非均匀环境中机载雷达STAP及SAR/GMTI技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一项先进的雷达信号处理方案,空时自适应处理(STAP)技术根据接收信号中杂波及噪声的统计特性自适应生成空、时二维滤波器,能够有效抑制地杂波,极大地提高了机载动目标指示(MTI)雷达以及合成孔径雷达地面动目标指示系统(SAR/GMTI)的慢动目标指示能力。然而,由于常规的STAP处理中需要采用与待检测单元杂噪分量独立同分布(I.I.D)的训练样本对杂噪协方差矩阵进行估计,而在实际的非均匀环境中,样本的I.I.D条件无法满足,从而导致了STAP性能的下降。针对这一点,本文研究围绕着各种非均匀STAP及SAR-STAP技术展开,主要内容及创新点如下:
     1研究了机载雷达地杂波模型,对杂波特性进行了分析,介绍了STAP全维最优处理器的结构,引入了STAP性能衡量的指标,对经典的降维3DT、降秩最小范数特征对消器(MNE)以及对角加载样本矩阵求逆(LSMI)算法进行了回顾。并在此基础上,通过对机载多通道雷达实测数据的分析与处理,对相关理论、算法进行了验证。
     2研究了非均匀STAP技术。重点对非均匀检测器(NHD)、空时自回归算法(STAR)以及结构化STAP算法进行了研究。首先将NHD引入降维处理中,采用基于广义内积(GIP)的反复剔除(RC)3DT算法对实测数据进行了处理,并获得良好效果。随后对STAR算法进行了研究,针对非平稳杂波过程造成的算法失效,提出了一种基于时变自回归(TVAR)模型的时变空时自回归(TV-STAR)算法,并通过仿真实验及实测数据的处理对其性能进行了验证。最后对结构化STAP算法进行了研究,针对原有算法中结构化矩阵不准确造成的性能损耗,提出了一种新的结构化STAP算法。新算法采用先验辅助(KA)方法构造杂噪协方差矩阵,通过加权调整使其逼近真实值,并由此产生最终的二维权矢量。实测数据处理结果表明,其性能优于原有的结构化STAP算法。
     3对自适应杂波抑制干涉(ACSI)SAR/GMTI技术进行了研究。ACSI技术仅需两个通道便能实现杂波抑制,是目前工程条件下最为实用的一种SAR-STAP技术。针对非均匀环境对ACSI算法造成的性能损耗,分别提出了条件约束ACSI算法及基于中值估计的中值对消ACSI算法,分别通过实测数据的处理对二者进行了验证。随后对CSI-SAR系统的运动目标参数估计方案进行了研究,给出了仿真及实测数据的处理结果。最后根据目前实际工程应用的需要,对三通道CSI-SAR的GMTI整体信号处理流程进行了设计,并给出了相应的实测数据处理结果。
     4研究了多通道图像域SAR-STAP技术。首先在Ender提出的后多普勒SAR-STAP(MSAR)技术的基础上,引入了图像域SAR-STAP技术。随后针对非均匀环境对其性能的影响,分别提出了两种非均匀图像域SAR-STAP算法,即先验辅助SAR-STAP算法和用于多通道SAR系统的改进FRACTA算法,并通过实测数据对两者的性能进行了验证。最后对SAR-STAP系统的动目标运动参数估计方案进行了研究,分析了极大似然估计(MLE)及自适应单脉冲测向法的性能,并对实测数据进行了处理。
     5作为全文中内容相对独立的部分,论文最后一部分对单脉冲成像技术进行了研究。提出了一种单脉冲成像算法,有效改善了机载/弹载雷达前视等SAR、多普勒波束锐化(DBS)技术成像盲区图像的清晰度。并从单脉冲和差比的概率密度函数出发,对单脉冲成像效果进行了分析,提出了目标图像位置失真、分辨率、图像信噪比三个图像质量衡量指标。最后,通过仿真实验及机载雷达实测数据的成像处理对算法性能进行了验证。
Space-time adaptive processing (STAP) is a leading radar signal processing technique thatadaptively forms a two-dimensional filter with respect to the statistical characteristics of the clutterplus noise to effectively suppress the clutter component contained in the receiving data. It greatlyenhances the detection performance of airborne moving target indication (MTI) radar and syntheticaperture radar ground moving target indication (SAR/GMTI) system. However, for conventionalSTAP, a key step is to adaptively estimate the clutter plus noise covariance matrix, in which thetraining samples must be independent identically distributed (I.I.D) with the clutter plus noisecomponent in the cell under test. Unfortunately, in practical processing, the clutter environmentsalways present to be heterogeneous. That means the I.I.D assumption will never be valid, whichfinally leads to performance loss of STAP. Therefore, the major work in this dissertation focuses onthe research of STAP and SAR-STAP algorithms in nonhomogeneous environment and can besummarized as follow:
     The clutter model for airborne radar is studied and the clutter characteristic is analyzed.Fundamental theories such as optimal STAP weight vector as well as several criteria to evaluate theperformance are introduced. Classical reduced-dimension/rank algorithms such as3DT, minimumnorm eigencancerler (MNE), and loaded sample matrix inversion (LMSI) are investigated.Experimental results with respect to measured data collected by a three-channel airborne radar areemployed to verify the related theories and algorithms.
