用户名: 密码: 验证码:
特种地面移动机器人机械系统设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代战争形式的发展,地面移动机器人越来越多的进入各国军队编制。随着移动机器人技术的发展和完善,移动机器人已经从试验室、工厂等结构性环境走向战场、矿区、废墟等复杂地面环境,对移动机器人任务需求也从以往的侦查、排障等发展为防爆、观瞄、火力打击等更为复杂的任务。这要求研制更为广泛多样的任务负载,提高移动机器人的地面通过能力、负载能力、抗冲击能力、越障稳定性以及系统可靠性,这些方向也是国内外近年研究的热点。
     本文结合具体项目“某地面武装移动机器人研发”,针对上述使用需求,研发了某型小型地面移动机器人样机,针对该样机在移动机器人设计关键技术、移动底盘履带-地面动力学机理、上层搭载平台分析,多种特殊工作状况下机器人动力学建模等方面展开了研究,并进行了试验研究。
     论文首先针对移动机器人的任务需求,采用模块化思想研制了地面移动机器人。介绍了系统构成,分别设计了移动底盘以及两自由度平台、武器定装机械手、重抓取能力机械臂三种上层搭载。移动机器人要求能兼顾在城市道路高速移动及通过废墟或楼梯等非结构路面,对传动系统提出了兼顾高速和大输出力矩两方面要求。结合地面移动机器人的工作状态,分析不同工况下机器人对动力性能的需求,进行了动力匹配计算,在此基础上设计完成了适合地面移动机器人的可变档传动机构研究。解决了高速和大输出力矩的矛盾。
     移动机器人底盘是其运动的基础,履带与地面的相互作用又是底盘驱动的根本,研究履带地面相互作用,建立底盘动力学模型是后续研究的前提。本文基于地面力学理论建立了底盘地面动力学模型,该模型分为土壤特征模型、履-土接触模型、底盘驱动动力学模型三部分,其中履-土接触模型最为复杂。普通的转向阻力均匀分布计算模型基于库伦摩擦理论,本文将这种计算方法优化为转向阻力线性分布计算模型并进一步引入应力-应变理论发展为转型阻力非线性连续分布计算方法。提出了基于应力-应变理论的履-土横向应力非线性分布的阻力矩计算方法,满足了建立地面武装移动机器人动力学模型的要求。更真实的反映出履带式小型地面移动机器人的转向阻力。为移动机器人行走系统设计、分析优化奠定了基础。
     上层搭载是移动机器人完成任务的执行元件,对它的动力学研究是移动机器人动力学研究不可缺少的部分。实际应用过程中,底盘与上层搭载是不可分割的,二者不仅在结构上有相互关系,还在动力学上相互耦合。搭载上层负载对机器人整体的重心、通过性能带来很大变化;上层搭载的运动状态包括加速度等会对底盘与地面相互关系产生影响。针对两自由度平台、武器定装机械手、重抓取能力机械臂三种上层搭载使用牛顿-欧拉方法建立了运动学、动力学模型。
     接下来以配装两自由度平台的移动机器人与地面相互作用、机械臂-底盘系统与地面相互作用、爬越楼梯、冲击扰动四个典型工作状态为例,在上文建立的动力学基础上,对机器人整体动力学问题进行研究。提出了考虑机械臂动态作用的特种移动机器人系统动力学模型,为进一步优化机器人结构、完善控制算法提供了理论依据。爬越楼梯是移动机器人越障的极端工作状态,分析建立了越障过程的详细运动学、动力学建模,分析了重心对越障过程的影响。强烈外部扰动是移动机器人恶劣的工作状况之一,对机器人动态性能的影响非常大,研究起始扰动并指导控制程序,达到了所要求的密集度目的。
     最后在所研制的地面移动机器人样机上进行了空载、路面行驶、越障、发射试验,验证了论文所设计机器人的实用性,以及部分理论研究的正确性。
With the gradual improvement in the modern form of warfare, Ground mobile robot is more and more into the national military establishment. With the gradual improvement in the robot technology, application field of the mobile robot become from the indoor structured environment to the outdoor unstructured environment like battlefield, mining area, the ruins etc. The mobile robot task demand from the previous investigation, troubleshooting, development of explosion-proof, sight, firepower more complex tasks such as. The requirements of the development of a more widely varied tasks,some special design and analysis method should be used to improve trafficability, load capacity, impact resistance, stability and reliability of the system obstacle. So in this paper, Research and development of a small Ground-mobile Robotic prototype, In view of the prototype in mobile robot design key technology, mobile vehicle tracks-ground Terramechanics, the upper mounting platform analysis, a variety of special work condition of robot dynamics modeling and other aspects of the research, and experimental research was done.
