. and Schenk, T.,2001.3D perceptual organization of laser altimetry data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part 3/W4):57-65.
    [66]Lehtomaki, M., Jaakkola, A., Hyyppa, J., Kukko, A and Kaartinen, H.,2010. Detection of Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser Scanning Data. Remote Sensing,2:641-664.
    [67]Li, B.J., Li, Q.Q., Shi, W.Z. and Wu, F.F.,2004. Feature extraction and modeling of urban building from vehicle-borne laser scanning data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,12-23 July,2004, Istanbul, Turkey, pp.934-940.
    [68]Li, Y., Zhen, L. and Hong, X.,2010. Segmentation of Unorganized Point Cloud from Terrestrial Laser Scanner in Urban Region. In The 18th International Conference on Geoinformatics:GIScience in Change, Geoinformatics 2010, Peking University, Beijing, China, June 18-20,2010, pp.1-5.
    [69]Li, Y.Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B.Q. and Mitra, N.J.,2011.2D-3D Fusion for Layer Decomposition of Urban Facades.2011 IEEE International Conference on Computer Vision (ICCV), pp.882-889.
    [70]Liu, R. and Hirzinger, G.,2005. Marker-free Automatic Matching of Range Data. In R. Reulke and U. Knauer, editors, Panoramic Photogrammetry Workshop, XXXVI-5/W8 of IAPRS,2005.
    [71]Lynx,2012. LYNX Mobile Mapper, retrieved from http://www.optech.ca/pdf/LvnxDataSheet.pdf.Last accessed on March 10th,2012.
    [72]Maas, H. and Vosselman, G,1999. Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data. ISPRS Journal of Photogrammetry & Remote Sensing,54(2-3): 153-163.
    [73]Manandhar, D. and Shibasaki, R,2001. Vehicle-borne Laser Mapping System (VLMS) for 3-D GIS. Geoscience and Remote Sensing Symposium,5:2073-2075.
    [74]Manandhar, D. and Shibasaki, R.,2002. Auto-extraction of urban features from vehicle-borne laser data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,34:650-655.
    [75]Matikainen, L., Hyyppa, J. and Kaartinen, H.,2004. Automatic detection of changes from laser scanner and aerial image data for updating building maps. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,35(Part B2):434-439.
    [76]Mayer, H.,1999. Automatic object extraction from aerial imagery-a survey focusing on buildings. Computer Vision and Image Understanding,74(2):138-149.
    [77]Me Elhinney, C., Kumar, P., Cahalane, C. and McCarthy, T,2010. Initial Results From European Road Safety Inspection (EURSI) Mobile Mapping Project. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,35 (Part 5), 2010.
    [78]McGlone, J. C., M. Mikhail, E. and Bethel, J.,2004. Manual of photogrammetry (5th edition). Published by the ASPRS, ISBN 1-57083-071-1.
    [79]Melzer, T.,2007. Non-parametric segmentation of ALS point clouds using mean shift. Journal of Applied Geodesy,1(3):159-170.
    [80]Mehnert, P.J.,1997. An improved seeded region growing algorithm. Pattern Recognition Letters,18:1065-1071.
    [81]Meyer, F. and Beucher, S.,1990. Morphological segmentation. Journal of Visual Communication and Image Representation,1:21-46.
    [82]Muller, P., Zeng, G., Wonka, P. and Van Gool, L.,2007. Image-based procedural modeling of facades. ACM Transactions on Graphics (TOG),26 (3):1-9.
    [83]Munoz, D., Vandapel, N. and Hebert, M.,2009. Onboard Contextual Classification of 3-D Point Clouds with Learned High-order Markov Random Fields. IEEE International Conference on Robotics and Automation (ICRA'09), May,2009, pp.4273-4280.
    [84]Nguyen, V., MartinelH, A., Tomatis, N. and Siegwart, R.,2005. A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. IEEE/RSJ Proceedings. Int. conference on intelligent robots and systems, IROS, Edmonton, Canada.
    [85]Oda, K., Takano, T., Doihara, T. and Shibasaki, R.,2004. Automatic building extraction and 3-D city modeling from LiDAR data based on Hough transformation. The International Archives of Photogrammetry and Remote Sensing,35(part B3).
    [86]Osorio, G., Boulanger, P. and Prieto, F.,2005. An Experimental Comparison of a Hierarchical Range Image Segmentation Algorithm. The 2nd Canadian Conference on Computer and Robot Vision, CRV 2005, Victoria, BC, Canada,9-11 May, pp.571-578.