     The nonhomogeneous STAP algorithms are studied. Three nonhomogeneous algorithms, i.e., thenonhomogeneous detector (NHD), space-time autoregressive (STAR) filtering and the structuredSTAP are investigated, respectively. At first, the NHD is introduced into reduced-dimension STAPprocessing by employing a generalized inner product (GIP) based reiteratively censored (RC)3DTalgorithm to process the measured data, which is proved to be of great improvement. Then, aiming atthe failure of STAR in nonstationary clutter in slow-time, a new time-varying (TV) STAR algorithmthat based on the time-varying autoregressive (TVAR) model is proposed. The virtue of TV-STARrelative to STAR is verified by simulation as well as experimental results. At last, according to theperformance loss caused by the inaccuracy of the so called structured covariance matrix, a newstructured STAP algorithm is proposed. In the new proposed algorithm, the clutter plus noisecovariance matrix is formulated by knowledge-aided (KA) method and undergoes several adjustmentsvia tapering matrices. After that, the adjusted matrix is finally employed to calculate the space-time weight vector. The desirable detection performance is also verified by experimental results.
     The adaptive clutter suppression interferometer (ACSI) SAR technology is investigated. The socalled ACSI technique that introduces adaptive processing in CSI-SAR system cancels the cluttercomponent effectively by two receiving channels, and is considered to be the most valuableimplementation of SAR-STAP in practical processing. According to the performance loss caused byheterogeneous environment, two nonhomogeneous ACSI algorithms, i.e., the constraint ACSI andmedian canceller (MC) ACSI algorithm based on median estimation method are proposed and verifiedby the experimental results. Then, the parameter estimation methods for the detected moving target inCSI-SAR system are studied, which is also supported by simulation as well as experimental results.Finally, according to the practical engineering application, an entire CSI-SAR/GMTI signalprocessing scheme is designed for the three-channel SAR system and some related experimentalresults are provided.
     The image domain multi-channel SAR-STAP technology is studied. Based on the post-DopplerSAR-STAP method (MSAR) proposed by Ender, the image domain SAR-STAP technique isintroduced to detect moving target after SAR imaging. Then two nonhomogeneous SAR-STAPalgorithms, i.e., knowledge-aided SAR-STAP and modified FRACTA for multi-channel SAR, areproposed to operate in heterogeneous clutter environment and also verified by experimental resultswith respect to the three-channel SAR system. At last, the parameter estimation methods formulti-channel SAR system are investigated, the maximum likelihood estimation (MLE) as well as theadaptive monopulse method is introduced. The performance of each method is analyzed bysimulations and verified by experimental results.
     As a relatively independent part, the monopulse imaging technology is investigated at the end ofthis dissertation. A monopulse imaging algorithm is proposed to improve the definition of radar imageconcerning the airborne/missle-borne radar forward-looking area, which can be hardly achieved bySAR or Doppler beam sharpening (DBS) technique. Furthermore, based on the probability densityfunction of the monopulse ratio, three criteria, i.e., the image position distortion, resolution andsignal-to-noise ratio of the target to be imaged are proposed to evaluate the quality of monopulseimage. Factors determining the proposed criteria are analyzed afterwards, followed by the simulationand experimental results to verify the performance of the proposed algorithm.
引文
[1] J. Ward. Space-Time Adaptive Processing for Airborne Radar Systems. Lincoln Lab, Mass, InstTechnol, Lexington, MA, Tech Rep1015, DTIC AD-A293032,1994.
    [2] R. Klemm. Principles of Space-Time Adaptive Processing.London. U.K.: Inst Elect Eng,2002.
    [3]蒋庆权.机载雷达技术发展动向.空载雷达:2004(1):1~4.
    [4] M. I. Skolnik. Radar handbook.2nd ed. New York: McGraw-Hill,1990.
    [5] M. I. Skolnik. Introduction to radar systeM.3rd ed. New York: McGraw-Hill,2001.
    [6]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [7] J. R. Guerci. Space-Time Adaptive Processing for Radar, Boston: Artech House,2003.
    [8] W. L. Melvin. A STAP Overview. IEEE Transactions on Aerospace and Electronic Systems,2004,19(1):19~35.
    [9]傅琦.“先进鹰眼”E2-D预警机.兵器知识:2009(4):48~51.
    [10]任磊,王永良,陈建文,陈风波.基于DSP的协方差矩阵求逆的数值问题研究.现代雷达2009,39(3):48~52.
    [11] J. Ender. Detection and Estimation of Moving Target Signals by Multi-Channel SAR.1996EUSAR Conference (EUSAR’96), K nigswinter, Germany,1996:411~417.