     The mobile robot system is designed by the module partition method which the robot task demand. And then Design a mobile chassis and three upper mounting, Include two degree of freedom platform, weapon equipment mechanical hand, heavy ability of grasping mechanical arm. The mobile robot can both in City Road high-speed mobile and through ruins or stairs unstructured road, on the transmission system is presented both high speed and large output torque of two requirements. Combination of ground mobile robot working condition, analysis under different conditions of robot on dynamic performance requirements, the power matching calculation. On the basis of the design was completed for ground mobile robot with variable gear transmission mechanism research. Solved the contradiction between high speed and large output torque.
     Mobile robot chassis is the the base of movement, the track-ground interaction is the basic of vehicle drive. Research of tracked ground interaction, establish chassis dynamics model is the premise of follow-up study. In this paper, based on the theory of theory to build chassis ground dynamics model,Including Soil characteristics and soil model, track-soil contact model, the vehicle driving dynamics model.Which track-soil contact model is most complex. Then the steering resistance torque modeling while lateral resistance and the pressure are linearly distributed is proposed. After that steering resistance moment modeling based on the stress-strain theory is used to describe the robot's steering resistance above different soil. Among them, the lateral resistance is nonlinear distribution. The driving experiments in three different vehicle terramechanics models are simulated and analyzed. Steering resistance moment modeling based on the stress-strain theory is closer to the actual working state of the robot. This modeling method for steering resistance moment has advantage on optimization and study in and control algorithm.
     The upper mounting is a mobile robot to complete the task of executing element, its dynamics study of mobile robot is an indispensable part of kinetic research. In the course of practical application, the vehicle and upper mounting is indivisible,not only in structure relation, but also dynamics are coupled to each other. Carrying the load bring great changes on the center of gravity and through performance of the whole robot. The upper mounting movement including acceleration impact on the vehicle-ground mutually. According to the three layer with use of Newton Euler method to establish the kinematics, dynamics model.
     Then in four typical work condition is exemple:For two degree of freedom platform of mobile robot with ground interaction, Mechanical arm-the chassis system and ground interaction,Climb the stairs,Emission.In the above set up based on the kinetics of the whole robot. Considering the mechanical arm dynamic role of tracked robot system dynamics model, in order to further optimize the robot structure, improve the control algorithm provides theoretical basis. Climbing stairs is a mobile robot obstacle of extreme working condition,Analysis of the obstacle negotiation kinematics, dynamics modeling process in detail, Analysis of the effect of gravity on negotiation. Emission is one of the bad working condition for mobile robot,the dynamic properties is very large,
     Study the initial disturbance on emission, And guide the control program, to achieve the required intensity of purpose.
     Finally,several experiments are designed for the ground mobile robot prototype:the no-load test, road test, obstacle test, emission test. These test results validate the analysis results and verified practicability of the design.
引文
[1]卢秋红,蒋金鹏,付西光.基于开放式架构的反恐排爆机器人关键技术分析.上海电机学院学报.2009,12(3):247-251
    [2]范路桥,姚锡凡,祁亨年,杨武,蒋梁中.排爆机器人的研究现状及其关键技术.机床与液压.2008,36(6):139-143
    [3]王鹏飞,孙立宁,黄博.地面移动机器人系统的研究现状与关键技术.机械设计.2006(7):1-4
    [4]仲崇慧,贾喜花.国外地面无人作战平台.军用机器人发展概况综述.机器人技术与应用,2005(4):18-24
    [5]王雄高.军用机器人的需求与技术挑战--北约无人地面车辆最新研究.国外坦克.2007(3):17-22
    [6]陈晓东.国外反恐机器人技术特点分析.机器人技术与应用.2005(6):15-18
    [7]石新国.洛克希德·马丁公司采用视觉导引机器人进行武器系统装配.机器人技术应用2006(5):21-23
    [8]陈淑艳,陈文家.履带式移动机器人研究综述.机电工程.2007(12):109-112
    [9]范路桥,姚锡凡,祁亨年,杨武,蒋梁中.排爆机器人的研究现状及其关键技术.机床与液压.2008(6):139-143
    [10]徐贺,谭大伟,张振宇.崎岖地面上移动机器人构型发展综述.中国科技论文在线.
