垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量是雷达遥感测量的研究热点,根据其工作方式可分为垂直航迹干涉合成孔径雷达(Cross-Track Interferometric Synthetic Aperture Radar,XTI)和沿航迹干涉合成孔径雷达(Along-Track Interferometric Synthetic Aperture Radar, ATI)两类,它利用两幅或两幅以上具有相干性的SAR复图像进行联合处理,相比于传统的单幅合成孔径雷达(SAR)图像能够获得更多的信息,利用垂直航向基线可以获得地面高精度的数字高程图,利用沿航向的基线可以进行地面运动目标检测以及洋流监测等,因而在军事、国民经济建设和科学研究中,有着极其广泛的应用领域。
     SAR图像的分辨率越来越高,体散射、多径传播等会影响干涉SAR的相位质量,而且雷达平台的系统测量设备的位置精度通常不能满足要求,因而必须通过各种手段来提高参数估计精度和数据处理速度,同时尽可能使一个系统能够具有多种功能,做到一个设备多种用途。本文结合实际数据处理中遇到的问题,对垂直航迹和沿航迹干涉的数据处理方法进行了一些探索。
     本文的主要工作概括如下:
     1.提出了一种利用全局最小二乘拟合的局部梯度估计方法,用于获取相位滤波的独立同分布样本,提高了相位滤波质量。该方法联合高质量区域的相位信息来拟合低质量区域的干涉相位梯度,相对于传统的局部频率(坡度)估计方法,不但在降低相位噪声方面性能优越,而且还能够在很大程度上保持干涉相位条纹的连续性。
     2.提出了一种阴影区域干涉相位的填补方法。雷达下视角较大时,在地形复杂区域容易引起大面积的阴影区域,严重影响了相位解缠绕的精度和速度。定义了一种伪相干系数来锐化高相干区域和低相干区域的边界,并利用斜面模型来近似阴影区域的干涉相位,有利于相位解缠绕的进行,同时提高了相位解缠绕的精度。
     3.提出了一种利用先验知识进行基线估计的方法。基线是XT-InSAR中解缠绕相位向数字高程图进行转换时所需的关键参数,其精度直接决定转换的高程精度。利用地面先验知识和成像系统的参数,可以降低基线估计所需要的条件数。
     4.提出了一种联合像素多基线处理时利用Lanczos迭代进行降维处理的方法。联合像素处理能够在存在配准误差的情况下,获得较好的相位和高程估计结果,但随着图像数目的增多,其运算量急剧增加。分析了联合像素处理协方差矩阵的构造特点,并根据信号子空间的特性,进行子空间拟合来获取高程估计信息,有效降低了处理时间。
     5.提出了一种混合基线InSAR构形下进行地面动目标检测的方法。该方法首先利用局部坡度补偿技术使杂波样本满足局部独立同分布;进而利用联合像素处理进行杂波抑制,联合像素处理方法利用当前检测像素和周围像素的信息进行联合处理,使存在配准误差时杂波信息能够得到最大限度的利用,具有良好的杂波抑制性能;利用杂波抑制后的结果,再进行局部相位解缠绕来拟合动目标所在区域的地形高程干涉相位;最后使用幅度和相位双门限恒虚警来降低动目标检测的虚警概率。
     根据合成孔径雷达干涉测量不同的工作方式,本文由两部分构成:第一部分(第二章~第四章):主要讨论垂直航迹干涉测量的数据处理方法。内容主要包括提高干涉相位图质量的方法,基线估计方法,以及多基线XT-InSAR的降维处理方法。
     第二部分(第五章):主要讨论利用沿航迹基线进行地面动目标检测的数据处理方法。内容主要包括沿航向动目标检测方法以及混合基线InSAR构型下SAR-GMTI方法。
Synthetic Aperture Radar (SAR) Interferometry is an improtant technique in remote sensing field, including cross-track interferometry (XT-InSAR or XTI) and along-track interferometry (AT-InSAR or ATI). It employs pairs of SAR images to be coherently combined, and can retrieve more information compared to a single SAR image. High quality terrain elevation model (DEM) and terrain deformation can be achieved by using the XT-InSAR, and the AT-InSAR technique can be used for ground moving target indication (GMTI) and current measurement. The wide and potential applications of SAR interferometry in military, civil and scientific researches, make SAR interferometry one of the most active fields in radar and remote sensing areas.
     Because the pair of SAR images for interferometry are obtained from two different view angles separated by a cross-track baseline, the interferometric phase are contaminated by noise due to baseline decorrelation, volume scattering and signal-to-noise ratio (SNR), etc. Therefore, interferometric phase filtering is one of the most improtant procedures in InSAR processing.
     Furthurmore, the measurement accuracy of InSAR system parameters ususlly cannot meet the practical requirement, and so it must be improved by using signal processing techniqures.
     In practice, the data processing speed is also an important factor to be considered. Besides the mentioned above, XTI and ATI functions are expected to be integrated into one system in order to meet different applications.
     The dissertation addresses the problems met in practical data processing, and presents some useful methods for XT-InSAR and AT-InSAR data processing.
     The main work of this dissertation are summarized as follows:
     1. In Chapter 2, a local gradient estimation method for obtaining enough independent and identically distributed (i.i.d.) samples in interferometric phase filtering is presented which is based on the least-squares fitting using the total interferometric fringe information. The method can combine the interferometric phases of the regions with high coherence to fit the phase gradients of the low coherence regions. Compared to the conventional local frequency estimation methods which are based on the assumption of plane surface model, the method can estimate the phase gradient of any curved surface. Thus it can suppress the phase noise greatly while maintain the interferometric fringes continuity well, combining with the conventional mean filtering.
     2. In Chapter 2, an interferometric phase compensation method for shadow region is presented. For a large radar look angle, the shadow phenomenon is inevitable, which will seriously degrade the accuracy and the efficiency of interferometric phase unwrapping. A pseudo-coherence is given to sharpen the edge between the regions of high coherence and low coherence, and then the inclined plane model is used to approximate the interferometric phase in shadow regions, thus facilitating phase unwrapping and improving the accuracy.
     3. Baseline is one of the key parameters in transforming unwrapped interferometric phase to digital elevation models in XT-InSAR. A baseline estimation method based on prior knowledge and SAR imaging parameters is presented in Chapter 3.
