机载多通道SAR/GMTI算法研究及硬件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地面运动目标检测和成像是合成孔径雷达(SAR)领域中的一个研究热点,无论在军事上还是在民用中都具有非常重要的意义。本文主要研究了机载多通道合成孔径雷达地面动目标指示技术,并在通用数字信号处理系统上实现了实测数据的慢动目标检测处理。本文所做工作包含以下几方面:
     论文第一章回顾了合成孔径雷达地面动目标指示技术(SAR/GMTI)的研究背景及现状,介绍了数字信号处理器(DSP)在雷达信号处理中的应用,并概括了全文的主要内容。
     第二章首先建立运动目标的SAR误差谱模型,然后推导了运动目标经过极坐标格式算法(PFA)处理后的误差谱表达式,在此基础上,通过对运动目标误差谱的讨论,给出了PFA算法完整的动目标响应特征(包括目标几何定位误差、残留距离徙动以及散焦特性)分析。最后通过仿真对理论分析结果进行了验证。
     第三章对基于特征值分解的双通道地面慢动目标检测方法进行了详细描述。仿真及实测数据实验结果表明:利用特征分解得到的第二特征值可以有效地实现SAR图像上的慢动目标的检测。接着通过超分辨方法(Superresolution Method)对已检测到的慢动目标进行定位和测速,并分析了影响定位、测速精度的因素,如目标信噪比、估计杂波协方差矩阵的样本数等。
     第四章首先对和/差波束干涉SAR/GMTI技术进行了详细的理论分析,然后进行了和/差波束干涉SAR/GMTI技术的性能分析。实测数据处理结果表明,和/差波束干涉SAR/GMTI技术可以实现对淹没在强杂波背景中的慢速动目标的检测、测速和定位。
     第五章研究了在通用数字信号处理硬件系统上实现以上SAR/GMTI算法的途径。通过第三和第四章的讨论,对双通道SAR/GMTI以及和/差波束干涉SAR/GMTI处理任务进行并行设计,在通用数字信号处理系统上实现了地面慢动目标检测算法的并行处理,并给出了实测数据的检测结果。
     第六章:对全文工作进行了总结,并指出下一步需要继续研究的问题。
In the recent years, ground moving target detection and imaging has become a hot topic in the field of Synthetic Aperture Radar (SAR), and has been highly valuable for both military and civilian application. This dissertation mainly studies multi-channel SAR/GMTI techniques, and the GMTI processing of the measured data is implemented on general digital signal processing system.The main work of this dissertation is as follows:
     In chapter 1, firstly, we review the research background and current situation of SAR/GMTI technique. Secondly, the applications of DSP technology in radar signal processing is introduced briefly. Finally, the main contents of the dissertation are addressed.
     In chapter 2, the SAR image-error-spectrum model of the moving target is firstly defined.Then, the image-error-spectrum after the PFA processing is derived. On the basis of the image-error-spectr- um, detailed analysis on the SAR signatures of moving target, including the geometric displacement, residual range migration, and the defocusing effect in both range and azimuth dimensions is performed. Finally, the simulation results validate the theoretical analysis.
     In chapter 3, an effective dual-channel SAR/GMTI method based on eigen-decomposition of sample covariance matrix is investigated in detail. Numerical experiments on simulated data and measured data are presented to show that the second eigenvalue after eigen-decomposition of the sample covariance matrix can be applied to detect moving targets effectively. Subsequently, the radial velocity and relocation of the detected target are estimated by superresolution method. At the same time, we analyze the factors that affect the accuracy of the estimated velocity and relocation, including the signal noise ratio and the number of samples in the covariance estimation.
     In chapter 4, firstly, theΣ/Δbeam interferometric SAR/GMTI technique is theoretically analyzed. Then, the performance analysis of theΣ/Δbeam interferometric SAR/GMTI is presented. Finally, the measured data processing confirms that the slow-moving targets masked in clutter can be detected via this technique, while the radial velocity and relocation of the detected target are estimated.
     In chapter 5, it is studied that the implementation of aforementioned SAR/GMTI algorithms on general digital signal processing system. In the light of the detectable algorithm and the hardware recourse of the system, after the parallel division of the processing tasks in chapter 3 and 4, the parallel processing of the ground slow-moving target detection algorithm is realized on general digital signal processing system, and the resulting detection of the measured data is given.
     In chapter 6, the work of this dissertation is concluded and the further research is also pointed out.
引文
[1]张澄波,“综合孔径雷达原理[M]”,北京:科学出版社,1989
    [2]张冰尘,“合成孔径雷达实用化运动目标检测和成像技术的研究[J]”,中科院电子所论文,1999
    [3]保铮,刑孟道,王彤,“雷达成像技术”,电子工业出版社,2005.04
    [4]王意青,张明友,“雷达原理”,电子大学出版社,1997
    [5]杰里L.伊伏斯,爱德华K.里迪编,卓荣邦等译,“现代雷达原理”,电子工业出版社,1991年3月第一版.
