分布式卫星SAR-GMTI系统性能分析与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式星载合成孔径雷达(SAR)是将卫星编队和星载SAR技术有机结合的新体制航天雷达系统。它通过多颗卫星编队飞行、协同工作,可实现地面运动目标指示(GMTI)功能,为地表大面积监视、侦察和目标跟踪、定位提供了可能。该类系统具有重要的军事和民用价值,是目前国内外研究的热点。
     如何客观有效地分析和评价分布式卫星SAR-GMTI系统性能,是系统设计的关键问题之一。在分布式卫星SAR-GMTI系统设计阶段,需要结合理论分析与系统仿真两种手段来分析和评价系统性能。本文正是围绕这一关键问题,针对分布式卫星SAR-GMTI系统性能分析与仿真实现技术展开研究。
     首先,研究了分布式卫星SAR-GMTI工作原理,针对两种常用处理技术——SAR-ATI和SAR-DPCA方法,梳理了SAR-GMTI系统性能的主要影响因素,给出了它们对系统性能指标的影响分析。
     然后,基于编队卫星轨道模型、三维场景地杂波信号模型及动目标信号模型,研究了分布式卫星SAR-GMTI仿真建模与实现技术,提出了一种分布式卫星SAR-GMTI系统性能评估方法,结合仿真试验验证了评估方法的有效性,与课题组其他人员一起研发了一套分布式卫星SAR-GMTI系统仿真软件,给出了完整的系统仿真流程。
     最后,应用分布式卫星SAR-GMTI系统仿真软件及性能评估方法,在不同情形的系统误差输入条件下开展了多层次的分布式卫星SAR-GMTI系统性能仿真试验,验证了性能评估结果与理论性能分析结果的一致性。
Distributed spaceborne SAR system is a novel spaceborne radar system which combine satellite formation flying technology and spaceborne SAR technology perfectly. By formation flying and cooperation of several satellites, the system can realize Ground Moving Target Indication (GMTI) designation function. GMTI of distributed spaceborne SAR system gives the opportunity for large scale surveillance, spying, target tracking and position. Because of its special value for military and civil application, the distributed spaceborne SAR system is currently one of the research focuses all around the world.
     One of the key problems of the system design is how to analyze and evaluate the distributed satellite SAR-GMTI system performance objectively and effectively. In the period of distributed satellite SAR-GMTI system design, it needs to combine theoretical analysis and system simulation for analyzing and evaluating the system performance. This paper encloses this key problem and launches researches on performance analysis and simulation experiment technology of distributed satellite SAR-GMTI system.
     Firstly, based on distributed satellite SAR-GMTI principle, for two kinds of processing technology: SAR-ATI and SAR-DPCA technology, performance indicators and performance analysis method of the system are given, and then system performance of main influence factors are carded.
     Secondly, based on formation satellite orbit model, three-dimensional scene ground clutter signal model and moving target signal model, satellite SAR-GMTI system simulation modeling and enforcing method are studied. A distributed satellite SAR-GMTI system performance evaluation method is presented, and combined with the simulation experiment, the effectiveness of the evaluation method is verified. In addition, a set of distributed satellite SAR-GMTI system simulation software is introduced, which is developed by our staff-room-team, and a whole process of system simulation is given.
     Finally, by application of distributed satellite SAR-GMTI system simulation software and performance evaluation method, different levels of distributed satellite SAR-GMTI system performance simulation experiments is carried out with composite errors in different conditions in it. The simulation verifies the coherence of the theoretical performance analysis results and the performance evaluation results.
引文
[1]魏钟铨等.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [2]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社, 2003.
    [3] Shen Chiu. SAR along-track interferometry with application to RADARSAT-2 ground moving target indication[C]∥Agia Pelagia, GRECE: Proceedings of SPIE Image and Signal Processing for Remote Sensing, 2003: 246~255.
    [4] Thompson, C. Livingstone. Moving target performance for Radarsta-2[C]∥Proc. IGARSS, Vol.6, Honolulu, HI, 2000: 2599~2601.
    [5] Shen Chiu. Performance of Radarsat-2 SAR-GMTI processors at high SAR Resolutions. Defence Research Establishment Ottawa[R]. Technical Report DREO TR 2000-093, Nov. 2000.
    [6] Cyrus D Jilla. A multiobjective, multidisciplinary design optimization methodology for the conceptual design of distributed satellite systems. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002.
    [7] ohn P, Enright A. Flight software development and simulation framework for advanced space systems. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002.