     4. Joint pixel processing for multibaseline interferometric synthetic aperture radar is robust to SAR image coregistration errors. But with the increased number of SAR images, the computational complexity is increased rapidly. The characteristic of the covariance matrix used in joint pixel processing method is analyzed in Chapter 4, and a reduced dimension method based on Lanczos iteration is presented which can reduce the dimension of the covariance matrix to slightly more than that of the signal subspace, and then the subspace fitting is utilized to achieve the terrain height estimate, thus reducing the processing time greatly.
     5. For a hybrid baseline InSAR system, a SAR-GMTI method is presented to detect ground moving target. The method first compensates the local terrain slope in order to obtain independent and identically distributed (i.i.d.) clutter samples, and then use the joint pixel processing method to suppress the clutter. The joint pixel processing method uses the current pixel to be detected and its surrounding pixels to jointly suppress clutter, and thus the clutter can still be effectively suppressed when the SAR images are not accurately coregistered. The phase unwrapping is then used to fit the interferometric phase of the region where ground moving targets may be located. Finally, the amplitude constant false alarm rate (CFAR) and phase CFAR are used jointly to decrease the false alarm ratio, and iteration method is also used to improve the relocation accuracy of the detected moving target.
     According to the classification of synthetic aperture radar interferometry, the dissertation is mainly composed of the following two parts:
     Part I (Chapter 2~ Chapter 4): The XT-InSAR data processing is discussed in Part I including the method for improving the interferogram quality, the local knowledge based baseline estimation method and the reduced-dimension method for joint-pixel multi-baseline InSAR processing.
     Part II ( Chapter 5): Gound moving target detection using along track baseline in AT-InSAR is analyzed. The content mainly includes multi-channel SAR-GMTI method with along-track baseline and SAR-GMIT method in hybrid along-/cross- track baseline InSAR formation.
引文
[1] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing [M]. Boca Raton London New York Washington, D.C.: CRC Press.
    [2] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. John Wiley & Sons Inc, 1999.
    [3]张澄波.综合孔径雷达原理、系统分析和应用[M].北京:科学出版社,1989.
    [4]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [5]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2000.
    [6]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [7] P. A.Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 2000, 88(3):333-382.
    [8] R. Bamler and P. Hartl. Synthetic Aperture Radar Interferometry. Inverse Problem, 1998,14: R1-R54.
    [9] S. H. Zisk. A New Earth-Based Radar Technique for the Measurement of Lunar Topography. Moon, 1972, 4(3):296-306.
    [10] A.E. Rogers, R. P. Ingalls. Venus: Mapping the Surface Reflectivity by Radar Interferometry. Science, 1969, 165(3895): 797-799.
    [11] L. C. Graham. Synthetic Aperture Radar for Topographic Mapping. Proc IEEE, 1974, 62:763-768.
    [12] H. A. Zebker, R. M. Goldstein. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res., 1986, 91(B5): 4993-4999.
    [13] R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite Radar Interferometry: Two Demensional Phase Unwrapping. Radio Sic., 1988, 23(4): 713-720.
    [14] A. K. Gabriel, H. A. Zebker, Crossed Orbit Interferometry: Theory and Experimental Results from SIR-B. Int. J. Remote Sens., 1988, 9: 857-872.
    [15] F. Li, R. M. Goldstein. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radar. IEEE Trans. on GRS. 1990, 28(1): 88-97.
    [16] Q. Lin, J. Vesecky, and H. Zebker. New Aproaches in Interferometric SAR Data Processing. IEEE Tran. on GRS. 1992, 30(3): 560-567.
    [17] C. Prati, F. Rocca. Improving Slant-Range Resolution with Multiple SAR Surveys. IEEE Trans. on AES. 1993, 29(1): 135-143.
    [18] F. Gatelli, A. M. Guamieri, F. Parizzi, P. Pasquali, C. Prati, and F. Rocca. The Wavenumber Shift in SAR Interferometry. IEEE Trans. on GRS. 1994, 32(4): 855-865.
    [19] D. Just, and R. Bamler. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar. Appl. Opt, 1994, 33(20): 4361–4368.
    [20] M. S. Seymour and I. G. Cumming. Maximum Likelihood Estimation for SAR Interferometry. in Proc.IGARSS, Aug. 1994, 2272–2275.
    [21] D. C. Ghiglia and L. A. Romero. Robust Two-Dimensional Weighted and Unweighted Phase Unwrapping That Uses Fast Transforms and Iterative Methods. J. Opt. Soc. Amer A, 1994, 11(1): 107-177.
    [22] M. D. Pritt, J. S. Shipman. Least-squares Two-Dimensional Phase Unwrapping Using FFT. IEEE Trans. on Geosci. Remote Sensing, 1994, 32(3): 706-708.
    [23] J. Moreira, M. Schwabisch, G. Fornaro, et al. X-SAR Interferometry: First Results. IEEE Trans. on Geosci. Remote Sensing, July. 1995, 33(4): 950-955.
    [24] M.Schwabisch, S.Geudtner. Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering: Examples from ERS-1 and X-SAR. Proc IGARSS’95, Firenze, Italy. Pp.205-207,10-14 July 1995.
    [25] I. Joughin, D. Winebrenner, and M. Fahnestock, et al. Measurement of Ice-sheet Topography Using Satellite Radar Interferometry. J.Glaciology, Jan. 1996,42(40): 10-22.
    [26] G. Fornaro, G. Franceschetti, and R. Lanari. Interferometric SAR Phase Unwrapping Using Green's Formulation. IEEE Trans. on Geosci. Remote Sensing, May. 1996, 34(3): 720-728.
    [27] Lanari R., Fornaro G., Riccio D. et al. Generation of Digital Elevation Models by using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study. IEEE Trans. on Geosci. Remote Sensing, Jan. 1996, 34(5): 1097-1114.
    [28] T.J.Flynn. Consistent 2-D Phase Unwrapping Guided by a Quality Map. Proceedings of the 1996 International Geoscience Remote Sensing Symposium. Lincoln. Nebraska. IEEE. Piscataway,1996,2057-2059.
    [29] M.Costantini. A Phase Unwrapping Method Based on Network Programming. Proc. Fringe’96 Workshop ERS SAR interferometry. Zurich. Switzerland.1996.
    [30] M. Costantini. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. on GRS, 1998, 36(3): 913-921.