    [12] J. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics&Communication Engineering Journal,1999,11(1):29~38.
    [13] J. Ender, P. Berens, A. Brenner, et al. Multi channel SAR/MTI systems development at FGAN:from AER to PAMI. International Geoscience and Remote Sensing Symposium, Sydney,Australia,2002:1617-1701.
    [14] D. Cerutti-Maori, J. Klare, A. R. Brenner, J. Ender. Wide-area traffic monitoring with theSAR/GMTI system PAMIR. IEEE Transaction on Geoscience and Remote Sensing,2008,46(10):3019~3030.
    [15] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEETransactions on Aerospace and Electronic Systems,1974,10(6):853~863.
    [16] W. L. Melvin. Space-time Adaptive Radar Performance in Heterogeneous Clutter. IEEETransactions on Aerospace and Electronic Systems,2000,36(2):621~633.
    [17] D. Curtis Schleher. MTI and pulsed Doppler radar. Boston: Artech House,1991.
    [18] Wang, H.S.C. Mainlobe Clutter Cancellation by DPCA for Space-Based Radars. AerospaceApplications Conference,1991. Digest,1992IEEE,3-8Feb1991:1~28.
    [19] L. Lightstone, D. Faubert, G. Remple. Multiple phase center DPCA for airborne radar. IEEENational Radar Conference,1991:36~40.
    [20] P. G. Richardson. Relationships between DPCA and adaptive space-time processing techniquesfor clutter suppression. IEEE International Radar Conference, Paris,1994:295~300.
    [21] T. J. Nohara. Comparison of DPCA and STAP for space-based radar. IEEE International RadarConference,1995:113~119.
    [22]王永良,陈建文,吴志文.现代DPCA技术研究.电子学报,2000,28(6):118~121.
    [23] L. E. Brennan, L. S. Reed. Theory of Adaptive Radar [J]. IEEE Transactions on Aerospace andElectronic Systems,1973,9(2):237~252.
    [24] J. Ender. The Airborne Experimental Multi-Channel SAR-System AER-Ⅱ. In Proceedings of1996EUSAR Conference (EUSAR’96), K nigswinter, Germany,1996:49-52.
    [25] A. Damini, B. Balaji, G. Haslam, M. Goulding. X-band experimental airborne radar-phase Ⅱ:synthetic aperture radar and ground moving target indication. IEE proceedings Radar, Sonar&Navigation,2006,153(2):144~150.
    [26]张绪锦.多相位中心接收SAR/GMTI技术研究,[博士学位论文].南京:南京航空航天大学,2009.
    [27]邓海涛,张长耀.一种机载三通道GMTI实时信号处理方法.电子与信息学报,2009,31(2):370~373.
    [28]曾操,廖桂生,杨志伟,刘聪锋.基于样本加权的三通道SAR-GMTI机载数据处理及性能分析.电子学报,2009,37(3):506~512.
    [29]吴迪,朱岱寅,朱兆达.一种非均匀环境中双端口干涉SAR/GMTI杂波抑制算法.电子学报:2010,38(9):2179~2183.
    [30] Di Wu, Daiyin Zhu, Zhaoda Zhu. Knowledge-Aided Multichannel Adaptive SAR/GMTIProcessing: Algorithm and Experimental Results. EURASIP Journal on Advances in SignalProcessing,2010, special Issue on Advances in Multidimensional Synthetic Aperture RadarSignal Processing:1~12.
    [31]蔚婧,廖桂生,曾操.基于协方差矩阵特征值分解的多通道SAR-GMTI方法及性能分析.电子与信息学报,2009,31(2),374~377.
    [32] R. Klemm. Some properties of space-time covariance matrices. Int. Cof. on Radar, Paris,1986:357~362.
    [33] L. E. Brennan, F. M. Staudaher. Subclutter visibility demonstration. Technical ReportRL-TR-92-21, Adaptive Sensor Incoporated,1992.
    [34] R. Klemm. Adaptive airborne MTI: an auxiliary channel approach. Communications, Radar andSignal Processing, IEE Proceedings F,1987,134(3):269~276.
    [35]保铮,张玉洪,廖桂生等.机载预警雷达空时二维滤波的一种方案及其改进.机载雷达研讨会,北京,1992:24~38.
    [36]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1~7.
    [37] Wang Yongliang, Peng Yingning and Bao zheng. Space-time processing for airborne radar withvarious array orientation. IEE Proc. Radar, Sonar and Navigation,1997,144(6):330~340.
    [38] R. Dipietro. Extended factored space-time processing for airborne radar systems. Proceedingsof the26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA,1992:425~430.
    [39] L. E. Brennan, D. J. Piwinski, F. M. Standaher. Comparison of space-time adaptive processingapproaches using experimental airborne radar data. IEEE International Radar Conference,Massachusetts, USA,1993:176~181.
    [40] H. Wang, L. Cai. On adaptive spatial-temporal processing for airborne surveillance radarsystems. IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):660~670.