    [8] Edmund Mun-Choong Kong. Spacecraft formation flight exploiting potential fields. PHD Thesis, Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2002.
    [9] Troy L Hacker. Performance analysis of a space-based GMTI radar system using separated spacecraft interferometry. Masters Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2000
    [10] Krieger G, Wendler M. Comparison of the interferometric performance for spaceborne parasitic SAR configurations. EUSAR, June 2002, Cologne, Germany: 467-470.
    [11] Amoit T, Douchin F. The interferometric cartwheel: A multi-purpose formation of passive radar microsatellites, Proc. of the IEEE IGARSS, 2002: 435-437.
    [12] Ender J H G, Spacebased SAR/MTI using multistatic satellite configurations. EUSAR, June 2002, Cologne, Germany: 337-340.
    [13] Fiedler H, Krieger G, Jochim F, et al. Analysis of bistatic configurations for spaceborne SAR interferometry. EUSAR, June 2002, Cologne, Germany: 29-32.
    [14] Fiedler H, Krieger G, Jochim F, et al. Analysis of satellite configurations for spaceborne SAR Interferometry. International Symposium of Formation Flying: Missions & technologies, Toulouse, October 2002.
    [15] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry. Proc. of the IEEE IGARSS 2004, sept. 2004: 1000-1003.
    [16] Krieger G, Moreira A. Tandem-X: mission concept, product definition and performance prediction. EUSAR 2006, May 2006, Dresden Germany.
    [17] Fiedler H, Krieger G. Then Tandem-X mission design and data acquisition plan. EUSAR 2006, May 2006, Dresden Germany.
    [18] Aguttes J P. The SAR Train concept: required antenna area distributed over N smaller satellites, increase of performance by N. Proc. of the IEEE IGARSS 2003, July 2003: 542-544.
    [19] Jean P A. The SAR Train: along track oriented formation of SAR satellites. International Symposium Formation Flying Missions and Technologies, Toulouse (France), Oct. 2002.
    [20] Beaulne P D, Gierull C H, Livinstone C E, et al. Preliminary design of a SAR-GMTI processing system for Radarsat-2 MODEX data. Proc. of the IEEE IGARSS 2003, July 2003: 1019-1021.
    [21] Vant M, Livingstone C, Rey M, et al. Canadian experience on Radarsat-1 and Radarsat-2 GMTI for surveillance. AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Year. July 2003, Dayton Ohio, AIAA 2003-2820.
    [22] http://www.radarsat2.info.
    [23] Lombardo P, Pastina D, Colone F, et al. Potentialities of a multichannel radar obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures. EUSAR Proc. Ulm, Germany, 2004: 35-38.
    [24] Verdone G R, Viggiano R, Lopinto E, et al. Processing algorithms for COSMO-SkyMed SAR sensor. Proc. of the IEEE IGARSS 2002, June 2002,: 2771-2774.
    [25]郑明洁.合成孔径雷达运动目标检测和成像研究[D].北京:中国科学院电子学研究所,2003.
    [26]王敏,梁甸农,董臻,等.分布式小卫星SAR回波仿真快速算法[J].国防科技大学学报,2007,29(2):61—64.
    [27] Zebker Howard A. Decorrelation in Interferometric Radar Echoes. IEEE Trans. GRS, 1992, 30(5): 950-959.
    [28] Rodriguez E. Theory and design of interferometric synthstic aperture radars. IEE proceedings-F, 1992, 139(2): 147-159.
    [29] Rabideau D, Kogon S. A signal processing architecture for space-based GMTI radar. Proc. of IEEE Radar Conf., Waltham MA, 1999:96-101.
    [30] Liu Congfeng, Liao Guisheng and Zeng Cao. Canonical Framework for ATI andDPCA[C]. Shanghai, China:International Conference on wireless Communications, Networking and Mobile Computing, 2007:714~717.
    [31]杨凤凤.星载雷达GMTI系统与信号处理研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [32]曾斌.分布式卫星SAR慢动目标检测及关键技术研究[D].成都:电子科技大学, 2006.
    [33]行坤.合成孔径雷达动目标检测与定位方法研究[D].西安:西安电子科技大学, 2006.
    [34] Shen Chiu and C. Livingstone. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication[J]. Can. J. Remote Sensing, 2005, 31(1):3~51.
    [35] S. Chiu. A Simulation Study of Multi-Channel RADARSAT-2 GMTI[R]. Canada Ottawa: Defence R&D, 2006.