    [31] T. J.Flynn.Two-dimensional Phase Unwrapping with Minimum Weighted Discontinuity. J. Opt. Soc. Am. A, Oct. 1997, 14(10): 2692-2701.
    [32] G.Fornaro, G. Franceschetti, R. Lanari, et al. Interferometric SAR Phase Unwrapping by Using the Finite Element Method. Proc. Inst. Elect. Eng., Radar, Sonar, Navig., Oct. 1997, 144(5): 266–274.
    [33] J. S. Lee, P. Papathanassiou, T. L. Ainsworth, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. on GRS.1998, 36(5): 1456–1464.
    [34] A. Ferretti, C. Prati, and F. Rocca. Multibaseline InSAR DEM Reconstruction: the Wavelet Approach. IEEE Trans on GRS. 1999, 37(2): 705-715.
    [35] A. Reigber and A. Moreira. First Demomstration of Airborne SAR Tomography Using Multibaseline L-Band Data. IEEE Trans on GRS. 2000, 38(5): 2142-2152.
    [36] K. C. Slatton, M. M. Crawford and B. L. Evans. Fusing Interferometric Radar and Laser Altimeter Data to Estimate Surface Topography and Vegetation Heights. IEEE Trans. on GRS. 2001, 39(11): 2470-2482.
    [37] Carlos López-Martínez and Xavier Fàbregas. Modeling and Reduction of SAR Interferometric Phase Noise in the Wavelet Domain. IEEE Trans. on GRS. 2002, 40(12): 2553-2566.
    [38] Z. Lu E. Fielding and M. R. Patrick, et al. Estimating Lava Volume by Precision Combination of Multiple Baseline Spaceborne and Airborne Interferometric Synthetic Aperture Radar: the 1997 Eruption of Okmok Volcano, Alaska. IEEE Trans. on GRS. 2003, 41(6): 1428-1436.
    [39] M. E. Engdahl and J. M. Hyypp?. Land-Cover Classification Using Multitemporal ERS-1/2 InSAR Data. IEEE Trans. on GRS. 2003, 41(7): 1620-1628.
    [40] G. Ferraiuolo and G. Poggi. A Bayesian Filtering Technique for SAR Interferometric Phase Fields. IEEE Trans. on Image Processing. 2004, 13(10): 1368-1378.
    [41] G. Ferraiuolo, V. Pascazio and G. Schirinzi. Maximum a Posteriori Estimation of Height Profiles in InSAR Imaging. IEEE Geoscience and romote sensing letters, 2004, 1(2): 66-70.
    [42] M. Eineder and N. Adam. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms from Different Viewing Geometries into One Digital Elevation Model. IEEE Trans. on GRS. 2005, 43(1):24-36.
    [43] J. Askne, M. Santoro. Selection of Forest Stands for Stem Volume Retrieval from Stable ERS Tandem InSAR Observations. IEEE Geoscience and romote sensing letters, 2007, 4(1): 46-50.
    [44] E. Sansosti, P. Berardino, M. Manunta, et al. Geometrical SAR Image Registration. IEEE Trans. on GRS. 2006, 44(10): 2861-2870.
    [45] G. Vasile, E. Trouvé, J. S. Lee, et al. Intensity-driven Adaptive-Neighborhood Technique for Polarimetric and Interferometric SAR Parameters Estimation. IEEE Trans. on GRS. 2006, 44(6): 1609-1621.
    [46] F. Garestier, P. Dubois-Fernandez, X. Dupuis, et al. PolInSAR Analysis of X-Band Data Over Vegetated and Urban Areas. IEEE Trans. on GRS. 2006, 44(2): 256-364.
    [47] A. Refice, F. Bovenga, and R. Nutricato. MST-Based Stepwise Connection Strategies for Multipass Radar Data, with Application to Coregistation and Equalization. IEEE Trans. on GRS. 2006, 44(8): 2029-2040.
    [48] J. M. Bioucas-Dias, G. Valadao. Phase Unwrapping Via Graph Cuts. IEEE Trans. on Image Processing. 2007. 16(3): 698-709.
    [49] S. Oveisgharan and H. A. Zebker. Estimating Snow Accumulation from InSAR Correlation Observations. IEEE Trans. on GRS. 2007, 45(1): 10-20.
    [50] F. Lombardini, L. R??ing, J. Ender, et al. Towards a Complete Processing Chain of Multibaseline Airborne InSAR Data for Layover Scatters Separation. 2007 Urban Remote Sensing Joint Event. IEEE 2007.
    [51] F. Gini, F. Lombardini and M. Montanari. Layover Solution in Multibaseline SAR Interferometry. IEEE Trans. on AES. 2002, 38(4): 1344-1356.
    [52] F. Lombardini, M. Montanari and F. Gini. Reflectivity Estimation for Multibaseline Interferometric Radar Imaging of Layover Extended Sources. IEEE Trans. on Signal Processing. 2003, 51(6): 1508-1519.
    [53] F. Gini, F. Lombardini. Multibaseline Cross-Track SAR Interferometry: a Signal Processing Perspective. IEEE A&E systems magazine, 2005, 20(8): 71-93.
    [54] G. Farnaro, A. M. Guarnieri, A. Pauciullo, et al. Maximum Likelihood Multi-Baseline SAR Interferometry. IEE Proc.- Radar Sonar Navig. 2006, 153(3): 279-288.
    [55] M. Santoro, J. I. H. Askne, U. Wegmüller, et al. Observations, Modeling, and Applications of ERS-ENVISAT Coherence Over Land Surfaces. IEEE Trans. on GRS. 2007, 45(8): 2600-2611.
    [56] F. Lombardini, J. Ender, L. R??ing, M. Galletto, L. Verrazzani. Experiments of Interferometric Layover Solution with the Threeantenna Airborne AER-II SAR System. Proc. IEEE IGARSS, Anchorage, Alaska, Sept. 2004.
    [57]师瑞荣,机载SAR干涉成像算法研究,中国科学院电子学研究所硕士论文,2002.
    [58]王超,张红,刘智,星载合成孔径雷达干涉测量,北京:科学出版社,2002.
    [59]李真芳,分布式小卫星SAR-InSAR-GMTI的处理方法,西安电子科技大学博士论文,2006.
    [60]武楠,干涉合成孔径雷达信号处理技术研究,西安电子科技大学博士论文,2007。
    [61]胡庆东,干涉SAR系统相干性和相位展开算法研究,北京航空航天大学博士论文,1998.
