用户名: 密码: 验证码:
电液伺服系统多余力补偿及数字控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服系统具有响应快、精度高、传递功率大的特点,广泛应用于国防工业及国民经济各个领域,电液伺服系统的协同控制是其中一类重要应用。电液伺服对顶协同控制系统的工作原理与飞行器设计的重要地面实验设备——负载模拟器相同,多余力是对顶协同控制系统中的重点及难点问题。本文以电液伺服对顶协同控制系统为研究对象,运用电液伺服数字控制技术,主要针对小力值加载的多余力的补偿问题进行研究。
     本文总结了国内外学者对多余力的补偿方法,对电液力系统的控制策略进行了综述,在此基础上,根据对顶协同控制系统结构及运动特点,分析并提出了多余力等对顶协同控制中的关键问题,确定了本论文主要研究内容和目标。
     根据对顶协同控制系统工作原理和过程,进行了解析建模和系统辨识建模的方法研究,充分考虑到伺服阀阀口非线性、液压缸泄漏和摩擦等非线性因素,建立了对顶协同控制系统的功率键合图模型。并进行了对顶同步位置、力加载系统时域仿真、频域计算和键合图仿真研究。对多余力的产生机理进行深入分析,对其工作特点进行研究,针对多余力及其补偿策略进行了键合图仿真验证。
     结构不变性补偿(SIC)方法根据活塞的运动速度计算补偿流量,进而补偿对顶协同控制系统中的多余力,是研究多余力补偿的理论基础。ISIC控制策略改进了SIC方法,在理论上解决了速度估计中的不确定因素,可有效实现多余力的补偿。基于迭代学习的ISIC控制,是智能化的ISIC控制,实现了ISIC参数的自动优化和整定。实验研究结果表明,模型研究是正确的,基于迭代学习的ISIC控制有效补偿了多余力。
     针对对顶协同控制系统中的位置控制机构,提出辨识零相差跟踪控制方法,在控制策略中依据系统辨识的结果,在闭环系统之外设计动态补偿环节,通过对消闭环系统零极点的方法来改善位置系统的动态性能。
     最后,基于数字控制器的要求,研制了基于工业控制计算机和以太网的主从式网络拓扑结构的控制器,采用WinCE嵌入式操作系统提高系统的可靠性,采用Matlab/RTW和VC++混合编程技术,提高控制策略的开发效率,将前述的各种控制策略予以实现,达到了预期的结果。
Electro-hydraulic servo system is widely used in various areas of national defense industry and national economy,with the fast response,high precision and powerful transmission.Cooperative control of electro-hydraulic servo system is a kind of important application among them.The principle of electro-hydraulic servo opposing cooperation control system is the same as the one of load simulator,which is the important ground experiment equipment for air vehicle design.The emphasis and difficulty of opposing cooperation control system is extraneous force.Electro-hydraulic servo opposing cooperation control system is made to be the research object.Based on digital control and its compensative technique of electro-hydraulic servo system, extraneous force is studied mainly as small force loaded.
     Domestic and foreign compensative methods of extraneous force are summarized. Electro-hydraulic force control scheme is comprehensively discussed.According to structure and motion feature of opposing cooperative control,the key problems of opposing cooperative control such as extraneous force are analyzed and provided firstly, and the main subjects and targets are drafted.
     Analytical and identifiable modeling methods are studied based on working principle and procedure of opposing cooperative control.Considering the nonlinear factors on the servo valve such as leakage of the cylinder and friction,power bond graph model is founded.Time domain,fi'equency domain and bond graph simulations of the position and force system are studied.Generating reasons of extraneous force are analyzed deeply,and characters of extraneous force are studied.Extraneous force and regulations are simulated and verified.
     Structure invariance compensation(SIC) method is the theoretical basis of extraneous force compensation.SIC calculates compensating flow according to speed of piston for extraneous force compensation in opposing cooperative control.Improved structure invariance compensation(ISIC) control scheme solves the uncertain factors in velocity estimation theoretically.ISIC compensates extraneous force effectively. Iterative learning ISIC is an intelligent ISIC control,which realizes the parameters optimization and tuning automatically for ISIC controller.Experiment results show modeling studies are correct,and Iterative learning ISIC compensates extraneous force effectively.