    [41] R. D. Brown, M. C. Wicks. A space-time adaptive processing approach for improvedperformance and affordability. Proc. of1996IEEE National Radar Conf., MI, USA,1996:321~326.
    [42] H. Wang, T. Zhang, Q. Zhang. An improved and Affordable Space-Time Adaptive ProcessingApproach. Proc. of1996CIE Int. Conf. on Radar, Beijing,1996:72~77.
    [43] Y. Zhang, H. Wang. Further Results ofΣΔ-STAP approach to airborne surveillance radars.Proc. of1997National Radar Conf., Syracuse, New York,1997:337~342.
    [44] R. D. Brown, R. A. Schneible, M. C. Wicks, et al. STAP for clutter suppression with sum anddifference beams. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):634~646.
    [45]沈明威.和差波束空时处理动目标检测技术研究.[博士学位论文].南京:南京航空航天大学,2008.
    [46]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):56~58.
    [47]陈建文,王永良,陈辉.机载相控阵雷达波束多普勒域部分自适应处理方法研究.电子学报,2001,29(12):1032~1035.
    [48] A. Haimovich. The Eigencanceler: Adaptive radar by eigenanalysis methods. IEEETransactions on Aerospace and Electronic Systems,1996,32(2):532~542.
    [49] A. Haimovich, M. Berin. Eigenanalysis-based space-time adaptive radar: performance analysis.IEEE Transactions on Aerospace and Electronic Systems,1997,33(4):1170~1179.
    [50] A. Haimovich. Asymptotic distribution of the conditional signal-to-noise ratio in aeigenanalysis-based adaptive array. IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):988~996.
    [51] A. Haimovich, C. Peckham, T. Ayoub. Performance analysis of reduced-rank STAP. Proc. of theIEEE National Radar Conf., Syracuse, NY, USA,1997:42~47.
    [52] T. F. Ayoub, A. Haimovich, M. L. Pugh. Reduced-rank STAP for high PRF radar. IEEETransactions on Aerospace and Electronic Systems,1999,35(3):953~962.
    [53] J. S. Goldstein, I. S. Reed. Subspace selection for partially adaptive sensor array processing.IEEE Transactions on Aerospace and Electronic Systems,1997,33(2):988~996.
    [54] J. S. Goldstein, I. S. Reed, L. A. Scharf. A multistage representation of the Wiener filter basedon orthogonal projections. IEEE Transaction on Information Theory,1998,44(7):2943~2959.
    [55] J. S. Goldstein, I. S. Reed, P. A. Zulch. Multistage partially adaptive STAP CFAR detectionalgorithm. IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):645~661.
    [56] B. D. Carlson. Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays.IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):397~401.
    [57] M Steiner, K Gerlach. Fast Converging Adaptive Processor or A Structured Covariance Matrix.IEEE Transactions on Aerospace and Electronic Systems,2000,36(4):1115-1126.
    [58] M. O. Berin, A. M. Haimovich. Signal cancellation effects in adaptive radar Mountaintopdata-set. Proc. of IEEE ICASSP,1996:2614~2617.
    [59] Y. Seliktar, D. B. Williams, J. H. McClellan. Evaluation of partially adaptive STAP algorithmson the Mountain Top data set. Proc. of IEEE ICASSP,1996:1169~1172.
    [60] W Titi, D. F. Marshall. The Arpa/Navy Mountaintop program: adaptive signal processing forairborne early warning radar. Proc. of IEEE ICASSP,1996:1165~1168.
    [61] M. O. Little, W. P. Berry. Real-time multichannel airborne radar measurements. Proc. of theIEEE National Radar Conf., Syracuse, NY, USA,1997:138~142.
    [62] D. K. Fenner, W. F. Hoover.Test results of a space-time adaptive processing system forairborne early warning radar. Proc. of the IEEE National Radar Conf., Ann Arbor, MI,USA,1996:88~93.
    [63] W. L. Melvin. Eigenbased modeling of nonhomogeneous airborne radar environments. Proc.ofthe IEEE National Radar Conf., Dallas, TX, USA,1998:171~176.
    [64] M. L. Melvin, J. R. Guerci, M. J. Callahan, et al. Design of adaptive detection algorithms forsurveillance radar. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA,2000:608~613.
    [65]王永良,李天泉.机载雷达空时自适应信号处理技术回顾与展望.中国电子科学研究院学报.2008,3(3):271~275.
    [66] C. D. Richmond. Statistical performance analysis of the adaptive sidelobe blanker detectionalgorithm. Proceedings of the31th Asilomar Conference on Signals, Systems and Computing,Pacific Grove, CA, November,1997:872~876.
    [67] D. J. Rabideau. Steinhardt A O. Improving the performance of adaptive arrays in non-stationaryenvironments through data-adaptive training. Proceedings of the30th Asilomar Conference onSignals, Systems and Computing, Pacific Grove, CA,1996:75~79.