    [62]穆冬,干涉合成孔径雷达成像技术研究,南京航空航天大学博士论文,2001.
    [63] Q.Yu, X.Yang, S. Fu, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2007, 4(1): 23-26.
    [64] Q. Yu, S.Fu, H. Mayer, et al. Coregistration Based on Three Parts of Two Complex Images and Contoured Windows for Synthetic Aperture Radar Interferometry. IEEE Geosci. Remote Sens. Lett. 2007, 4(2): 288-292.
    [65] Z. Li, Z.Bao, H. Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection. IEEE Trans. on GRS. 2006, 44(2): 288-297. IEEE Geosci. Remote Sens. Lett. 2007, 4(1): 23-26.
    [66] Z. Li, Z. Bao, and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on GRS, 2007, 45(3): 584-591.
    [67] Hai Li, Zhenfang Li, Guisheng Liao, and Zheng Bao. An Estimation Method for InSAR Interferometric Phase Combined with Image Auto-Coregistration. Science in China, Series F, 2006, 49(3): 386-396.
    [68] N. Wu, D. Feng, and J.Li. A Locally Adaptive Filter of Interferometric Phase Images. IEEE Geosci. Remote Sens. Lett. 2006, 3(1): 73-77.
    [69] B. Liu, D. Feng, P. Shui, et al. Analytic Search Method for Interferometric SAR Image Registration. IEEE Geosci. Remote Sens. Lett. 2008, 5(2): 294-298.
    [70] M. Liao, T.Wang, L. Lu, et al. Reconstruction of DEMs From ERS-1/2 Tandem Data in Mountainous Area Facilitated by SRTM Data. IEEE Trans. on GRS. 2007, 45(7): 2325-2335.
    [71]向茂生,干涉雷达相位处理中的若干问题研究,中国科学院遥感应用研究所博士论文,1998.
    [72] R. M. Goldstein, and H. A. Zebker, Interferometric Radar Measurement of Ocean Surface Currents. Nature, 1987, 328 :707-709.
    [73] D. R. Lyzenga and J. R. Bennett. Estimation of Ocean Wave Spactra Using Two Antenna SAR Systems. IEEE Trans. on GRS. 1991, 29:463-465.
    [74] M. Marom, L. Shemer, and E. B. Thornton. Energy Density Directional Spectra of Nearshore Wavefield Measured by Interferometric Synthetic Aperture Radar. J. Geophys. Res., 96:22125-22134.
    [75] M. Bao, C. Bruning, and W. Alpers. Simulation of Ocean Waves Imaging by an Along-Track Interferometric Synthetic Aperture Radar. IEEE Trans. on GRS. 1997, 35(3): 618-631.
    [76] M. Bao, W. Alpers, and C. Bruning. A New Nonlinear Integral Transform Relating Ocean Wave Spectra to Phase Image Spectra of an Along-Track Interferometric Synthetic Aperture Radar. IEEE Trans. on GRS. 1999, 37(1):461-466.
    [77] J. S. Stellennfleth, and S. Lehner. Ocean Wave Imaging Using an Airborne Single Pass Cross Track Interferometric SAR. IEEE Trans. on GRS. 2001, 39(1): 38-44.
    [78] J. S. Stellennfleth, J. Hotstmann, S. Lehner, et al. Sea Surface Imaging with an Across Track Interferometric Synthetic Aperture Radar: the SINEWAVE Experiment. IEEE Trans. on GRS. 2001, 39(9): 2017-2028.
    [79] R. Romeiser, H. Breit, M. Eineder, et al. Demonstration of Current Measurements from Space by Along-Track SAR Interferometry with SRTM data. IEEE 2002, 158-160.
    [80] R. Romeiser, J. Sprenger, D. Stammer, et al. Global Current Measurements in Rivers by Spaceborne Along-Track InSAR. IEEE 2005, 71-74.
    [81] R. Romeiser. On the Potential of Current Measurements by Spaceborne Along-Track InSAR for River Runoff Monitoring. IEEE 2005, 787-792.
    [82] R. Romerser. Current Measurements by Airborne Along-Track InSAR: Measuring Technique and Experimental Results. IEEE Journal of Oceanic Engineering. 2005, 30(3): 552-569.
    [83] R. Romeiser, H. Breit, M. Eineder, et al. Current Measurements by SAR Along-Track Interferometry From a Space Shuttle. IEEE Trans. on GRS. 2005, 43(10): 2315-2324.
    [84] R. Romeiser and H. Runge. Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for ocean current measurements. IEEE Trans. onGRS. 2007, 45(1): 21-35.
    [85] A. Moccia and G. Rufino. Spaceborne Along-Track SAR Interferometry: Performance Analysis and Mission Scenarios. IEEE Trans. on AES. 2001,37(1): 199-213.
    [86] V. Pascazio, G. Schirinzi, and A. Farina. Moving Target Detection by Along-Track Interferometry, IGARSS’01, 2001,7:3024-3026.
    [87] H. Breit, M. Eineder, J. Holzner, et al. Traffic Monitoring Using SRTM Along-Track Interferometry. IEEE 2003, 1187-1189.
    [88] C.W. Chen. Performance Assessment of Along-Track Interferometry for Detecting Ground Moving Target. Proc. IEEE Radar Conference, Philadelphia, PA, 2004: 99-104.
    [89] Zhengfan Yang and M. Soumekh. Adaptive Along-Track Multi-Channel SAR Interferometry for Moving Target Detection and Tracking. IEEE 2005.
    [90] D. A. Imel. AIRSAR Along-Track Interferometry Data. AIRSAR Earth Science and Applications Workshop, March 2002, http://airsar.jpl.nasa.gov/documents/ workshop2002/papers/O1.pdf
    [91] E. Chapin and C.W. Chen. Preliminary Results from an Airborne Experiment Using Along-Track Interferometry for Ground Moving Target Indication. IEEE 2005.
    [92] E. Chapin and C.W. Chen. GMTI Along-Track Interferometry Experiment. IEEE A&E Systems Magazine. 2006: 15-20.
    [93] Yuhong Zhang. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR) Techniques for Ground Moving Target Detection. AFRL-SN-RS-TR-2005-410. Final Technical Report. Jan. 2006.