     Identifiable ZPETC algorithm is provided for position system of opposing cooperative control system.According to the results of system identification,dynamic compensation is designed in front of close loop.Identifiable ZPETC improves the dynamic performance of position system by zeros and poles cancellation.
     According to the request of digital controller,the controller based on principal-subordinate network topology structure including industry control computer and Ethernet is studied.The embedded operation system WinCE is adopted in the controller to improve the reliability of this control system.Matlab/RTW and VC++ mix-programmed technique is used to increase developing efficiency of control scheme. The control program implements the before-mentioned control schemes and achieves expectant results.
引文
[1]刘长年.液压伺服系统优化设计理论.冶金工业出版社.1989
    [2]骆涵秀.试验机的电液控制系统.机械工业出版社.1991.
    [3]Lyshevski,S.E.,"Eiectromechanical flight actuators for advanced flight vehicles," Aerospace and Electronic Systems,IEEE Transactions on,vol.35,no.2,pp.511-518,Apr 1999
    [4]苏永清,黄献龙,赵克定.国内电液负载仿真台研究与发展现状.机床与液压.1999,(2):17-19
    [5]华清.电液负载模拟器关键技术的研究.北京航空航天大学博士论文,2001.
    [6]李洪人.液压控制系统.北京:国防工业出版社.1990.
    [7]于慈远.电液负载仿真转台控制镱略的研究.哈尔滨工业大学博士论文.1998
    [8]Liu QH.Study of Dynamic Compensation for the Surplus Torque of Electrohydraulic Load Simulator.Proceedings of the 3rd International Symposiumon Fluid Power Transmission and Control.1999:254-258
    [9]苏东海,刘峰等.被动式加载系统多余力矩的本质特征分析.沈阳工业大学学报,2001,23(6):449-451
    [10]焦宗夏,华清.电液负载模拟器的复合控制.机械工程学报.2002,38(12):34-38
    [11]王明彦.电动负载模拟技术的研究.哈尔滨工业大学博士论文.2004
    [12]周欣.电液伺服系统同步控制策略研究.北京交通大学硕士论文.2006
    [13]Liu,Xiaodong;Li,Changchun;Zhou,Xin;Meng,Yadong,"Synchronization Control Study for Two Cylinders Electro-hydraulic Grasping System," Mechatronics and Automation,2007.ICMA 2007.International Conference on,vol.,no.,pp.1650-1654,5-8 Aug.2007
    [14]Wang,Jingfu;Liang,Lihua;Zhang,Songtao;Ye,Zhengmao;Li,Hongren,"Application of H∞Control Based on Mixed Sensitivity in the Electro-hydraulic Load Simulator," Mechatronics and Automation,2007.ICMA 2007.International Conference on,vol.,no.,pp.2991-2996,5-8Aug.2007
    [15]崔浏.电液负载模拟器的鲁棒控制策略研究.哈尔滨工业大学硕士论文.2006
    [16]梁利华.减摇鳍电液负载仿真台性能研究.哈尔滨工程大学博士论文.2003
    [17]Mohieddine Jelali,and Kroll,Andreas,Hydraulic Servo-Systems:Modelling,Identification and Control.-(Advances in Industrial Control).2003,London:Springer-Verlag.