    [11]李科杰.危险作业机器人发展战略研究.机器人技术与应用.2003(5):14-22
    [12]李玉光,胡萍,梁建宏.微型排爆排险机器人的机械结构设计.机械设 计2009(6):32-35
    [13]王越超.我国危险作业机器人研究开发取得新进展.机器人技术与应用.2005(6):11-15
    [14]魏丕勇,闫清东,马越.无人地面武器机动平台驱动系统设计与仿真研究.工程设计学报.2005(3):152-158
    [15]陈殿生,杨喜,李强.小型地面侦察机器人移动载体技术研究.机器人技术应用.2006(6):42-46
    [16]闫清东,魏丕勇,马越.小型无人地面武器机动平台发展现状和趋势.机器人.2004,26(4):373-379
    [17]Battelle. Law Enforcement Robot Technology Assessment.
    [18]Christopher M. Gifford. Review of Selected Mobile Robot and Robotic Manipulator Technologies.
    [19]韩宝坤,李晓雷,孙逢春.履带车辆动力学仿真技术的发展与展望.兵工学报.2003(2):246-249
    [20]骆敏舟.杨秀清.梅涛.机器人手爪的研究现状与进展.机器人技术与应用.2008(2):24-35
    [21]高汉兵,常天庆,刘家健,项王.机器人技术在装甲车辆上的应用.火炮发射与控制学报(增刊).2006,90-93
    [22]隆文革,王艾伦.一种多姿态便携式履带机器人的机械传动设计.机械传动.2007(3):52-55
    [23]J.H. Lever, S.A. Shoop, R.I. Bernhard. Design of lightweight robots for over-snow mobility. Journal of Terramechanics.2009(46):67-74
    [24]贾广利,魏娟,马宏伟.一种六履带侦查机器人的运动分析及结构设计.机床与液压.2008(11):8-11
    [25]安红梅,蓝金辉,张朝晖,王志良.移动机器人的无极调速系统研究.仪器仪表学报(增刊).2005(8):657-659
    [26]赵自强,张春林,程爱明.平动齿轮传动啮合效率的理论研究.机械传动.2009(3):11-15
    [27]段钦华.三自由度行星齿轮变速器的组合设计法.成都大学学报(自然科学版).2007(1):65-67
    [28]饶振纲.行星齿轮变速箱的设计研究.传动技术.1999(3):26-37
    [29]苏子昊,孔庆忠.关节型机器人二指平动手爪的设计.机械工程与自动化.2008(5):80-82
    [30]张文增,孙振国,陈强,徐磊.机器人手可变抓取力机构研究.机械设计与研究.2004,20(2):29-32
    [31]申如意.基于ADAMS的机械手抓取机构的仿真分析及优化.机械.2009(9):46-49
    [32]殷铭,黄华栋.基于Pro/E机械手爪设计与运动分析.机械工程师2009(4):59-60
    [33]吴神丽,李宏穆,刘念聪.一种工业机器人手部的设计.石河子大学学报(自然科学版).2007,25(6):8-11
    [34]孟兆明.一种新型机械手尺寸的最优化设计.青岛化工学院报.2000,21(3):245-248
    [35]陈良,张征,李曼.运用Matlab的排爆机器人手爪优化设计.现代制造工程.2005(12):57-59
    [36]李桂莉,武洪恩,刘志海.搬运机械手的运动学分析.煤矿机械.2007,28(2):61-64
    [37]刘刚.二杆机械臂的动力学建模与仿真.沈阳工程学院学报(自然科学版).2008,4(2):178-181
    [38]李金恒,肖慧,胡志华.基于ADAMS的机械手臂运动仿真分析.机床与液压.2009,37(8):206-209
    [39]邹培海,李力,陈若莹.基于ADAMS水下采矿机械手的设计与仿真.机电产品开发与创新.2008,21(3):114-152
    [40]谭志飞,黄辉先.基于P ro/E和AD AM S的机械手运动学仿真.机械工程师2007(4):129-130
    [41]张硕生,余达太.轮式移动机械手的优化构形.北京科技大学学报.2000,22(6):565-568
    [42]姜洋,唐晓初.摄像机械手结构设计及运动学方程求解.辽宁石油化工大学学报.2008,28(4):51-54