    [94] R. Kapfer, M. Krumme and M. E. Davis. SBR Sparse Array Performance with Subarray Orientation and Timing Errors. IEEE 2006, 2006:444-451.
    [95] H.A.Zebker,et al.The TOPSAR interferometric radar topographic mapping instrument.IEEE.Trans.on GRS,1992,30(5),pp.933-940.
    [96] P.Gamba, B.Houshmand, M.Saccani. Detection and Extraction of Buildings from Interferometric SAR Data.IEEE.Trans.on GRS.2000,38(1), pp.611- 618.
    [97] R.Kwock and M.A.Fahnestock.Ice Sheet Motion and Topography from Radar Interferometry. IEEE.Trans.On GRS.1996,34,pp.189-220.
    [98] J.O.Hagberg,et al.Repeat-pass SAR Interferometry over Forested Terrain.IEEE Trans.On GRS.1995,33,pp.331-340.
    处理方法。北京:科学出版社,2007年。 [99]于起峰,伏思华,基于条纹方向和条纹等值线的ESPI与InSAR干涉条纹图
    [1] R. M. Goldstein, H. A. Zebker, and L. C. Werner. Satellite Radar Interferometry: Tow-Dimensional Phase Unwrapping. Radio Science, 1988, 23(4): 713-720.
    [2]王超,张红,刘智,星载合成孔径雷达干涉测量,北京:科学出版社,2002.
    [3]王磊,干涉合成孔径雷达信号处理的研究,中国科学院电子学研究所博士论文,2001.
    [4] H. A. Zebker, J. Villasenor. Decorrelation in Interferometric Radar Echoes. IEEE Trans. on GRS, 1992, 30(5): 590-959.
    [5] M. S. Seymour, and I. G. Cumming. Maximum Likelihood Estimation for SAR Interferometry. IGARSS1994, 1994:2272-2275.
    [6]李燕平,单/双基SAR成像及运动补偿研究,西安电子科技大学博士论文,2008.
    [7] J. Dall. InSAR Elevation Bias Caused by Penetration Into Uniform Volumes. IEEE Trans. on GRS, 2007, 45(7): 2319-2324.
    [8] E. W. Hoen, and H. A. Zebker. Penetration Depths Inferred from Interferometric Volume Decorrelation Observed over the Greenland Ice Sheet. IEEE Trans. on GRS. 2000, 38(6): 2571-2583.
    [9] J. L. Krolik, J. Farrell and A. Steinhardt. Exploiting Multipath Propagation forGMTI in Urban Environments. IEEE 2006: 65-68.
    [10] D. Just, and R. Bamler. Phase Statistics of Interferograms with Application to Synthetic Aperture Radar. Appl. Opt., 1994, 33(20):43611-4368.
    [11] J. S. Lee, K.W. Hoppel, and S. A. Mango, Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery. IEEE Trans. on GRS, 1994, 32(5): 1017-1027.
    [12] P. A. Rosen, S. Hensley, I. R. Joughin, et al, Synthetic Aperture Radar Interferometry. Proceedings of IEEE, 2000, 88(3).
    [13] P. H. Eichel, D. C. Ghiglia, et al. Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection. Sandia National Labs Tech. Report, SAND93, 1993, (12): 2539-2546.
    [14] U. Spagnolini. 2-D Phase Unwrapping and Instantaneous Frequency Estimation. IEEE Trans. on GRS, 1995, 33(3): 579-589.
    [15] P. Stoica, and A. Nehorai. MUSIC, Maximum Likelihood, and Cramer-Rao Bound. IEEE Trans. on Acoust. Speech Signal Process, 1989, 37(5): 720-741.
    [16] E. Trouve, M. Caramma, and H. Maytre. Fringe Detection in Noisy Complex Interferograms. Appl. Opt., 1996, 35(20): 3799-3806.
    [17]武楠,干涉合成孔径雷达信号处理技术研究,西安电子科技大学博士论文,2007.1。
    [18] Hai Li, Zhenfang Li, Guisheng Liao, and Zheng Bao. An estimation method for InSAR interferometric phase combined with image auto-coregistration. Science in China, Series F, 2006, 49(3): 386-396.
    [19] A. B. Suksmono. Signal Representation and the Nonlinear Property of Phase Images. IEEE Geoscience and Romete Sensing Letters. 2007, 40(4): 606-610.
    [20]李真芳,分布式小卫星SAR-InSAR-GMTI的处理方法,西安电子科技大学博士论文,2006.4。
    [21] T. J. Flynn, Two-dimensional Phase Unwrapping with Minimum Weighted Discontinuity. J. Opt. Soc. Am. A, 1997, 14(10): 2692-2701.
    [22] G. Fornaro, G. Franceschetti, R. Lanari, et al. Interferometric SAR Phase Unwrapping by Using the Finite Element Method. Proc. Inst. Elect. Eng., Radar Sonar and Navigation, 1997, 144(5): 266-274.
    [23] W. Xu and I. Cumming, A Region Growing Algorithm for InSAR Phase Unwrapping. IEEE Trans. on GRS. 1999, 37(1): 123-134.
    [24] G. W. Davidson and R. Bamler, Multiresolution Phase Unwrapping for SAR Interferometry. IEEE Trans. on GRS. 1999, 37(1): 163-174.
    [25] M. Constantini, A. Farina and F. Zirilli, A Fast Phase Unwrapping Algorithm for SAR Interferometry. IEEE Trans. on GRS. 1999, 37(1): 452-460.
    [26] D.C.Ghiglia and L.A.Romero:Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods.J.Opt.Soc.Amer A,Vol.11,No.1,1994,pp.107-117.
    [27] M. Constantini, A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. on GRS. 1998, 36(3):813-821.
    [28] M. D. Pritt, Phase Unwrapping by Means of Multigrid Techniques for Interferometry SAR. IEEE Trans. on GRS. 1996, 34(3): 728-738.
    [29] A. Refice, G. Satalino, S. Stramaglia, et al. Weights Determination for Minimum Cost Flow InSAR Phase Unwrapping. IEEE 1999: 1342-1344.
    [30] G. Farnaro and G. Franceschetti. Image Registration in Interferometric SAR Processing. IEE Proc. Radar, Sonar and Navig. 1995, 142(6): 313-320.
    [31] R. Scheiber and A. Moreira. Coregistration of Interferometric SAR Images Using Spectral Diversity. IEEE Trans. on GRS. 2000, 38(5): 2179-2191.