    [18]王晓东,华清,焦宗夏,王少萍.负载模拟器中的摩擦力及其补偿控制.中国机械工程.2003,(6):511-154
    [19]Huang,Y.J.;Yuan-Jay Wang,"Limit cycle analysis of electro-hydraulic control systems with friction and transport delay," Intelligent Control and Automation,2000.Proceedings of the 3rd World Congress on,vol.5,no.,pp.3306-3311 vol.5,2000
    [20]Ayalew,B.;Jablokow,K.W.,"Partial feedback linearising force-tracking control:implementation and testing in electrohydraulic actuation," Control Theory & Applications,IET,vol.1,no.3,pp.689-698,May 2007
    [21]Tafazoli,S.;de Silva,C.W.;Lawrence,P.D.,"Position and force control of an electrohydraulic manipulator in the presence of friction," Systems,Man and Cybernetics,1995.Intelligent Systems for the 21st Century.,IEEE International Conference on,vol.2,no.,pp.1687-1692 vol.2,22-25 Oct 1995
    [22]Hong Sun;Chiu,G.T.-C.,"Motion synchronization for multi-cylinder electro-hydraulic system"Advanced Intelligent Mechatronics,2001.Proceedings.2001 IEEE/ASME International Conference on,vol.1,no.,pp.636-641 vol.1,2001
    [23]陈斌,付永领.串联双非对称液压缸同步控制方案分析.液压与气动.1997(2):3-4
    [24]Hogan,P.and Burrows,C.R.,1994,"Synchronizing Unevenly-Loaded Hydraulic Cylinders,"Proceedings of the ASME Fluid Power and Systems Technology Division,Vol.1,pp.75-80.
    [25]Kopf,C.D.;Yabuta,T.,"Experimental comparison of master/slave and hybrid two arm position/force control," Robotics and Automation,1988.Proceedings.,1988 IEEE International Conference on,vol.,no.,pp.1633-1637 vol.3,24-29 Apr 1988
    [26]鲜麟波,杨钢,傅晓云,李宝仁.基于AMEsim和Simulink的电液位置/力混合控制仿真研究.机床与液压.2007,5(35):205-207
    [27]高俊霞,华清,焦宗夏.电液加载系统中的多余力及各种补偿方法的比较.液压气动与密封.2003,(5):1-15
    [28]熊德锋.使用大正开口流量型伺服阀的加载系统.机床与液压.1983,(6):11-15
    [29]王经甫,李洪人,张大鹏.P-Q伺服阀抑制电液负载模拟器多余力的研究.2006,(11):104-106
    [30]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究.机械工程学报.2005,(4):229-233
    [31]Lixun Zhang ets.The Load Simulator Using Blow Servo Valve with Interconnected Pores.Proceedings of Third China-Russia-Ukraine Symposiumon Astronautical Science and Technology,Xi'an.1994,(9):652-655
    [32]裴忠才,于慈远.连通孔在电液负载模拟器中的应用.机床与液压.1997,(3):17-18
    [33]西北工业大学五零八教研室.被动式加载四路的蓄压器校正方法,科技资料.总字号第676期,1987,(9):17-22
    [34]杨斌.对转矩模拟系统静、动态特性改善的研究.机床与液压.1987,(5):14-19
    [35]郝经佳,赵克定.双阀控制在电液负载仿真台中的应用.中国机械工程.2002,(10):13-16
    [36]刘卓夫,李福义,彭侠夫.双阀反馈补偿控制在减摇鳍加载系统中的研究.机床与液压.2002,(4):15-17,64
    [37]陈恒权.用同步反向法克服多余力.机床与液压.1985,(3):13-17
    [38]苏东海.电液负载仿真转台多余力矩的理论分析及其克服方法的探讨.机床与液压.1998,(1):14-15
    [39]刘庆和.新型电液负载仿真台的研制.机床与液压.1997,(5):3-4
    [40]徐本洲.被动式电液力控制系统的干扰抵制与渐进跟踪研究.哈尔滨工业大学博士论文.1992
    [41]梁利华,刘强,赵琳琳.减摇鳍电液负载仿真台前馈补偿解耦控制研究.中国机械工程.2007,(4):439-411
    [42]Matsui Takashi.Effect of positive angular velocity feedback on torque control of hydraulic actuator.JSME.Int.J.ser.C372,1992(6):406-412
    [43]赵玉琢,周连山,叶文柄,徐本洲.被动式电液力控制系统的辅助同步及补偿控制.自动化技术与应用.1985,4(2):25-31
    [44]喻统武.舵面力矩负载模拟器的研究与设计.中国航空学会液压气动学术讨论会论文集.1992:135-140
    [45]刘长年.负载模拟器的优化设计.流体控制工程与机器人第八届学术会议论文集,洛阳.1996:78-81
    [46]刘长年.函数负载模拟器的设计与实验.机床与液压.1982,(4):11-32
    [47]冯纯伯,田玉平,忻欣.鲁棒控制系统设计.东南大学出版社.1995:151-180
    [48]Doyle,J.C.,B.A.Francis,& A.R.Tannenbaum,Feedback Control Theory.New York,Macmillan Publishing Company.1992.