    [36] S. Chiu, C.H.Gierull. Multi-channel receiver concepts for radarsar-2 ground moving target indication[C]∥Dresden, Germany: Proceedings of EUSAR’06, 2006.
    [37] C. Livingstone, I. Sikaneta, C.H. Gierull, et al, An Airborne Synthetic Aperture Radar (SAR) experiment to support RADARSAT-2 Ground Moving Target Indication (GMTI)[J]. Canadian Journal of Remote Sensing, 2002, 28(6):794~813.
    [38] C. Livingstone and A. Thompson. The Moving Object detection experiment on RADARSAT-2[J]. Canadian Journal of Remote Sensing, 2004, 30(3):355~368.
    [39] Shen Chiu and C. Livingstone. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication[J]. Can. J. Remote Sensing, 2005, 31(1):3~51.
    [40] C. H. Gierull. Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets[J]. IEEE Trans. Geosci. Remote Sensing, 2004,42(4):691~701.
    [41] Cerutti-Maori D J E. SpaceSim: simulation for spaceborne multichannel SAR/ MTI with phased-array antenna. EUSAR, 2002:537-540.
    [42] John Maher, Michael Callahan, Doug Lynch. Effects of clutter modeling in evaluating STAP processing for space-based radars. IEEE International Radar Conference, 2000,5, Alexandra, VA, USA,565-570.
    [43] Gierull C H, Sikaneta I C. Raw data based two-aperture SAR ground moving target indication. Proc. of the IEEE IGARSS 2003, July 2003: 1032-1034.
    [44]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术.中国科学E辑:信息科学,2005, 35(6): 597-609.
    [45]郗晓宁,王威.近地航天器轨道基础.长沙:国防科技大学出版社, 2003,4.
    [46]孙造宇,梁甸农,董臻.星载分布式InSAR系统仿真研究.系统仿真学报. 2006,18 (6): 1538-1541.
    [47]黄立胜,王贞松,郑天垚.基于FFT的快速SAR分布目标回波模拟算法.分布式航天器新概念及其应用技术研讨会,北京香山, 2004,10: 458-468.
    [48]路兴强,梁甸农,王敏,余安喜.分布式小卫星SAR回波仿真的并行化研究.信号处理. 2006, 22(3): 343-347.
    [49] John C Curlander, Robert N McDonough.合成孔径雷达—系统和信号处理.华东电子工程研究所译. 1999,11.
    [50] R. Keith Raney, Gerrit J. Wessels, Spatial Considerations in SAR Speckle Simulation. Geoscience and Remote Sensing, IEEE Transactions on, Sep 1988, Volume: 26, Issue: 5, 666~672.
    [51] F.T.乌拉比等著,黄培康等译,微波遥感,第二卷,北京科学出版社,1987.
    [52] Scheiber R, Moreira A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans GRS, 2000, 38(5): 2179-2191.
    [53]杨清友,王超.干涉雷达复图像配准与干涉条纹的增强.遥感学报. 1999,3(2): 122-127.
    [54]何友,关键,彭应宁.雷达自动检测与恒虚警处理.北京:清华大学出版社, 1999,5.
    [55]王彤,保铮,廖桂生,张振华.星载双基雷达GMTI的相干性研究.分布式小卫星雷达地面运动目标指示(GMTI)会议论文集,西安, 2005,12: 79-88.
    [56] C.H.Gierull. Digital channel balancing of along-track interferometric SAR data[R]. Defence Research Establishment Ottawa:Technical Memorandum TM 2003-024,2003.
    [57]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展, 2008, 18(12):1484~1490.
    [58]王彤,保铮.提高星载SAR-GMTI杂波抑制性能的一种图像均衡方法[C].∥北京:星载SAR/GMTI技术研讨论文集,2007:25~61.
    [59] Soumekh M. Synthetic aperture radar signal processing with MATLAB algorithms[M]. New York: Wiley, 1999: 575~586.
    [60] Soumekh M. Moving target detection and imaging using an X band along-track monopulse SAR[J]. Trans. AES, 2002, 38(1): 315~333.
    [61]路兴强,天基分布式InSAR系统建模与仿真研究,国防科技大学博士学位论文,2006.12.
    [62]蔡斌,分布式星载InSAR与SAR-GMTI信号处理研究,国防科技大学博士学位论文,2009.12.
    [63]梁甸农,蔡斌,王敏,董臻.星载SAR-GMTI研究进展.国防科技大学学报. 2009,31(4):87~92.
    [64] John C Curlander, Robert N McDonough.合成孔径雷达—系统和信号处理.华东电子工程研究所译. 1999,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700