    [43]朱建新,杨成云.一种新型水下作业机械手的研究.机械工程师.2004(2):55-57
    [44]H. Karag ullea, L. Malgacaa. Analysis of end point vibrations of a two-link manipulator by integrated CAD/CAE procedures. Finite Elements in Analysis and Design.2004 (40): 2049-2061
    [45]E.J. Van Hentena, D.A. Van't Slot, C.W.J. Hold, L.G. Van Willigenburge. Optimal manipulator design for a cucumber harvesting robot. computers and electronics in agriculture. 2009(65):247-257
    [46]B.K. Rout, R.K. Mittal. Optimal manipulator parameter tolerance selection using evolutionary optimization technique. Engineering Applications of Artificial Intelligence. 2008(21):509-524
    [47]B.K. Rout, R.K. Mittal. Parametric design optimization of 2-DOF R-R planar manipulator—A design of experiment approach. Robotics and Computer-Integrated Manufacturing.2008 (24):239-248)
    [48]Thambirajah Ravichandran, David Wang, Glenn Heppler. Simultaneous plant-controller design optimization of a two-link planar manipulator. Mechatronics.2006 (16):233-242
    [49]J.Y. Kim. Task based kinematic design of a two DOF manipulator with a parallelogram five-bar link mechanism. Mechatronics.2006(16):323-329
    [50]Waseem A. Khan, Jorge Angeles. The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems. Journal of Mechanical Design-Transactions of the ASME.2006(128):168-178
    [51]李世其,刘洋,朱文革,刘燕,贾阳.多关节轻型机械臂的设计研究.航天器工程.2009(18):348-52
    [52]高微,杨中平,赵荣飞,薛娟萍.机械手臂结构优化设计.机械设计与制造.2006(1):13-15
    [53]安江波,于富强,王龙.三自由度水下机械手研制.现代机械.2008(6):32-35
    [54]孔繁群,朱方园,周骥平.一种机械手关节联接结构的改进设计.机械制造与自动化.2005,34(5):16-17
    [55]张克健,车辆地面力学,国防工业出版社,2002.1第1版
    [56]左艳蕊,宗志坚,程源,樊世超.车辆地面力学土壤动力学建模和应用.兰州大学学报(自然科学版).2009(5):110-114
    [57]任茂文,张晓阳,王戬.车辆地面力学研究现状与展望.机械制造与研究.2007(4):1-2,6
    [58]Han Bao-kun, Li Xiao-lei, Wang Chang-tian. Track Model and Analysis of High-speed Tracked Vehicles. Journal Of System Simulation.2003,15(12):1774-1777
    [59]王月梅,周义清,常列珍.履带车辆的一种动力学建模.华北工学院学报.2005,26(3):164-166
    [60]骆清国,张永锋,袁伟.履带车辆动力传动系统性能综合评价.兵工学报.2005,26(3):413-417
    [61]柳朝阳,陈策.履带车辆动力性计算的数学模型.军械工程学院学报.2004,16(6):20-24