    [49]Ge-Qiang Li;Jian Cao;Biao Zhang;Ke-Ding Zhao,"Design of Robust Controller in Electrohydraulic Load Simulator," Machine Learning and Cybernetics,2006 International Conference on,vol.,no.,pp.779-784,Aug.2006
    [50]Yoonsu Nam,"QFT force loop design for the aerodynamic load simulator," Aerospace and Electronic Systems,IEEE Transactions on,vol.37,no.4,pp.1384-1392,Oct 2001
    [51]Niksefat,N.;Sepehri,N.,"Designing robust force control of hydraulic actuators despite system and environmental uncertainties," Control Systems Magazine,IEEE,vol.21,no.2,pp.66-77,Apr 2001
    [52]胡智奇,王印松.H∞控制方法及研究现状.电力情报.2000(3):5-7
    [53]孙以泽,赵慧,韩俊伟.舵机加载系统H∞控制的研究.船舶工程.2001,13(2):40-43,51
    [54]Laval,L.;M'Sirdi,N.K.;Cadiou,J.-C.,"H∞-force control of a hydraulic servo-actuator with environmental uncertainties," Robotics and Automation,1996.Proceedings.,1996 IEEE International Conference on,vol.2,no.,pp.1566-1571 vol.2,22-28 Apr 1996
    [55]王经甫,叶正茂,张辉,李洪人,崔浏.基于LMI的H∞控制在电液负载模拟器中的应用.机床与液压.2007,(5):169-171,204
    [56]袁锐波,赵克定,李阁强,罗璟.基于混合灵敏度方法的负载模拟器的控制.南京理工大学学报:自然科学版.2006,30(5):537-541
    [57]Clarke,D.W.,"Adaptive control of a materials-testing machine," Adaptive Control(Digest No:1996/139),IEE Colloquium on,vol.,no.,pp.4/1-4/4,13 Jun 1996
    [58]Wen-Hong Zhu;Dupuis,E.;Piedboeuf,J.-C.,"Adaptive output force tracking control of hydraulic cylinders," American Control Conference,2004.Proceedings of the 2004,vol.6,no.,pp.5066-5071,30 June-2 July 2004
    [59]关静丽,王占林.位置扰动型电液伺服施力系统的自适应控制.北京机械工业学院学报.2001(1):31-35
    [60]冯勇建.自适应控制用于消除被动加载系统中多余力.机床与液压.2002(4):53-55
    [61]Zhang Wei;Mu Xu;Yuan Zhao-hui;Li Kun,"Adaptive backstepping design for electro-hydraulic loading simulator," Control Conference,2006.CCC 2006.Chinese,vol.,no.,pp.251-254,7-11 Aug.2006
    [62]苏永清,赵克定.模糊自适应在负载仿真台同步补偿中应用研究.机械工程学报.2001,37(7):15-17,36.