    [6] Willinam C. Morchin and Stephen L. Johnston,“Modern Airborne Early Warming Radars”, Microwave Journal, Jan. 1991, pp: 30-47
    [7] John Clarke,“Airborne Early Warning Radar”, Proceedings of the IEEE, Vol.73, No.2, Feb. 1985, pp312-324
    [8] R. Keith Raney,“Synthetic Aperture Imaging Radar and Moving Targets”, IEEE Trans. On AES, 1971,No.3, pp499-505
    [9] Ender J.H.G,“The Airborne Experimental Multi-Channel SAR System AER-II”, Proc. EUSAR' 96 Conf., Konigswinter, Germany, 1996, pp.49-52
    [10] Ender J.H.G,“Space-Time Adaptive Processing for Multi-channel Synthetic Aperture Radar”, IEE Electr. and Comm. Engineering J., pp.29-38, Feb. 1999
    [11] R. P. Perry, R. C. Dipietro and R. L. Fante,“SAR Imaging of Moving Targets”, IEEE Trans. On AES, 1999, vol. 35, no.1, pp: 1888-2000
    [12]郑明洁,“合成孔径雷达动目标检测何成像研究”,博士学位论文,2003.06
    [13]康雪艳,“机载SAR地面动目标检测成像技术研究”,中国科学院电子学研究所博士论文,2004.06
    [14] Barbarossa S., Farina A.,“Space-Time-Frequency Processing of Synthetic Aperture Radar Signals”, IEEE Transactions on Aerospace and Electronic System VOL.30, No.2, April 1994, pp. 341-358
    [15] I.C. Sikaneta, J.-Y. Chouinard,“Eigendecomposition of the multi-channel covariance matrix with applications to SAR-GMTI”, Signal Processing, 2004.06, pp1501-1535
    [16] R. K. Raney,“Synthetic Aperture Imaging Radar and Moving Targets”, IEEE Trans. on Aerosp. Electron. Syst., Vol.7, No.3, 1971,pp499-505
    [17] A. Freeman, A. Curie“,Synthetic Aperture Imaging Radar and Moving Targets”, GEC Journal of Research, 1987,pp106-115
    [18] S. Barbarossa,“Detection and Imaging of Moving Objects with Synthetic Aperture Radar”, part 1: Optimal Detection and Parameter Estimation Theory, IEE Proceedings-F,Vol.139, No.1, 1992, pp79-88
    [19] R. P. Perry, R. C. Dipietro, etal.,“SAR Imaging of Moving Targets”, IEEE Trans. On Aerosp. Electron. Syst., Vol.35, No.1, 1999, pp188-200
    [20]毛新华,“PFA在SAR超高分辨率成像和SAR/GMTI中的应用研究”,博士学位论文,南京航空航天大学,2009.06
    [21] M.J.Minardi, E. G.Zelnio,“Comparison of SAR based GMTI and Standard GMTI in a Dense Target Environment”, Proc.of SPIE, 2006
    [22] I.C. Sikaneta, J.-Y. Chouinard,“Metrics for SAR-GMTI based on Eigen-Decomposition of the Sample Covariance Matrix”, IEEE, Radar 2003,pp442-447
    [23] C.H. Gierull, I.C. Sikaneta,“Estimating the effective number of looks in interferometric SAR data”, IEEE Trans. Geosci. Remote Sensing 40(8) (August 2002) 1733-1742
    [24] C.H. Gierull, I.C. Sikaneta,“Raw data based two-aperture SAR ground moving target indication”, in: Proceedings of IGARSS 2003
    [25] YU Jing, LIAO Guisheng,“An Effective SAR-GMTI Based on Eigen-Decomposition of the Covariance Matrix”, IEEE, 2007.07, pp302-305
    [26] Wulf-Dieter Wirth.“Radar techniques using array antennas”, The Institution of Electrical Engineers, London, United Kingdom, 2001,pp336-343
    [27]李道本,“信号的统计检测与估计理论[M]”,北京:北京邮电大学出版社,1996.01
    [28]王明宇,“复杂环境下雷达CFAR检测与分布式雷达CFAR检测研究[博士论文]”,西安:西北工业大学,2001
    [29]叶少华,“机载SAR原始数据成像处理和干涉SAR/GMTI技术研究[博士论文]”,南京:南京航空航天大学,2002
    [30]沈明威,朱岱寅,朱兆达,叶少华,“基于信号子空间处理的和/差波束干涉SAR/GMTI技术研究”,电子与信息学报,2007.1
    [31] Yadin, E.,“A Performance Evaluation model for a two port interferometer SAR MTI”, IEEE National radar conf.,1996,pp261-266
    [32]杨贤林,“机载双通道SAR地面运动目标检测成像技术研究”,中科院硕士学位论文,2005.06
    [33]丁鹭飞,耿富录,“雷达原理(第三版)”,西安:西安电子科技大学出版社,2002
    [34] Hong-yin shi, Yin-qing Zhou,“Performance Analysis and Improved Method for Airborne Three- Channel SAR/GMTI System”, IEEE computer society,2008,pp336-339
    [35] Yadin, E.,“Evaluation of Noise and Clutter Induced Relocation Errors in SAR MTI”,IEEE International Radar Conference RADAR-95, Alexandria VA, May 1995,pp650-655
    [36]“ADSP-TS101 TigerSHARC Processor Programming Reference”, Analog Devices Inc, Revision 1.1,2005
    [37]“TS-C43 User Manual”, Transtech DSP, C43 M2.4,2004
    [38]“Transtech BSP Manual”, Transtech DSP, TS-4.5r0,2004
    [39]“ACME TigerSHARC软件函数库手册”,中航雷达与电子设备研究所,Vision 1.0,2004
    [40]“Transtech BSP Manual”, Transtech DSP, TS-4.5r0, 2004
    [41] Saul A.Teukolsky, etal.“Numerical Recipes in C”, The Art of Scientific Computing Second Edition, 1992, pp481-482
    [42] Dan C Marinescu, John R Rice.“Speedup in Parallel Computing”. Purdue University, 2000
    [43] E Bruce Pitman,“A MDAHL’S LAW FOR PARALLEL SPEEDUP”. IEEE Trans,1999
    [44]张卫杰,“DSP在雷达信号处理中的应用”,世界电子原器件,2005,8:47~52
    [45]刘书明,苏涛,罗军徽,“TigerSHARC DSP应用系统设计”,北京:电子工业出版社,2004
    [46]苏涛,“并行处理技术在雷达信号处理中的应用研究”,博士学位论文,西安电子科技大学,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700