    [68] J. R. Guerci. Theory and application of covariance matrix tapers for robust adaptivebeamforming. IEEE Transaction on Signal Processing.1999,47(4):977~985.
    [69] D. J. Rabideau, A. O. Steinhardt. Improving the performance of adaptive arrays innonstationary environments through data-adaptive training. Proc. of the30th Asitomar Conf. onSignals, Systems and Computers, Pacific Grove, CA, USA,1996:75~79.
    [70] D. J. Rabideau, A. O. Steinhardt. Improved adaptive clutter cancellation through data-adaptivetraining. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):879~891.
    [71] W. L. Melvin, M. C. Wicks, R. D. Brown. Assessment of multichannel airborne radarmeasurements for analysis and design of space-time processing architectures and algorithms.IEEE National Radar Conference, Ann Arbor, Michigan,1996:130~135.
    [72] Berin, A. M. Haimovich. Signal cancellation effects in adaptive radar Mountaintop data-set.Proc of IEEE ICASSP,1996:2614~261.
    [73]王彤,保铮.空时二维自适应处理的目标污染样本挑选方法.电子学报,2001,29(12A):1840~1844.
    [74]王彤.机载雷达简易STAP方法及其应用,[博士学位论文].西安:西安电子科技大学,2001.
    [75] M. L. Melvin, M. C. Wicks. Improving practical space-time adaptive radar. Proc.Of the IEEENational Radar Conf., Syracuse, NY, USA,1997:48~53.
    [76] R. S. Adve, T. B. Hale, M. C. Wicks. Transform domain localized processing using measuredsteering vectors and non-homogeneity detection. Proc. of the IEEE National Radar Conf.,Boston, MA, USA,1999:285~290.
    [77] M. Rangaswamy, B. Himed, J. H. Michels. Performance analysis of the nonhomogeneitydetector for STAP applications. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA,2001:193~197.
    [78] M. C. Wicks, W. L.Melvin, P. Chen. An efficient architecture for nonhomogeneity detection inspace-time adaptive processing airborne early warning radar. Proc. Of the IEEE Radar Conf.,Edinburgh, UK,1997:295~299.
    [79] K. Gerlach, M. L. Picciolo. Robust STAP using reiterative censoring. Proc. of the IEEE RadarConf., Huntsville, Alabama, USA,2003:244~251.
    [80] Y. L. Wang, J. W. Chen, Z. Bao, et al. Robust space-time adaptive processing for airborneradar on nonhomogeneous clutter environment. IEEE Transactions on Aerospace and ElectronicSystems,2003,39(1):70~81.
    [81]陈建文.机载雷达空时自适应处理方法研究[,博士学位论文].长沙:国防科学技术大学,2000.
    [82] B. Himed, Y. Salama, J. H. Michel. Improved detection of close proximity targets usingtwo-step NHD. Proc. of the IEEE Radar Conf., Alexandria, VA, USA,2000:781~786.
    [83] K. Gerlach, S. D. Blunt, M. L. Picciolo. Robust adaptive matched filtering using the FRACTAalgorithm. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):929-945.
    [84] S. D. Blunt, K. Gerlach. Efficient robust AMF using the FRACTA algorithm. IEEETransactions on Aerospace and Electronic Systems,2005,41(2):537-548.
    [85] A. K. Shackelford, K. Gerlach, S. D. Blunt. Partially adaptive STAP using the FRACTAalgorithm. IEEE Transaction on Aerospace and Electronic Systems,2009,45(1):58-69.
    [86] T. K. Sarkar, N. Sangruji. An adaptive nulling system for a narrow-band signal with alookdirection constraint utilizing the conjugate gradient method. IEEE Trans. on AP,1989,37(7):940~944.
    [87] S. Park, T. K. Sarkar. A deterministic eigenvalue approach to space time adaptive processing.Proc. of the IEEE Int. Phased Array Systems and Technology Symposium, Boston, MA, USA,1996:372~375.
    [88] T. K. Sarkar, H. Wang, S. Park, et al. A deterministic least-squares approach to space-timeadaptive processing (STAP). IEEE Trans. on AP,2001,49(1):91~103.
    [89] S. Burintramart, T. K. Sarkar, Y. Zhang, et al. Performance comparison betweenstatistical-based and direct data domain STAP. Digital Signal Processing,2007,17(2):737~755.
    [90] R. S. Adve, T. B. Hale, M. C. Wicks. Practical joint domain localized adaptive processing inhomogeneous and nonhomogeneous environments. Part2: Nonhomogeneous environments.IEE Proc. Radar, Sonar Navig.,2000,147(2):66~74.
    [91] P. G. Richardson, S. D. Hyaward. Adaptive space-time processing for forward looking radar.Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA,1995:629~634.
    [92] Y. L. Wang, Y. N. Peng, Z. Bao. Space-time adaptive processing for airborne radar with variousarray orientations. IEE Proc. Radar, Sonar and Navig.,1997,144(6):330~340.