    [63]焦宗夏,华清.电液负载模拟器的RBF神经网络控制.机械工程学报.2003,39(1):10-14
    [64]E.Richard,J.-C.Vivalda."Mathematical analysis of stability and drift behavior of hydraulic cylinders driven by a servovalve",Journal of Dynamical Systems,Measure and Control (ASME),1,124,2002,p.206-213
    [65]华清,焦宗夏.负载模拟器的DRNN神经网络控制.机械工程学报.2003,39(1):15-19
    [66]Li Yunhua,"Development of Hybrid Control of Electro-hydraulic Torque Load Simulator," Journal of Dynamical Systems,Measure and Control(ASME),2002,124(3):415-419
    [67]王新民,张举中,刘卫国.伺服加载的一种新反馈控制方法.计算机仿真.2007(6):330-333
    [68]王新民,刘卫国.被动加载的内部反馈控制方法.中国机械工程.2006,17(23):2447-2450
    [69]王新民,刘卫国.电液伺服加载的神经网络内部反馈控制.航空学报.2007,28(3):690-694
    [70]叶正茂,李洪人,王经甫.基于CMAC的电液负载模拟器自学习控制.控制与决策.2003,18(3):343-347
    [71]Stribeck R.Die wesentlisehen Eigenschaften der Gleit-und Rollenlager.Zeitschrift des Vereines deutscher Ingenieure 1902;46(37):1341-1348
    [72]Sohl,G.A.;Bobrow,J.E.,"Experiments and simulations on the nonlinear control of a hydraulic servosystem," Control Systems Technology,IEEE Transactions on,vol.7,no.2,pp.238-247,Mar 1999
    [73]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究.机床与液压,2000(5):63-64
    [74]李洪人,王栋梁.非对称缸电液伺服系统的静态特性分析.机械工程学报.2003,39(2):8-22
    [75]周士昌,周恩涛.阀控非对称油缸正反向速度比的分析.机床与液压.2002(1):90-91
    [76]田富俊,周恩涛,周士昌.非对称油缸施力系统状态变量模型的建立.机床与液压.2001(2):65-68
    [77]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化.机械工程学报.2006,42(5):203-207
    [78]肖志权,邢继峰,朱石坚.长行程阀控非对称缸建模分析.流体传动与控制.2007(1):19-22
    [79]汪首坤,王军政,张宇河.基于小脑模型神经网络的对称阀控非对称缸复合控制方法.北京理工大学学报.2005,25(1):49-53
    [80]郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制.液压与气动.2004(10):38-40
    [81]吴振顺,郑慧奇,于华艳.基于误差多项式的模型参考自适应控制在阀控非对称缸系统中的应用.机械工程学报.2006,42(8):56-59,64
    [82]Lee K-I,Dynamisches Verhalten der Steuerkette Servoventil-Motor-Last.Dissertation,Institut f(u|¨)r hydranlische,und pneumatische Antriebe und Steuerungen,RWTH.Aachen,1977.
    [83]Merritt,HE.Hydraulic Control Systems,John Wiley & Sons,New York 1967.
    [84]蔡永强.数字式操纵负荷系统的研究.北京航空航天大学博士论文,1998
    [85]Reuter,H.,"State space identification of bilinear canonical forms," Control,1994.Control '94.Volume 1.,International Conference on,vol.,no.,pp.833-838 vol.1,21-24 Mar 1994
    [86]Sun,Z.and Tsao,T.-C.,"Adaptive Control with Asymptotic Tracking Performance and Its Application to an Electrohydraulic Servo System",ASME Transactions on Journal of Dynamic Systems,Measurement and Control,Vol.122,pp.188-195,2000.
    [87]Byung-Young Moon,"Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system," Proc.SPIE Int.Soc.Opt.Eng.6042,60422G(2005)
    [88]Nowak,R.D.;Van Veen,B.D.,"Nonlinear system identification with pseudorandom multilevel excitation sequences," Acoustics,Speech,and Signal Processing,1993.ICASSP-93.,1993IEEE International Conference on,vol.4,no.,pp.456-459 vol.4,27-30 Apr 1993
    [89]Haber,R.Nonlinear System Identification-Input-Output Modeling Approach,vols 1-2.Kluwer
    [90]Astrom K J,Wittenmark B.Computer-Controlled System—Theory and Design(Third Edition).清华大学出版社,2002.