    [62]宋海军,高连华,程军伟.履带车辆中心转向模型研究.装甲兵工程学院学报.2007,21(2):55-58
    [63]方志强,高连华,王红岩.履带车辆转向性能指标分析及试验研究装甲兵工程学院学报.2005,19(4):47-51
    [64]王殿龙,徐伟,徐金帅.履带车辆硬地面转向阻力矩算法的研究.起重运输机械.2010(5):14-17
    [65]马振书,卞学良,尹娟娟,楚晓婧.弹药处理机器人半弹性橡胶履带行驶装置设计.现代制造工程.2008(11):]03-105
    [66]凌勇坚,杨锦章.联合收割机橡胶履带的优化设计.现代农业装备.2006(6):64-65
    [67]刘焕民,张彦东.轻型橡胶履带的研制.特种橡胶制品.2004,25(2):28-30
    [68]李聪聪,金黎.现代履带的新发展.国外坦克.2006(11):46-47
    [69]张涛,郭志强,周志立.橡胶履带车辆行走系统的动力学模型及脱轮问题仿真分析.河南科技大学学报(自然科学版).2006,27(6):12-18
    [70]孔江生,张维良,朱天军.橡胶履带的结构分析及改进措施工程.机械.2002(6):27-30
    [71]周世元.橡胶履带的结构与制造.橡胶工业.2003,(50):539-541
    [72]王渥民.橡胶履带的开发与应用概况.橡塑技术与装备.2008(2):36-38
    [73]张双吉.橡胶履带的孔齿式驱动齿.农村机械化.1998(10):15
    [74]王金武,董子龙.橡胶履带行走装置转向性能分析.农机化研究1999(3):62-65
    [75]杨小卫,杨志星,施康.橡胶履带啮合副的受力分析与稳定工作区的建立.筑路机械与施工机械化.1997(70):2-6
    [76]汪诤,吴国祥.一种带传动效率的近似计算公式.兰州交通大学学报.2009,28(4):118-120
    [77]高春花.整体履带板用驱动轮齿形的设计方法.煤矿机械.2009,30(2):14-15
    [78]鲁连军,孙逢春,翟丽.基于MATLAB SIMULINK的电传动履带车辆转向性能仿真.兵工学报.2006,27(1):69-74
    [79]卢进军,魏来生,赵韬硕.基于RecurDyn的履带车辆启动加速过程滑转率仿真与试验研究.兵工学报.2009,30(10):1281-1286
    [80]周君,王殿龙,徐伟,徐金帅.履带车辆硬地面转向阻力矩算法的研究.起重运输机械.2010(5):20-23
    [81]宋海军,高连华,李军,姚新民.履带车辆转向性能指标修正与试验.装甲兵工程学院学报.2008,22(6):65-68
    [82]韩宝坤,张宇,李晓雷.履带模型与仿真.计算机仿真.2003,20(5):7-9
    [83]郑红,吴国锐.深海履带采矿车稳定性的分析与讨论.煤矿机械.2009(1):83-86
    [84]刘彤,许纯新.橡胶履带车辆接地压力分布.工程机械.1995(2):11-19
    [85]戴瑜,刘少军.履带车多刚体建模与仿真分析.计算机仿真.2009,26(3):281-285
    [86]吴大林,马吉胜,王兴贵.履带车辆地面力学仿真研究.计算机仿真.2004,21(12):42-45
    [87]滕启治,谷中丽,孙逢春.履带车辆电驱动系统小半径转向计算研究.车辆与动力技术.2003(2):29-34
    [88]董新建,文桂林,韩旭.履带车辆高速转向动力学仿真.计算机辅助工程(增刊).2006,277-280
    [89]汤亚峰.履带式移动机器人与地面相互作用特性研究.国防科技大学.2006
    [90]D. Rubinstein, R. Hitron. A detailed multi-body model for dynamic simulation of off-road tracked vehicles. Journal of Terramechanics.2004(41):163-173
    [91]Laura R. Ray, Devin C. Brande, James H. Lever. Estimation of net traction for differential-steered wheeled robots. Journal of Terramechanics.2009(46):75-87
    [92]Marilyn Elizabeth Worley. Experimental Study On The Mobility Of Lightweight Vehicles On Sand.