    [87]Ostu, N.,1979. A Threshold Selection Method from Gray Level Histogram. IEEE Trans on Systems, Man and Cybernetics,1:62-66.
    [88]Oude Elberink, S. and Vosselman, G.,2009. Building reconstruction by target based graph matching on incomplete laser data:analysis and limitations. Sensors,9:6101-6118.
    [89]Overby, J., Bodum, L., Kjems, E. and Iisoe, P.M,2004. Automatic 3D Building Reconstruction from Airborne Laser Scanning and Cadastral Data Using Hough Transform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2004,35(Part.B3):296-301.
    [90]Pavlidis, T.,1982. Algorithms for Graphics and Image Processing. Maryland:Computer Science Press,1982.
    [91]Peng, J., Zhang, D. and Liu, Y.,2004. An improved snake model for building detection from urban aerial images. Pattern Recognition Letters, pp.587-595.
    [92]Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G. and Towles, H.,2008. Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision,78 (2):143-167.
    [93]Popescu, S., Wynne, R. and Nelson, R.,2003. Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing,29(5):564-577.
    [94]Powell, M. W., Bowyer, K. W., Jiang, X. and Bunke, H.,1998. Comparing curved-surface range image segmenters. In:Proceedings of the Sixth ICCV, IEEE Computer Society, Washington, DC, USA, pp.286-291.
    [95]Pfeifer, N. and Briese, C.2007. Geometrical aspects of airborne laser scanning and terrestrial laser scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(3/W52):311-19.
    [96]Pu, S.,2007. Automatic building modeling from terrestrial laser scanning. In:van Oosterom, et al. (Eds.), Advances in 3D Geoinformation Systems. Springer, pp.147-160.
    [97]Pu, S.,2008. Generating building outlines from terrestrial laser scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,37 (Part B5): 451-456.
    [98]Pu, S.,2010. Knowledge based building facade reconstruction from terrestrial laser point clouds and images. Ph.D thesis, ITC, University of Twente.
    [99]Pu, S. and Vosselman, G.,2006. Automatic extraction of building features from terrestrial laser scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(Part 5):25-27.
    [100]Pu, S. and Vosselman, G.,2007. Extracting Windows from Terrestrial Laser Scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 3):320-325.
    [101]Pu, S. and Vosselman, G.,2009. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRSJournal of Photogrammetry and Remote Sensing,64(6): 575-584.
    [102]Rabbani, T. and van den Heuvel, F.,2005. Efficient hough transform for automatic detection of cylinders in point clouds. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, the Netherlands,36(3/W19): 60-65.
    [103]Rabbani, T., van den Heuvel, F.A. and Vosselman, G, 2006, Segmentation of point clouds using smoothness constraints. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, September 25-27,36(Part 5): 248-253.
    [104]Reznik, S. and Mayer, H.,2008. Implicit shape models, self-diagnosis, and model selection for 3D facade interpretation. Photogrammetrie, Fernerkundung, Geoinformation,3:187-196.
    [105]Riegl,2012. Riegl VMX-450 Mobile Mapper, retrieved from http://riegl.com/nc/products/mobile-scannins/produktdetail/product/scannersystem/10/. Last accessed on March 10th,2012.
    [106]Ripperda, N.,2008. Determination of Facade Attributes for Facade Reconstruction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing 2008,37(Part B3a):285-290.
    [107]Ripperda, N. and Brenner, C.,2007. Data driven rule proposal for grammar based faade reconstruction. In:Photogrammetric Image Analysis 2007, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(3/W49A):1-6.
    [108]Ripperda, N. and Brenner, C,2009. Application of a Formal Grammar to Facade Reconstruction in Semiautomatic and Automatic Environments.12th AGILE International Conference on Geographic Information Science,2009, pp.1-12.
    [109]Roggero, M.,2002. Object segmentation with region growing and principal component analysis. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,34 (Part 3A):289-294.
    [110]Rottensteiner, F. and Briese, C.,2003. Automatic generation of building models from LiDAR data and the integration of aerial images. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,34 (Part 3W13): 174-180.
    [111]Rutzinger, M., Oude Elberink, S., Pu, S. and Vosselman, G.,2009. Automatic extraction of vertical walls from mobile and airborne laser scanning data. In ISPRS/LASER09,38:7-11.
    [112]Sahar, L., Muthukumar, S. and French, S.P.,2010. Using Aerial Imagery and GIS in Automated Building Footprint Extraction and Shape Recognition for Earthquake Risk Assessment of Urban Inventories. IEEE Transactions on Geoscience and Remote Sensing, 48(9):3511-3520.