    [32] A. K. Gabriel and R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experiment Results form SIR-B. Int. J. Remote Sens. 1988, 9(5): 857-872.
    [33] D. Meng, V. Sethu, E. Ambikairajah, et al. A Novel Technique for Noise Reduction in InSAR Images. IEEE Geoscience and Remote Sensing Letters. 2007, 4(2): 226-230.
    [34]穆冬,干涉合成孔径雷达成像技术研究,南京航空航天大学博士论文,2001.
    [35] J. S. Lee, P. Papathananssiou, and T. L. Ainsworth, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. on GRS, 1998, 36(5): 1456-1464.
    [36] Wu Nan, Feng Dazheng, and Li Junxia. A locally adaptive filter of Interferometric Phase Images. IEEE Geosci. Remote Sens. Lett. 2006, 3(1): 73-77.
    [37] Qifeng Yu, Xia Yang, Sihua Fu, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2007, 4(1): 23-26.
    [38] Zhenfang Li, Zheng Bao, Hai Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection. IEEE Trans. on GRS, 2006, 44(2): 288-297.
    [39] A. J. Bennett, D. Blacknell, Q.Q.Malvern: The Benefit and Detriment of Radar Shadowing in Urban SAR Imaging[A]. EUSAR 2004, 2004(1):419-422. EUSAR2004'[C]. Ulm, Germany, 2004.
    [40]王树根,李德仁等.正射影像上阴影和遮蔽的信息处理方法研究[J].测绘信息与工程, 2004,29(4),pp:1-4.
    [41]傅琨,匡纲要,郁文贤.一种合成孔径雷达图像阴影和目标检测的方法[J].软件学报, 2002,13(4), 818-826.
    [42] H. A. Zebker and K. Chen, Accurate Estimation of Correlation in InSAR Observations. IEEE Geoscience and Remote Sensing Letters[J], 2005, 2(2):124-127.
    [43] Ghiglia D. C., Pritt M. D., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. New York: Wiley, 1998, 74-76.
    [44] M. Eineder and S. Suchandt, Recovering Radar Shadow to Improve Interferometric Phase Unwrapping and DEM Reconstruction[J]. IEEE Trans Geosci. Remote Sensing, 2003,41(12):2959-2962.
    [45] D. C. Ghiglia and L.A. Romero: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. J. Opt. Soc. Amer A, 1994, 11(1):107-177.
    [46] G. Krieger, A. Moreira, H. Fiedler, et al, TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans Geosci. Remote Sensing, 2007, 45(11): 3317-3341.
    [1] F. K. Li, and R. M. Goldstein,“Studies of multibaseline spaceborne interferometric synthetic aperture radars,”IEEE Trans. on GRS. Vol. 28. No.1, Jan.1990, pp.88-97.
    [2]胡庆东,毛士艺,干涉合成孔径雷达基线的估计,航空学报,Vol.19,No.7(s),1998, pp.19-23。
    [3]汤晓涛,InSAR数据处理的基线估计和影像自动概略配准,解放军测绘学院学报,1999,Vol.16,No.4,pp:260-262。
    [4] H. Kimura,“A method to estimate baseline and platform altitude for SAR interferometry,”Geoscience and Remote Sensing Symposium, 1995. IGARSS’95.‘Quantitative Remote Sensing for Science and Applications,’International, 10-14 July 1995, Vol.1, pp.199-201.
    [5] K. Singh, N. Stussi, Leong Keong, et al,“Baseline estimation in interferometric SAR,”Geoscience and Remote Sensing, 1997. IGARSS’97,‘Remote Sensing- A Scientitic Vision for Sustainable Development’, 1997 IEEE International, 3-8 Aug. 1997, Vol.1, pp. 454-456.
    [6] S. Knedlik, O. Loffeld, A. Hein, et al,“A novel approach to accurate baseline estimation,”Geoscience and Remote Sensing Symposium, 1999. IGARSS’99 Proceedings, IEEE 1999 international, 28 June-2 July 1999, Vol.1 pp.254-256.
    [7]李新武,郭华东等,基于快速傅立叶变换的干涉SAR基线估计,测绘学报,Vol.32,No.1,2003,pp.70-72。
    [8] D. Small, C. Werner, D. Nuesch,“Baseline modelling for ERS-1 SAR interferometry,”Geoscience and Remote Sensing Symposium, 1993, IGARSS’93.‘Better Understanding of Earth Enviroment,’International, 18-21 Aug. 1993, Vol.3, pp.1204-1206.
    [9] H. Kimura, M. Todo,“Baseline estimation using ground points for interferometric SAR,”Geoscience and Remote Sensing, 1997. IGARSS’97.‘Romote Sensing- A Scientitic Vision for Sustainable Development’, 1997 IEEE International, 3-8 Aug. 1997, Vol.1, pp. 442-444.
    [10] X.L. Zhang, S.J. Huang and J.G. Wang,“Approaches to estimating terrain height and baseline for interferometric SAR,”Electronics Letters, Vol.34, No.25, 10th, Dec. 1998, pp.2428-2429.
    [11] M. S. Seymour, I. G. Cumming,“An iterative algorithm for ERS baseline estimation,”Fring’96 Workshop on ERS SAR interferometry ESA, 1996.
    [12] Tang Zhi, Li Jingwen, Zhou Yinqing, et al. Formation Flying InSAR Config- uration for Simulation and Compensation.
    [13]唐智,周荫清,李景文,机载编队飞行InSAR的运动误差分析与补偿。电子与信息学报,2005, 27(6): 932-935.
    [14] Ma Debao, Li Wugao, Wang Fuming, The Relative and Absolute Geometric Algorithm for the ERS Baseline Estimation [C], IGARSS’02, 2002 IEEE International, Volume:6, 24-28 June 2002, Pages:3462-3464.
    [15] Liu Y., Liao G-S. and Ma L., A baseline estimation method for InSAR based subspace projection[J], Journal of Xidian University, 2006, 33(5), pp.678-681
    [16] Mohr J .J. and Madsen S.N., Parametric Estimation of Time Varying Baselines in Airborne Interferometric SAR [C]. IEEE IGARSS’96, pp.677-679.