    [93]Rob W. Bisselinga, At L. Hof. Handling of impact forces in inverse dynamics. Journal of Biomechanics.2006 (39):2438-2444
    [94]Ding-Guo Zhang, Jorge Angeles. Impact dynamics of flexible-joint robots. Computers and Structures.2005(83):25-33
    [95]James H. Lever, Daniel Denton, Gary E. Phetteplace, Sumintra D. Wood, Sally A. Shoop. Mobility of a lightweight tracked robot over deep snow. Journal of Terramechanics.2006(43): 527-551
    [96]Javier M. Solis, Raul G. Longoria. Modeling track-terrain interaction for transient robotic vehicle maneuvers. Journal of Terramechanics.2008 (45):65-78
    [97]Gianni Ferretti, Roberto Girelli. Modelling and simulation of an agricultural tracked vehicle. Journal of Terramechanics.1999(36):139-158
    [98]Tamer M. Wasfy, Ahmed K. Noor. Computational procedure for simulating the contact/impact response in flexible multibody systems. Computar methods in applied mechanics and englnerring.1997(147):153-166
    [99]J.G. Hetherington. Tracked vehicle operations on sand -investigations at model scale. Journal of Terramechanics.2005(42):65-70
    [100]Said Al-Milli, Lakmal D. Seneviratne, Kaspar Althoefer. Track-terrain modelling and traversability prediction for tracked vehicles on soft terrain. Journal of Terramechanics. 2010(47):151-160
    [101]张越今,宋健.多体动力学仿真软件ADAMS理论及应用研讨.机械科学与技术.1997,16(5):753-759
    [102]杨实如,段钦华.二自由度行星齿轮变速器的组合设计法.成都大学学报(自然科学版).2006(3):187-190
    [103]Yugang Liu, Yangmin Li. Hybrid Kinematics and Stability Analysis for the Mobile Modular Manipulator. The 10th International Conference on Robotics & Remote Systems Mtg. Proceedings, Gainesville, Florida,28-31 March,2004:211-218
    [104]彭春江,武利生,李元宗.履带式机器人运动学分析.太原理工大学学报.2004,25(3):328-331
    [105]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制.清华大学学报(自然科学版).2006,46(8):1377-1380
    [106]Amon Tunwannarux, Supanunt Hirunyaphisutthikul. Design Features and Characteristics of a Rescue Robot. Proceedings of Iscit,2005,1047-1051
    [107]Jian Zhu, Dong Sun, Shiu-Kit Tso. Development of a Tracked Climbing Robot. Journal of Intelligent and Robotic Systems,2002(35):427-444,
    [108]Yugang Liu, Guangjun Liu. Modeling of tracked mobile manipulators with consideration of track_terrain and vehicle_manipulator interactions. Robotics and Autonomous Systems,2009(57):1065-1074
    [109]J. Chen, W. E. Dixon, D. M. Dawson, T. Galluzzo. Navigation and Control of a Wheeled Mobile Robot. Clemson University College of Engineering and Science Control and Robotics (CRB) Technical Report,2005
    [110]L. Huang. Velocity planning for a mobile robot to track a moving target—a potential field approach. Robotics and Autonomous Systems,2009 (57):55-63
    [111]魏丕勇,闫清东,马越.无人地面武器机动平台驱动系统仿真研究.系统仿真学报.2006(4):1048-1051
    [112]谢月强.移动式工业机器人动力学分析.机械工程与自动化.2004(1):38-40
    [113]杨铭,张文海.直流电动机输出功率的简易计算公式.微特电机.2003(1):43-44
    [114]杨军宏,尹自强,戴一帆.基于ADAMS的二维转动平台运动学分析.机械.2002,29(5):4-7
    [115]易声耀,潘存云.一种新型移动平台动力学仿真与试验研究.2007,23(2):55-59
    [116]陈慧宝,李婷,徐解民.关节式履带机器人的爬梯性能研究.电子机械工程.2006,22(2):60-63
    [117]莫海军,朱文坚.履带式移动机器人越障稳定性分析.机械科学与技术.2007,26(1):65-67,71
    [118]程刚,竺长安,李川奇,陈宏,张屹,曾议,宋轶群,杨杰.突变地形下的复合结构移动越障机器人运动学建模与仿真.系统仿真报.2006,18(1):148-150