    [113]Sampath, A. and Shan, J.,2007. Building boundary tracing and regularization from airborne LiDAR point clouds. Photogrammetric Engineering and Remote Sensing,73(7):805-812.
    [114]Schindler, K. and Bauer, J.,2003. A model-based method for building reconstruction. In: Proceedings ICCV workshop on Higher-Level Knowledge in 3D Modeling and Motion (HLK), Nice, France,17 October, pp.74-82.
    [115]Schmittwilken, J. and Plumer, L.,2010. Model-based reconstruction and classification of facade parts in 3D point clouds. In:Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), The International Archives of the Photogrammetry, Remote Sensing, 38(Part 3A):269-274.
    [116]Schnabel, R., Wahl, R. and Klein, R.,2007. Efficient RANSAC for Point-Cloud Shape Detection. In:Computer Graphics Forum (June 2007),26(2):214-226.
    [117]Schuster, H. F.,2004. Segmentation of LiDAR data using the tensor voting framework. XXth ISPRS Congress,12-23 July 2004 Istanbul, Turkey.
    [118]Schwarz, K.P. and El-Sheimy, N.,2007. Digital mobile mapping systems-state-of-the-art and future trends," In Advances in Mobile Mapping Technology, Tao and Li (Ed), pp.3-18 (London:Taylor & Francis).
    [119]Sithole, G. and Vosselman, G.,2004. Experimental Comparison of Filter Algorithms for Bare-Earth Extraction from Airborne Laser Scanning Point Clouds. ISPRS Journal of Photogrammetry & Remote Sensing,2004,59(1-2):85-101.
    [120]Sithole, G. and Vosselman, G.,2006. Bridge detection in airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing,61(1):33-46.
    [121]Slob, S. and Hack, R.,2004.3D Terrestrial Laser Scanning as a New Field Measurement and Monitoring Technique. Lecture Notes in Earth Sciences,104:179-189.
    [122]Sohn, G. and Dowman, I.,2007. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry & Remote Sensing, 62:43-63.
    [123]Staib, L.H. and Ducan, J.S.,1992. Boundary Finding with Parametrically Deformable Models. IEEE Trans. Pattern Analysis and Machine Intelligence,17(11):1061-1075.
    [124]StreetMapper 360,2012. StreetMapper| Mobile Laser Mapping. http://www.streetmapper.net. Last accessed March 23,2012.
    [125]Suveg, I. and Vosselman, G.,2004. Reconstruction of 3D building models from aerial images and maps. International Journal of Photogrammetry and Remote Sensing,58 (3-4): 202-224.
    [126]Taillandier, F. and Deriche, R.,2004. Automatic buildings reconstruction from aerial images: A generic Bayesian framework. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,35 (Part B3):343-348.
    [127]Tao, V. and Li, J. (Ed),2007. Advances in Mobile Mapping Technology, (London:Taylor & Francis).
    [128]Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P.,2007. Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from LiDAR data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Systems,36(Part 3/W52):407-412.
    [129]Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P.,2008. Extended RANSAC algorithm for automatic detection of building roof planes from LiDAR data. The Photogrammetric Journal of Finland,21(1):97-109.
    [130]Taylor, R.W., Savinl, M. and Reeves, A.P.,1989. Fast segmentation of range imagery into planar regions. CVGIP,45:42-60.
    [131]Tian, Y.X., Gerke, M., Vosselman, G. and Zhu, Q.,2010. Knowledge-based building reconstruction from terrestrial video sequences. ISPRS Journal of Photogrammetry and Remote Sensing,65:395-408.
    [132]Toth, C. K.,2009. R&D of mobile LiDAR mapping and future trends. In ASPRS 2009 Annual Conference, March 9-13,2009, Baltimore, Maryland.
    [133]Trimble,2012. Trimble-Survey-Applications_ Land Surveying, retrieved from www.trimble.com/geospatial/Trrimble-MX8.aspx?dtID=overview &. Last accessed September 18th,2012.
    [134]Umeda, K., Ikushima, K. and Arai, T.,1997.3D Shape Recognition by Distributed Sensing of Range Images and Intensity Images. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque:IEEE, pp.149-154.
    [135]Van Gosligal, R., Lindenbergh, R. and Pfeifer, N.,2006. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. The International Archives of Photogrammetry and Remote Sensing,35:1-6.
    [136]Von Hansen, W., Michaelsen, E. and Thonnessen, U.,2006. Cluster analysis and priority sorting in huge point clouds for building reconstruction. In:18th International Conference on Pattern Recognition (ICPR'06), pp.23-26.