    [17] Reigber A., Prats P. and Mallorqui J. J., Refined Estimation of Time Varying Baseline Errors in Airborne SAR Interferometry [J]. IEEE Geoscience and Remote Sensing Letters, 2006, pp.1-5.
    [18]穆冬,干涉合成孔径雷达成像技术研究[D],南京:南京航空航天大学,2001年2月.
    [19]聂琳娟,星载合成孔径雷达干涉测量中基线估计算法的研究,武汉:武汉大学,2004年5月.
    [20]王彤,保铮,廖桂生,分布式小卫星干涉高程测量。系统工程与电子技术,2004,26(7):859-862.
    [1] P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 2000, 88(3): 333-382.
    [2] R. Bamler and P. Hartl. Synthetic Aperture Radar Interferometry. Inverse Problem, 1998, 14: R1-R54.
    [3] B. Rabus, M. Eineder, A. Roth, et al. The Shutter Radar Topography Mission (SRTM): A New Class of Digital Elevation Models Acquired by Spaceborne Radar. ISPRS Journal Photogramm. Remote Sensing, 2003, 57: 241-262.
    [4] A. Refice, F. Bovenga, R. Nutricato,“MST-Based Stepwise Connection Strategies for Multipass Radar Data, With Application to Coregistration and Equalization,”IEEE Trans. on GRS, 2006, 44(8): 2029-2040.
    [5] M. Eineder and N. Adam,“A Maximum-Likelihood Estimator to Simutaneously Unwrap, Geocode, and Fuse SAR Interferograms from Different Viewing Geometries into One Digital Elevation Model,”IEEE Trans. on GRS, 2005, 43(1):24-36.
    [6] W. Xu, E. Chang, L. Kwoh, et al. Phase Unwrapping of SAR Interferogram with Multi-Frequency or Multi-Baseline. In Proc. IGARSS’94, Singapore, 1994: 730-732.
    [7] D. C. Ghiglia and D. E. Wahl. Interferometric Synthetic Aperture Radar Terrain Elevation Mapping from Multiple Observations. In digital signal processing workshop, sixth IEEE, Albuquerque, NM, USA, 1994: 33-36.
    [8] D. G. Thompson, A .E. Robertson, D. V. Arnold, et al. Multi-Baseline Interferometric SAR for Iteration Height Estimation. In Proc. IGARSS’99, UT,USA, 1999: 251-253.
    [9] M. G. Kim and H. D. Griffiths. Phase Unwrapping of Multibaseline Interferometry Using Kalman Filtering. In Seventh IEE Int. Conf. on Image Processing and Its Appli., London, UK, 1999: 813-817.
    [10] Li F, Goldstein. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. On GRS, 1990, 28:88-97.
    [11] P. Lombardo, F.Lombardini. Multi-baseline SAR Interferometry for Terrain Slope Adativity. In IEEE National Radar Conference, Rome Univ., Italy, 1997, 196-201.
    [12] V. Pascazio, G. Schirinzi. Multifrequency InSAR Height Reconstruction Through Maximum Likelihood Estimation of Local Planes Parameters. IEEE Trans. On Image Processing, 2002,11(12):1478-1489.
    [13] G. Fornaro, A. Pauciullo and E. Sansosti. Phase Difference Based Multiple Acquisition Phase Unwrapping. In Proc. IEEE Int. Geoscience and Remote Sensing Symp’2003, Toulouse, France, 2003, 948-950.
    [14] G. Fornaro, A. Pauciullo and E. Sansosti. Bayesian Approach to Phase-Difference- Based Phase Unwrapping. In IEEE Thirty-sixth Asilomar Conference on Signals, Systems and Computers, Napoli, Italy, 2002, 1391-1396.
    [15] G. Poggi, A. P. R. Ragozini, D. Servadei. A Bayesian Approach for SAR Interferometric Phase Restoration. In Proc. IEEE Int. Geoscience and Remote Sensing Symp’2000, Naples Univ., Italy, 2000, 3202-3205.
    [16] L. Ying, D. C. Munson, R. Koetter, et al. Multibaseline InSAR Terrain Elevation Estimation: A Dynamic Programming Approach. In Proc. IEEE Int. Conf. on Image Processing, Univ. of Illinois, USA, 2003, 1522-4880.
    [17] A. Ferretti, C. Prati, and F. Rocca,“Multibaseline InSAR DEM Reconstruction: The Wavelet Approach,”IEEE Trans. Geosci. and Remote Sensing, vol. 37, no. 2, pp. 705-715, 1999.
    [18] F. Lombardini, L. R??ing, J. Ender, et al. Towards a Complete Processing Chain of Multibaseline Airborne InSAR Data for Layover Scatters Separation. 2007 Urban Remote Sensing Joint Event. IEEE 2007.
    [19] F. Gini, F. Lombardini and M. Montanari. Layover Solution in Multibaseline SAR Interferometry. IEEE Trans. on AES. 2002, 38(4): 1344-1356.
    [20] F. Lombardini, M. Montanari and F. Gini. Reflectivity Estimation for Multibaseline Interferometric Radar Imaging of Layover Extended Sources. IEEE Trans. on Signal Processing. 2003, 51(6): 1508-1519.
    [21] F. Gini, F. Lombardini. Multibaseline Cross-Track SAR Interferometry: a SignalProcessing Perspective. IEEE A&E systems magazine, 2005, 20(8): 71-93.
    [22] G. Farnaro, A. M. Guarnieri, A. Pauciullo, et al. Maximum Likelihood Multi- Baseline SAR Interferometry. IEE Proc.- Radar Sonar Navig. 2006, 153(3): 279-288.
    [23] F. Lombardini, J. Ender, L. R??ing, M. Galletto, L. Verrazzani. Experiments of Interferometric Layover Solution with the Threeantenna Airborne AER-II SAR System. Proc. IEEE IGARSS, Anchorage, Alaska, Sept. 2004.
    [24] Z. Li, Z.Bao, H. Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection. IEEE Trans. on GRS. 2006, 44(2): 288-297. IEEE Geosci. Remote Sens. Lett. 2007, 4(1): 23-26.
    [25] Z. Li, Z. Bao, and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on GRS, 2007, 45(3): 584-591.
    [26] Hai Li, Zhenfang Li, Guisheng Liao, and Zheng Bao. An Estimation Method for InSAR Interferometric Phase Combined with Image Auto-Coregistration. Science in China, Series F, 2006, 49(3): 386-396.