    [119]L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M. Hebert, R. Maclachlan, C. Won, T. Frost, G. Sukhatme, M. McHenry, S. Goldberg. A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems.2002 (40): 163-172
    [120]Pinhas Ben-Tzvi, Andrew A. Goldenberg, Jean W. Zu. Articulated hybrid mobile robot mechanism with compounded mobility and manipulation and on-board wireless sensor/actuator control interfaces. Mechatronics.2010 (20):627-639
    [121]Alex Ellery. Environment-robot interaction—the basis for mobility in planetary micro-rovers. Robotics and Autonomous Systems.2005 (51):29-39
    [122]A. Gonzalez, E. Ottaviano, M. Ceccarelli. On the kinematic functionality of a four-bar based mechanism for guiding wheels in climbing steps and obstacles. Mechanism and Machine Theory.2009 (44):1507-1523
    [123]R. Morales, V. Feliu, A. Gonzalez. Optimized obstacle avoidance trajectory generation for a reconfigurable staircase climbing wheelchair. Robotics and Autonomous Systems 2010 (58):97-114
    [124]D. O'Halloran, A. Wolf, H. Choset. Design of a high-impact survivable robot. Mechanism and Machine Theory.2005 (40):1345-1366
    [125]Mohsen M. Dalvand, Majid M. Moghadam. Stair Climber Smart Mobile Robot (MSRox). Autonomous Robots.2006(20):3-14
    [126]Jeehong Kim, Changgoo Lee, Gunho Kim. Study of machine design for a transformable shape single-tracked vehicle system. Mechanism and Machine Theory.2010 (45):1082-1095
    [127]马金猛,李小凡,姚辰,王忠.地面移动机器人越障动力学建模与分析.机器人.2008(3):273-278
    [128]毛立民,于海涛.基于RecurDyn的四履带足机器人运动学仿真.微计算机信息(嵌入式与SOC).2009(12-2):185-187
    [129]贾茜,王兴松,周婧.基于多种控制方式的全方位移动机器人研制.电子机械工程.2010(4):61-64
    [130]熊光明,徐正飞,龚建伟,陆际联.基于虚拟传感器和脚本控制的移动机器人越障仿真.计算机测量与控制.2004,12(1):45-47
    [131]方海峰,葛世荣,李允旺.具有被动摆臂的四履带机器人越障性能分析.中国矿业大学学报.2010(5):682-686
    [132]段星光,黄强,李京涛.具有越障功能的小型地面移动机器人.机械设计.2006(4):38-41
    [133]高绪祥,刘静,赵晓辉.具有越障和避障功能的小型移动机器人设计.机械研究与应用.2010(4):71-73
    [134]王朝阳,胡淼,汤永红.轮履复合式移动机器人设计及越障功能分析.机械传动.2010(4):38-41
    [135]吴大林,马吉胜.履带车辆行驶平顺性预测的仿真.兵工自动化.2006(1):29-31
    [136]王克运,张相洪,史力晨,胡卫伍,高海云.履带车辆越障过程的动力学仿真.2005,26(5):577-583
    [137]韩广,王田苗,梁建宏,赵建昌.一种有效爬越楼梯的模块化可重组履带结构.2004,26(5):400-403
    [138]蔡改贫,吴光华,欧阳田.越障机器人运动学分析与仿真.江西有色金属.2008,22(1):43-47
    [139]王伟东,孙立宁,杜志江.具有手臂的移动机器人越障性能分析.上海交通大学学报.2009(3):94-498
    [140]管红根,袁人枢,高树滋,何永,米粮川.车载炮发射动力学仿真研究.兵工学报.2005,26(1):53-55
    [141]陈锦喜,王瑞林,李永建,蒙刚.基于ADAMS的某榴弹发射器虚拟样机仿真及其动力学特性分析.军械工程学院学报.2007,19(6):42-45
    [142]张蓉.某防空火箭炮发射动力学分析与结构轻量化研究.南京理工大学.2008-05
    [143]于存贵,申亮,马大为.舰炮刚柔耦合发射动力学仿真.系统仿真学报.2009(23):7694-7696
    [144]吴万荣,杨矗,李强,孟莹.榴弹发射冲击模拟试验系统的设计与研究.液压与气动.2008(2):64-66
    [145]宫鹏涵,陈锦喜,李永建,万龙.某榴弹发射器刚柔耦合动力学建模与仿真研究.兵工自动化.2008,27(2):46-48
    [146]赵彦峻,徐诚,齐玉辉,骆宇飞.某榴弹发射系统动力学仿真研究.系统仿真学报.2009(17):5450-5453
    [147]刘雷,陈运生.自行火炮发射过程的可视化仿真.火炮发射与控制学报.2005(4):10-15
    [148]张爱梅,贾建援,康春霞,陈贵敏.方位俯仰型虚拟跟踪瞄准装置的机电动力学仿真.电子机械工程.2005(2):49-52
    [149]张越,徐万和,吴志林,李忠新.高频点射步枪动力学仿真分析.弹道学报.2009,21(1):71-74
    [150]Laura R. Ray, Devin C. Brande, James H. Lever. Estimation of net traction for differential-steered wheeled robots. Journal of Terramechanics.2009(46):75-87