    [137]Vosselman, G. and Dijkman, S.,2001.3D building model reconstruction from point clouds and ground plans. The International Archives of Photogrammetry and Remote Sensing, 34(3/W4):37-43.
    [138]Vosselman, G., Gorte, B., Sithole, G. and Rabbani, T.,2004. Recognising structure in laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,46(Part 8/W2):33-38.
    [139]Wang, O., Lodha, S.K. and Helmbold, D.P.,2006. A Bayesian approach to building footprint extraction from aerial LiDAR data. In:Proceedings of the International Symposium on 3D Data Processing, Visualization, and Transmission, IEEE, Chapel Hill, USA,14-16 June, pp. 192-199.
    [140]Wang, S., Kubota, T., Siskind, J.M. and Wang, J.,2005. Salient closed boundary extraction with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence,27(4): 546-561.
    [141]Warneke, A.,2008. Extracting features from facade Streetmapper data. Diploma thesis, Leibniz Universitat Hannover.
    [142]Wu, C., Frahm, J.M. and Pollefeys, M.,2010. Detecting large repetitive structures with salient boundaries. In Proc. ECCV, pp.142-155.
    [143]Yang, B., Fang, L., Li, Q. and Li, J.,2012a. Automated Extraction of Road Markings from Mobile LiDAR Point Clouds. Photogrammetric Engineering & Remote Sensing,78(4): 331-338.
    [144]Yang, B., Wei, Z., Li, Q. and Li, J.,2012b. Automated extraction of street-scene objects from mobile LiDAR point clouds. International Journal of Remote Sensing,33(18): 5839-5861.
    [145]Yang, B., Wei, Z., Li, Q. and Li, J.,2012c. Semi-automated building facade footprint extraction from mobile LiDAR point clouds. IEEE Geoscience and Remote Sensing Letters, DOI 10.1109/LGRS.2012.2222342.
    [146]Yoo, H.J., Goulette, F., Senpauroca, J. and Lepere, G.,2010. Analysis and improvement of laser terrestrial mobile mapping systems configurations. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,35 (Part 5),2010.
    [147]Zampa, F. and Conforti, D.,2009. Mapping with mobile LiDAR. GIM International,23: 35-37.
    [148]Zhan, Q.M., Yu, L. and Liang, Y.B.,2010. A Point Cloud Segmentation Method based on Vector Estimation and Color Clustering.2010 2nd International Conference on Information Science and Engineering (ICISE), pp.3463-3466.
    [149]Zhang, K., Yan, J. and Chen, S.C.,2006. Automatic construction of building footprints from airborne LiDAR data. IEEE Transaction on Geoscience and Remote Sensing,44(9): 2523-2533.
    [150]Zhao, H. and Shibasaki, R.,2005. Updating digital geographic database using vehicle-borne laser scanners and line cameras. Photogrammetric Engineering & Remote Sensing,71: 415-424.
    [151]Zisserman, A., T. Werner, and Schaffalitzky, F.,2001. Towards automated reconstruction of architectural scenes from multiple images. In Proc.25th workshop of the Austrian Association for Pattern Recognition, pp.9-23.
    [152]邓非,2006. LiDAR数据与数字影像的配准和地物提取研究.武汉大学,博士论文.
    [153]李必军,方志祥,任娟,2003.从激光扫描数据中进行建筑物特征提取研究.武汉大学学报信息科学版,2003,28(1):65-70.
    [154]江水,盛业华,李永强,刘会云,戴华阳,2007.基于车载激光扫描的带状地物表面快速重建.地球信息科学2007,9(5):19-23.
    [155]卢秀山,黄磊,2007.基于激光扫描数据的建筑物信息格网化提取方法,武汉大学学报·信息科学版,2007,32(10):852-855.
    [156]马立广,2005.地面三维激光扫描仪的分类与应用.地理空间信息,3(3):60-62.
    [157]潘建江,2004.数字图像分割与变形技术研究.浙江大学,博士论文.
    [158]史文中,李必军,李清泉,2005.基于投影点密度的车载激光扫描距离图像分割方法.测绘学报,2005,34(2):95-100.
    [159]吴芬芳,李清泉,熊卿,2007.基于车载激光扫描数据的目标分类方法.测绘科学32(4):75-77.
    [160]闫利,张毅,2007.基于法向量模糊聚类的道路面点云数据滤波.武汉大学学报·信息科学版,2007,32(12):1119-1122.
    [161]张瑞菊,2006.基于三维激光扫描数据的古建筑构件三维重建技术研究.武汉大学,博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700