    [93] G. K. Borsari. Mitigating effects on STAP processing caused by an inclined array. Proc. of theIEEE National Radar Conf., Dallas, TX, USA,1998:135~140.
    [94] R. Klemm. Ambiguities in bistatic STAP radar. Proc. of the IEEE Int. Geoscience and RemoteSensing Symposium, Honolulu, HI, USA,2000:1009~1011.
    [95] M. Zatman M. Circular array STAP. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):510~517.
    [96] O. Kreyenkamp, R. Klemm R. Doppler compensation in forward-looking STAP radar. Pro ofIEE Radar. Sonar, Navigation.2001,148(5):253~258.
    [97] M. L. Melvin, B. Himed, M. E. Davis. Doubly adaptive bistatic clutter filtering. Proc. of2003IEEE Radar conference, Huntsville, AL,2003:171~178.
    [98] W. L. Melvin, M. E. Davis. Adaptive cancellation method for geometry-induced nonstationarybistatic clutter environments. IEEE Transactions on Aerospace and Electronic Systems,2007,43(2):651~672.
    [99] F. Pearson, G. Borsari. Simulation and analysis of adaptive interference suppression for bistaticsurveillance radars. Proc. of the Adaptive Sensor Array Processing Workshop, LincolnLaboratory, MA, USA,2001.
    [100]谢文冲,王永良.圆柱型机载雷达杂波抑制新方法.电子与信息学报.2007,29(10):2371~2374.
    [101]赵军.机载雷达非均匀STAP技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [102] J. R. Roman, M. Rangaswamy, D. W. Davis, et al. Parametric adaptive matched filter forairborne radar applications. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):677~692.
    [103] J. H. Michels, B. Himed, M. Rangaswamy. Evaluation of the normalized parametric adaptivematched filter STAP test in airborne radar clutter. Proc. of2000Radar Conference. WashingtonD.C.,2000:769~774.
    [104] J. H. Michels, J. R. Roman, B. Himed. Beam control using the parametric adaptive matchedfilter STAP approach. Proc. of IEEE Radar Conference. Huntsville, Alabama,2003:405~412.
    [105] P. Parker, A. Swindlehurst. Space-time autoregressive filtering for matched subspace STAP.IEEE Transactions on Aerospace and Electronic Systems,2003,39(2):510~520.
    [106] P. Parker, A. Swindlehurst. Parametric clutter rejection for space-time adaptive processing. InProc. of ASAP Workshop. MIT Lincoln Laboratory, Lexington, MA,2000.
    [107] C. H. Lim, B. Mulgrew. Prediction of inverse covariance matrix (PICM) sequences for STAP,IEEE Signal Process Letter.2006,13(4):236~239.
    [108] C. H. Lim, B. Mulgrew. Linear prediction of range-dependent inverse covariance matrix (PICM)sequences. EURASIP Signal Processing Journal,2007,87(6):1412~1420.
    [109] K. Gerlach, M. L. Picciolo. Airborne/spacebased Radar STAP Using a Structured CovarianceMatrix. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):269~281
    [110] J. R. Guerci. Knowledge-Aided Adaptive Radar at DARPA: An Overview. IEEE SignalProcessing Magazine,2006,23(1):41~50.
    [111] W. L. Melvin, G. A. Showman. An Approach to Knowledge-Aided Covariance Estimation,IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):1021~1042.
    [112] J. S. Bergin, C. M. Teixeira, P. M. Techau, et al. Improved Clutter Mitigation Performanceusing Knowledge-Aided Space-Time Adaptive Processing. IEEE Transactions on Aerospaceand Electronic Systems,2006,42(3):997~1009.
    [113] X. Zhu, J. Li, P. Stoica. Knowledge-Aided Adaptive Beamforming, IET Signal Processing,2008,2(4):335~345.
    [114] P. Stoica, J. Li, X. Zhu and J. R. Guerci. On Using a priori Knowledge in Space-Time AdaptiveProcessing, IEEE Transaction on Signal Processing,2008(6):2598~2602.
    [115] N. Goodman, P. R. Gurram. STAP Training through Knowledge-Aided Predictive Modeling. InProceedings of the2004IEEE Radar Conference, Philadelphia, PA,2004:388~393.
    [116] A. De Maio, A. Farina, G. Foglia. Knowledge-Aided Bayesian Radar Detectors&TheirApplication to Live Data. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):170~183.
    [117] A. De Maio, S. De Nicola, L. Landi, et al. Knowledge-aided covariance matrix estimation: aMAXDET approach. IET Radar, Sonar and Navigation,2009,3(4):341~356.
    [118] J. S. Bergin, P. M. Techau, W. L. Melvin, et al. GMTI STAP in target-rich environments:Site-specific analysis. In Proceedings of the2002IEEE Radar Conference, Long Beach, CA,2002:22~25.
    [119] D. A. Ausherman, A. Kozma, et al. Developments in radar imaging. IEEE Transactions onAerospace and Electronic Systems,1984,20(4):363~399.
