大面积采空区失稳的重大危险源辨识
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大危险源辨识是重大事故预防和控制的第一步。大面积采空区失稳是典型的矿山重大危险源。由于问题的复杂性及研究不足等方面的原因,致使目前对该重大危险源的辨识尚缺乏系统科学的方法。因此,对大面积采空区失稳这一矿山重大危险源进行辨识研究十分必要。
     论文研究与多个具体科研项目相结合。运用安全科学、岩石力学、人工智能、灰色系统和突变等理论,以及现场监测预报和数值模拟等技术手段,对大面积采空区失稳的灾害机理、辨识方法和重大危险源分级等问题进行了系统的研究。
     主要研究内容有:从岩石力学角度对采空区围岩失稳机理进行了系统的分析和研究;从安全科学角度探讨了采空区围岩失稳的事故致因机理;将人工智能中的神经网络技术用于大面积采空区失稳辨识研究;结合国家科技攻关专题研究,探讨了现场监测基础上的危险源辨识方法;运用数值模拟计算技术对大面积采空区失稳危险源进行辨识研究;对大面积采空区失稳这一矿山重大危险源的危险性进行了分级研究。
     研究取得的新进展如下:
     (1) 首次对大面积采空区失稳的重大危险源辨识问题进行了系统研究。针对目前重大危险源和矿山重大危险源在概念及分类问题上存在的不明确或不准确现象,论文对二者重新进行了定义,并对矿山重大危险源进行了分类。
     (2) 从大面积采空区失稳过程的阶段划分入手,对空区围岩失稳的蠕变特性进行了深入研究,以此为基础,采用组合模型方式建立了大面积空区围岩失稳的流变模型。在此,作者提出并使用了软化元件,从而能够方便地模拟岩体材料失稳时的加速蠕变特性。
     (3) 以扰动起源论(即P理论)和能量转移论为基础,提出了岩体失稳灾害的扰动-能量转移事故致因模型,简称P-E模型,并认为该模型同样适用于矿山其它重大灾害事故原因的解释。
     (4) 根据岩石材料声发射过程中存在凯塞效应这一内在特性,通过对大量现场观测资料的综合分析,提出了压力-位移-声发射3项观测结果之间存在的4种典型的耦合辨识模式。
     (5) 根据开挖过程中能量释放率指标的突变情况,并参考岩体中的拉应力和剪应力情况,以及岩体屈服状况,对采区的极限暴露面积进行了确定。通过编写接口软件,读取有限元计算的结果,并计算能量释放率指标,克服了通用数值模拟计算软件一般不能计算能量释放率指标的缺陷。
It is the first step of major accidents prevention and control that major hazard sources identify. The instability of widespread mined-out area is a typical major hazard sources in mine. Because of complexity of the problem and shortage of the research, the identification of this major hazard source is presently short of scientific systematic methods. Therefore, the study of widespread mined-out area instability identification is necessary.The study was combined with several scientific research projects. Such problems as disaster mechanism of widespread mined-out area instability, identifing methods and grading of major hazard sources were studied in this thesis, using theories in relation to safety science, rock mechanics, artificial intelligence, grey system, catastrophe and so on, and using techniques with regard to in-situ monitoring and prediction, numerical simulation and the like.The main work are as below. From the angle of rock mechanics, systematic analysis and research on the mechanism of mined-out area wall rocks instability were carried out. From the angle of safety science, the accident-cause theories of mined-out area wall rocks instability were approached. Neural networks technique which is belong to artificial intelligence, was used to identify the situation of widespread mined-out area instability. Combined with national science and technology project, identification methods of hazard source based on in-situ monitoring were discussed. Numerical simulation method was used to identify hazard source of widespread mined-out area instability. Hazard grading with regard to widespread mined-out area instability, which is a major hazard source in mine, was conducted.The main developments in this thesis are as follows.(1) It is the first time to research into the identification problem of major hazard source concerning widespread mined-out area instability systematacially. In view of the situation that some concepts and classification of major hazard sources and those in mine are ambiguous or inaccurate at present, the author gave their new definitions and classification of major hazard sources in mine.(2 ) Starting with process partition of widespread mined-out area instability, the creep properties of mined-out area wall rocks instability were researched thoroughly, and based on this, rheological model of widespread mined-out area instability was set up in the mode of combined model. Softening element was herein put forward and used, therefore, the accelerative creep properties of rock materials could be simulated conveniently.