    [151]J.H. Lever a, S.A. Shoop, R.I. Bernhard. Design of lightweight robots for over-snow mobility. Journal of Terramechanics.2009(46):67-74
    [152]Javier M. Solis, Raul G. Longoria. Modeling track-terrain interaction for transient robotic vehicle maneuvers. Journal of Terramechanics.2008(45):65-78
    [153]Weidong Wang, Zhijiang Du, Lining Sun. Dynamic Load Effect on Tracked Robot Obstacle Performance. Proceedings of International Conference on Mechatronics, Kumamoto Japan,8-10 May 2007,1-6
    [154]Haijun Mo, Ping Huang, Shaowei Wu. Study on Dynamic Stability of a Tracked Robot Climbing over an Obstacle or Descending Stairs. Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications,2004
    [155]Weidong Wang, Zhijiang Du, Lining Sun. Obstacle Performance Analysis of Mine Research Robot Based on Terramechanics. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation Harbin, China,5-8 August 2007,1382-1387
    [156]WeiMin Tao, MingJun Zhang, Ou Ma. Modeling and Vibration Suppression for Industrial Track Robots. Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida, May 2006,1072-1077
    [157]Shraga Shoval. Stability of a Multi Tracked Robot Traveling Over Steep Slopes. Proceedings of the 2004 IEEE International Conference on Robotics 8 Automation New Orleans, LA, April 2004,4701-4706
    [158]Rui Song, Yibin Li, Wenbin Yu, Feng Wang, Jiuhong Ruan. Study on ADRC Based Lateral Control for Tracked Mobile Robots on Stairs. Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China, September 2008,2048-2052
    [159]Guangping Lan, Shugen Ma. Step-Climbing Analysis of a Novel Tracked Robot. IEEE International Conference on Robotics and Biomimetics.2005,544-549
    [160]Am on Tunwannarux and Supanunt Hirunyaphisutthikul. Design Features and Characteristics of a Rescue Robot. Proceedings of ISCIT 2005,1047-1051
    [161]Jinguo Liu, Yuechao Wang, Bin Li, Shugen Ma, Jing Wang, Huibin Cao. Transformation Technique Research of the Improved Link-type Shape Shifting Modular Robot. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation Luoyang, China,25-28 June,2006,295-300
    [162]Weidong Wang, Lei Zhou, Zhijiang Du, Lining Sun. Track-Terrain Interaction Analysis for Tracked Mobile Robot. Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi'an, China,2-5 July,2008,126-131
    [163]Jennifer Carlson, Robin R. Murphy. Reliability Analysis of Mobile Robots. Proceedings of the 1003 IEEE International Cooferenee on Robotics & Automation, Taipei, Taiwan,14-19 September,2003,274-281
    [164]James H. Lever, Daniel Denton, Gary E. Phetteplace, Sumintra D. Wood, Sally A.Shoop. Mobility of a lightweight tracked robot over deep snow. Journal of Terramechanics 2006 (43): 527-551
    [165]陆怀民,郭秀荣,赵志国,李美华,刘晋浩.防风固沙草方格铺设机器人沙漠通过性研究.中国工程机械学报.2006(4):389-393
    [166]方浩,杨泽峰,张翼.基于ADAMS的移动机器人滑移量重建与补偿控制.系统仿真学报.2009,21(13):4059-4063
    [167]程军伟,高连华,王良曦,王红岩.基于打滑条件下的履带车辆高速转向分析.车辆与动力技术.2006(1):44-48
    [168]李岩,杨向东,陈恳.基于滑动操作模型的履带机器人驱动力设计.期机械设计与制造.2006(7):119-121
    [169]程军伟,高连华,王红岩,王良曦.基于滑动及计履带宽的条件车辆转向负荷的计算.车辆与动力技术.2007(1):40-44
    [170]陈泽宇,张承宁,李军求,武小花.履带车辆三种转向方式特性的对比分析.农机化研究.2010(4):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700