    [27] D. Massonnet. Capabilities and Limitations of the Interferometric Cartwheel. IEEE Trans. On GRS, 2001,39(3):506–520.
    [28] G. Krieder, H. Fiedler, J. Mittermayer, K. Papathanassiou and A. Moreira,“Analysis of multistatic configurations for spaceborne SAR interferometry,”IEE Proc.-Radar Sonar Navig., vol.150, no. 3, pp. 87-96, 2003.
    [29] Z. Li, Z. Bao, H. Wang, and G. Liao,“Performance Improvement for Constellation SAR Using Signal Processing Techniques,”IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 2, pp.436-452, 2006.
    [30] L.Huang, W.Yuan, L.Zhang, et al,“Direction of Arrival Estimation Based on the MSWF,”Journal of Xidian Univ., 2004, 31(6): 865-869.
    [31] B. D. Carlson,“Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays,”IEEE Trans. on AES, 1998,24(4): 397-401.
    [1] M. I. Skolnik. Radar Handbook, Second Edition, New York, McGraw-hill, 1990.
    [2] C. H. Gierull , I. C. Sikaneta, Raw Data based Two-Aperture SAR Ground Moving Target Indication. In Proceedings of IEEE International. Geoscience and Remote Sensing Symposium, Toulouse, France, July 2003,1032-1034.
    [3] J. H. G. Ender., Space-time processing for multichannel synthetic aperture radar. Electronics& Communication Engineering Journal, 1999, 11(1):29-40.
    [4] S. Barbarossa , A. Farina, Space-time-frequency processing of synthetic aperture radar signals. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(4): 341-358.
    [5] H. Wang, L. Cai, On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660-670.
    [6] A. Haimovich, The eigencanceler: adaptive radar by eigenanalysis methods. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32( 2) :532-542.
    [7] R. M. Goldstein, and H. A. Zebker, Interferometric Radar Measurement of Ocean Surface Currents. Nature, 1987, 328 :707-709.
    [8] R. Romeiser, H. Breit, M. Eineder, et al. Demonstration of Current Measurements from Space by Along-Track SAR Interferometry with SRTM data. IEEE 2002, 158-160.
    [9] R. Romeiser, J. Sprenger, D. Stammer, et al. Global Current Measurements in Rivers by Spaceborne Along-Track InSAR. IEEE 2005, 71-74.
    [10] R. Romeiser. On the Potential of Current Measurements by Spaceborne Along- Track InSAR for River Runoff Monitoring. IEEE 2005, 787-792.
    [11] R. Romerser. Current Measurements by Airborne Along-Track InSAR: Measuring Technique and Experimental Results. IEEE Journal of Oceanic Engineering. 2005, 30(3): 552-569.
    [12] R. Romeiser, H. Breit, M. Eineder, et al. Current Measurements by SAR Along-Track Interferometry From a Space Shuttle. IEEE Trans. on GRS. 2005,43(10): 2315-2324.
    [13] R. Romeiser and H. Runge. Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for ocean current measurements. IEEE Trans. on GRS. 2007, 45(1): 21-35.
    [14] C.W. Chen. Performance Assessment of Along-Track Interferometry for Detecting Ground Moving Target. Proc. IEEE Radar Conference, Philadelphia, PA, 2004: 99-104.
    [15] D. A. Imel. AIRSAR Along-Track Interferometry Data. AIRSAR Earth Science and Applications Workshop, March 2002, http://airsar.jpl.nasa.gov/documents/ workshop2002/papers/O1.pdf
    [16] E. Chapin and C.W. Chen. Preliminary Results from an Airborne Experiment Using Along-Track Interferometry for Ground Moving Target Indication. IEEE 2005.
    [17] E. Chapin and C.W. Chen. GMTI Along-Track Interferometry Experiment. IEEE A&E Systems Magazine. 2006: 15-20.
    [18] Yuhong Zhang. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR) Techniques for Ground Moving Target Detection. AFRL-SN-RS-TR-2005-410. Final Technical Report. Jan. 2006.
    [19]郑明洁,合成孔径雷达动目标检测和成像研究。中国科学院电子学研究所博士论文,2003.6。
    [20] Zhenfang Li, Zheng Bao, Fengfeng Yang, Ground Moving Target Detection and Location Based on SAR Images for Distributed Spaceborne SAR. Science in China (Series F), 2005, 48(5): 632-646.
    [21] Zhenfang Li, Zheng Bao, Hongyang Wang, Guisheng Liao, Performance Improvement for Constellation SAR Using Signal Processing Techniques. IEEE Trans. on AES, 2006, 42(2): 436-452.
    [22] D. Massonnet, Capabilities and Limitations of the Interferometric Cartwheel. IEEE Trans. on GRS, 2001, 39(3): 506-520.
    [23] G. Farnaro and G. Franceschetti. Image Registration in Interferometric SAR Processing. IEE Proc. Radar, Sonar and Navig. 1995, 142(6): 313-320.
    [24] R. Scheiber and A. Moreira. Coregistration of Interferometric SAR Images Using Spectral Diversity. IEEE Trans. on GRS. 2000, 38(5): 2179-2191.
    [25] A. K. Gabriel and R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experiment Results form SIR-B. Int. J. Remote Sens. 1988, 9(5): 857-872.
    [26] I. Sikaneta, C. Gierull,J. Y. Chouinard,“Metrics for SAR-GMTI based on eigen-decomposition of the sample covariance matrix,”Radar conference 2003, America: IEEE Press: 442-447.
    [27] R. Lipps, V. Chen and M. Bottoms,“Advanced SAR GMTI Techniques,”Radar Conference, 2004. Proceedings of the IEEE , IEEE Press:105– 110.
    [28] Zhenfang Li, Zheng Bao, Hai Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection. IEEE Trans. Geosci. Remote Sens., 2006, 44(3):288-297.
    [29] Wei Xu, lan Cumming. A Region-Growing Algorithm for InSAR Phase Unwrapping. IEEE Trans. Geosci. Remote Sens., 1999,37(1):124 -134.
    [30] Lei Yang, Tong Wang, and Zheng Bao. Ground Moving Target Indication Using an InSAR System with a Hybrid Baseline. IEEE Geoscience and Remote Sensing. 2008, 5(3): 373-377.
    [31] Z. Li, Z. Bao, and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on GRS, 2007, 45(3): 584-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700