    [91]李长春.数字式电液伺服系统的控制算法研究及电子控制器的研制.哈尔滨工业大学博士论文.1998
    [92]杨斌.电液伺服低速大扭矩模拟系统设计与研究.液压与气动.1986,(2):23-26
    [93]秦洪艳,张红,侯之超.圆柱形橡胶垫刚度经验公式的研究.潍坊学院学报.2006,2(6):6-9
    [94]周祚万.低刚度铁路轨枕胶垫的研制.橡胶工业.2005,3(52):189-190
    [95]肖春林,胡德,李毓贵.不变性原理及复合控制系统.国防工业出版社.1965
    [96]高峰,茅及愚,李维嘉.基于结构不变性原理的有效提升液压伺服系统动特性的新方法.液压与气动.2004,(07):59-61
    [97]王述运.结构不变性原理在减摇鳍加载台中的研究分析.哈尔滨工程大学硕士论文,2005.
    [98]刘伯春.不变性原理在复合控制系统中的应用.电气自动化.1983(1):19-21
    [99]王益群,王燕山.电液力控制研究的进展.液压与气动.2002,7:1-4
    [100]Andrew Alleyne,Rui Liu.A simplified approach to force control for electro-hydraulic systems.Control Engineering Practice,2000,8(12):1347-1356.
    [101]赵慧,韩俊伟,聂伯勋,曾祥荣.基于LMI的H∞控制在电液力控制系统中的应用.哈尔滨工业大学学报.2000,6(32):22-25
    [102]李长春,刘晓东,宝暄,张金英.冻土冻胀试验液压动态力控制系统的研究.系统仿真学报.2007,10(19):2144-2147
    [103]Tafazoli,S.;de Silva,C.W.;Lawrence,I.D.,"Tracking control of an electrohydraulic manipulator in the presence of friction," Control Systems Technology,IEEE Transactions on,vol.6,no.3,pp.401-411,May 1998
    [104]吴大正.信号与线性系统分析.高等教育出版社.1998.
    [105]王燕山,刘恩朋,刘金甫,王益群.基于小脑模型关节控制器的电液伺服舵机加载系统多余力矩补偿器研究.测控技术.2005,9(24):19-21,32
    [106]蔡自兴.智能控制(第二版).电子工业出版社.2004
    [107]孙明轩,黄宝健.迭代学习控制.国防科技图书出版.1999
    [108]胡玉娥,翟春艳.迭代学习控制现状与展望.自动化仪表.2005,6(26):1-4
    [109]H.J.L.M.Consten.Design of an iterative learning controller.Trainee report,Eindhoven University of Technology,July 2003.
    [110]Merry,R.;van de Molengraft,R.;Steinbuch,M.,"Removing non-repetitive disturbances in iterative learning control by wavelet filtering," American Control Conference,2006,vol.,no.,pp.6 pp.-,14-16 June 2006
    [111]顾凯.电液伺服系统摩擦力分析及补偿研究.北京交通大学硕士论文.2008
    [112]K.Jo(?)str(o|¨)m,P.Hagander,and J.Sternby,"Zeros of Sampled Systems" Automatica,1984Vol.20,No.1,pp.31-38.
    [113]M.Tomizuka,"Zero phase error tracking algorithm for digital control," ASME,J.Dynam.Syst.,Measur.,and Contr.,vol.109,pp.65-68,March 1987.
    [114]R.C.Ko,S.K.Halgamuge,and M.C.Good."An Improved Feedforward Extenstion and Disturbance Observer Design in High-Speed and High-Precision Tracking Control".In Proceeding of the Fourth Interational Conference on Motion and Vibration Control,pages 745-750,v.2,Zurich,Switzerland,August 1998.
    [115]刘晓东,孙守光,李长春.离散化非最小相位系统的简化零相位控制[A].可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C],2005
    [116]T.C.Tsao and M.Tomizuka,"Adaptive Zero Phase Error Tracking Algorithm for Digital Control",Journal of Dynamic Systems,Measurement,and Control-Transactions of the ASME,Vol.109,1987,pp.349-354.
    [117]Lee C.and Mavroidis C.,"PC Based Control of Robotic and Mechatronic Systems under MS-Windows NT Workstation" IEEE/ASME Transactions on Mechatronics,Vol.6,No.3,pp.311-321,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700