    [120] I. Cumming, F. Wong. Digital Processing of Synthetic Aperture Radar Data-Algorithms andImplementation. Boston: Artech House,2005.
    [121] W. G. Carrara, R. S. Goodman, et al. Spotlight Synthetic Aperture Radar Signal ProcessingAlgorithms. Boston: Artech House,1995.
    [122] D. Zhu, S. Ye, and Z. Zhu. Polar format agorithm using chirp scaling for spotlight SAR imageformation. IEEE Transactions on Aerospace and Electronic systems,2008,44(4),1433~1448.
    [123] D. Zhu, X. Mao, Y. Li, and Z. Zhu. Far-field limit of PFA for SAR moving target imaging.IEEE Transactions on Aerospace and Electronic systems,2010,46(2),
    [124] R. K. Raney. Synthetic Aperture Imaging Radar and Moving Targets. IEEE Transactions onAerospace and Electronic Systems,1971,7(3):499~505.
    [125] A. Freeman, A. Curie. Synthetic Aperture Radar Imaging for Moving Targets. GEC Journal ofResearch,1987:106~115.
    [126] S. Barbarossa. Detection and Imaging of Moving Objects with Synthetic Aperture Radar, part1:Optimal Detection and Parameter Estimation Theory. IEE Proceedings-F,1992,139(1):79~88.
    [127] S. Barbarossa. Detection and Imaging of Moving Objects with Synthetic Aperture Radar, part2:Joint Time-frequency Analysis by Wigner-Ville Distribution. IEE Proceedings-F,1992,139(1):89~97.
    [128] J. R. Moreira, A. Keydel. A New MTI-SAR Approach Using the Reflectivity DisplacementMethod. IEEE Trans. on Geosci. Remote Sensing,1995,33(5):1238~1244.
    [129] R. Klemm. Applications of Space-Time Adaptive processing. London, UK., The Institution ofElectrical Engineers,2004.
    [130] C. H. Gierull. Moving Target Detection with Along-track SAR Interferometry-a TheoreticalAnalysis. technical report, Defense R&D, Canada,2002.
    [131] C. W. Chen. Performance Assessment of Along-track Interferometry for Detection GroundMoving Targets. Proc. of IEEE radar conference,2004:99-104.
    [132] I. Sikaneta, C. Gierull, J.-Y. Chouinard. Metrics for SAR-GMTI based on eigen-decompositionof the sample covariance matrix. In Proceedings of the2003International Radar Conference,Huntsville, Alabama,2003:5-8.
    [133] M Rüegg, E Meier, D. Nüesch. Capabilities of Dual-Frequency Millimeter Wave SAR WithMonopulse Processing for Ground Moving Target Indication. IEEE Transaction ONGeosciences and Remote Sensing,2007,45(3):539~553.
    [134] M. E. Tobin, M.Greenspan. Smuggling Interdiction Using an Adaptation of theAN/APG-76Multimode Radar, IEEE AES system magazine,1996,11(11):19~24.
    [135] M. E. Tobin. Real Time Simultaneous SAR/GMTI in a Tactical Airborne Enviroment.EUSAR’96, Konigswindter, Germany,1996:63-66.
    [136] E. Yadin. Evaluation of Noise and Clutter Induced Relocation Errors in SAR MTI. inproceedings of IEEE International Radar Conference, Alexandria VA,1995:650-655.
    [137] E. Yadin. A Performance Evaluation Model for a Two Port Interferometer SAR-MTI. inproceedings of IEEE National Radar Conference, Ann Arbor, Michigan,1996:261~266.
    [138]叶少华.机载SAR原始数据成像处理和干涉SAR/GMTI技术研究,[博士学位论文],南京航空航天大学,2002.
    [139] B. Friedlander, B. Porat. VSAR: A high-resolution radar system for ocean imaging. IEEETransactions on Aerospace and Electronic Systems,1998,34(3):755~776.
    [140] B. Friedlander, B. Porat. VSAR: A high-resolution radar system for detection of moving target.Proc. IEE Radar, Sonar Navigat.,1997,144(4):205~218.
    [141] J. Xu, G Li, Y. N. Peng, et al. Prametric Velocity Synthetic Aperture Radar: Signal Modelingand Optimal Methods. IEEE Transaction on Geoscience and remote sensing,2008,46(9):2463~2480.
    [142] Wulf-Dieter Wirth. Radar techniques using array antennas. London, U.K.: The Institution ofElectrical Engineers,2001.
    [143] Z. F. Li, Z. Bao, et al. Image autocoregistration and InSAR interferogram estimation using jointsubspace projection. IEEE Trans on Geoscience and Remote Sensing,2006,44(2):288~297.
    [144]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.[博士学位论文].西安:西安电子科技大学,2006.
    [145] J. Ender. Experimental Results Achieved with the Airborne Multi-Channel SAR system AER-Ⅱ. In Proceedings of1998EUSAR Conference (EUSAR’98), Friedrichshafen,1998:315~318.
    [146] J. Ender, A. R. Brenner. PAMIR-a wideband phased array SAR/MTI system. IEE Proceedingson Radar, Sonar and Navigation,2003,150(3):165~172.
    [147] D. Cerutti-Maori, U. Skupin. First Experimental SCAN/MTI Results Achieved With theMulti-Channel SAR-System PAMIR. In Proceedings of EUSAR2004, Ulm, Germany,2004:521~524.
    [148] J. Ender. Subspace transformation techniques applied to multichannel SAR/MTI. inProceedings of IGARSS, Hamburg, Germany,1999:38~40.
    [149]吴迪,朱岱寅,朱兆达.基于改进FRACTA算法的多通道SAR动目标检测技术.电子与信息学报,2010,32(9):2201~2207.
    [150]列昂诺夫等著,黄虹译.单脉冲雷达.北京:国防工业出版社,1974.
    [151] G. W. Stimson, Introduction to airborne radar,2nd ed. New Jersey: Scitech Publishing,1998.
    [152] D. R. Wehner. High-Resolution Radar [M],2nd ed. Norwood: Artech House,1995.
    [153]李涛,张涛.单脉冲SAR地面动目标检测技术初探.火控雷达技术,2007,36(4):26~30.
    [154] U. Nickel. Overview of Generalized Monopulse Estimation. IEEE Aerospace and ElectronicSystem Magazine,2006,21(5):27~56.
    [155] U. Nickel. Monopulse estimation with adaptive arrays. Radar and Signal Processing, IEEProceedings F,1993,140(5):303~308.
    [156] R. Klemm, U. Nickel. Adaptive monopluse with STAP. International Conference on Radar, CIE'06, Shanghai,2006:1~4.
    [157]周荫清.机载脉冲多普勒雷达DBS技术.航空学报,1988,9(12):574~581.
    [158]李悦丽,梁甸农,黄晓涛.一种单脉冲雷达多通道解卷积前视成像方法.信号处理,2007,23(5):700~703.
    [159]吴迪,朱岱寅,朱兆达.机载雷达单脉冲前视成像算法.中国图象图形学报,2010,15(3):462~469.
    [160] R. N. McDonough, A. D. Whalen. Detection of Signals in Noise,2nd ed. San Diego: AcademicPress,1995.
    [161] N. R. Goodman. Statistical analysis based on a certain multi-variate complex Gaussiandistribution. Ann. Math. Stat.,1963,34:152~177.
    [162]董瑞军.机载雷达非均匀STAP方法及其应用,[博士学位论文].西安:西安电子科技大学,2000.
    [163] K. Gerlach. Outlier Resistant Adaptive Matched Filtering. IEEE Transactions on Aerospace andElectronic Systems,2002,38(3):885~900.
    [164]张贤达.现代信号处理(第二版).北京:清华大学出版社,2002.
    [165] Y. I. Abramovich, N. K. Spencer, B. A. Johnson. Band-Inverse TVAR Covariance MatrixEstimation for Adaptive Detection. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):375~396.
    [166] Y. I. Abramovich, N. K. Spencer, M. Turley. Time-varying Autoregressive (TVAR) Models forMultiple Radar Obsevations. IEEE Transactions on Signal Processing,2007,55(4):1298~1311.
    [167] Y. I. Abramovich, N. K. Spencer, M. Turley. Order Estimation and Discrimination BetweenStationary and Time-Varying (TVAR) Autoregressive Models. IEEE Transactions on SignalProcessing,2007,55(6):2861~2876.
    [168] H. Akaike. A new look at the statistical model identification. IEEE Transaction AutomaticControl,1974, AC-19:716~723.
    [169] J. Rissanen. Modeling by shortest data description. Automatica,1978,14:465~471.
    [170]吕孝雷,苏军海,邢孟道等.三通道SAR-GMTI误差校正方法的研究,系统工程与电子技术,2008,30(6):1037~1042.
    [171] M. Soumekh. Signal subspace fusion of uncalibrated sensors with application in SAR anddiagnostic medicine. IEEE Transaction on Image Processing,1999,8(1),127-137
    [172]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法.自然科学进展,2008,18(12):1484~1490.
    [173] M. L. Picciol, K. Gerlach. Median Cascaded Canceller for Robust Adaptive Array Processing.IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):883~900.
    [174] R. A. Horn, R. C. Johnson. Matrix Analysis. New York: Cambridge University Press,1985.
    [175]谢土厚.机载雷达的地图显示技术.现代雷达,2007,29(2):28~34.
    [176] A. D. Seifer. Monopulse-Radar Angle Tracking in Noise or Noise Jamming. IEEE transactionon aerospace and electronic systems,1992,28(3):622~637.
    [177] B. Tullsson. Monopulse Tracking of Rayleigh Targets: A Simple Approach. IEEE transactionon aerospace and electronic systems,1991,27(3):520~531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700