(3) An accident-cause model of perturbation-energy transfer (P-E model for short) about rock masses instability was brought forward, based on both perturbation occurs theory and energy transfer theory. It is thought that the model fits for other major disastrous accidents in mines equally.(4) By means of comprehensive analysis on abundant observation data, four typical coupling identification modes among stress, displacement and acoustic emission 3 parameters, were put forward, according to Kaiser effect which is an intrinsic property existing in the
    process of rock materials acoustic emission.(5) The limit exposed areas of mining zones were determined, according to the mutation conditions of energy release rate in the process of excavation mainly, and to the coditions of tensile stress, shear stress and rock masses yield. By means of programming interface software, the outcomes of finite element calculation could be get, and the index of energy release rate could be calculated, which solved the problem that general numerical simulation softwares can't do.(6) A method of aggregative index number to judge the unsafe condition of widespread mined-out area was put forward, on the basis of fully considering all sort of geologic factors and mining factors. The hazard of widespread mined-out area instability was divided into 4 levels in the method, and relevant aggregative index number was defined. It is a static classification method, and it has filled a gap of static classification method concerning widespread mined-out area instability.Through the study of this thesis, a set of perfecter identification theories and methods fitting for the major hazard source of widespread mined-out area instability were preliminary established, they will accelerate the study progress of other major hazard sources identification in mine, and advance the consummate of identification theories and standards of major hazard sources in our country. The study combined with projects, therefore, it not only has important theoretical meaning, but also has significant use value.
引文
[1] 隋鹏程.中国矿山灾害[M].长沙:湖南人民出版社,1998
    [2] 段永侯.中国地质灾害[M].北京:中国建筑工业出版社,1993
    [3] 钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [4] 刘起霞,李清波,邹剑峰.环境工程地质[M].郑州:黄河水利出版社,2001
    [5] 国家质量技术监督局.GB 18218-2000.中华人民共和国国家标准——重大危险源辨识.北京:中国标准出版社,2000-09-17
    [6] 江西有色冶金研究所采矿室地压组.钨矿地压研究与工程处理概况[J].岩石力学与工程学报,1983,2(1):130~140
    [7] 《采矿手册》编辑委员会.采矿手册(第4卷)[M].北京:冶金工业出版社,1990
    [8] 郑永学.弓长岭铁矿地压活动规律的研究[M].北京:科学技术文献出版社,1980
    [9] 纪万斌.工程塌陷与治理[M].北京:地震出版社,1998
    [10] 陈福庆.职工安全读本[M].南宁:广西民族出版社,2002
    [11] 刘星辉,苏国友.邵东县石盲矿采空区地面稳定性评价及地质灾害防治对策[J].矿冶工程,2004,24(1):20~23
    [12] 郭金峰.我国地下锰矿开采现状、问题及建议[J].中国锰业,1997,15(4):23~25
    [13] 解世俊.采场地压,中国大百科全书·矿冶卷[M].北京:中国大百科全书出版社,1984
    [14] U K No. 1902. The Control of Industrial Major Accident Hazards Regulations[M]. 1984
    [15] Health and Safety Executive. A Guide to the Control of Industrial Major Accident Hazards Regulation. London, 1984
    [16] International Labour Office. Major Hazard Control——A Practical Manual[M]. Geneva, 1988
    [17] 高进东,吴宗之,王广亮.论我国重大危险源辨识标准[J].中国安全科学学报,1999,9(6):1~5
    [18] 吴宗之,高进东.重大危险源辨识与控制[M1.北京:冶金工业出版社,2001
    [19] 刘诗飞,詹予忠.重大危险源辨识及危害后果分析[M].北京:化学工业出版社,2004
    [20] 国际劳工局.预防重大工业事故公约[M].日内瓦,1993
    [21] 罗云,樊运晓,马晓春.风险分析与安全评价[M].北京:化学工业出版社,2004
    [22] 赵江平,周慈,张遵毅.关于重大危险源辨识及分级技术的讨论[J].安全管理,2004,(6):28~30
    [23] Health & Safety Commission. Advisory Committee on Major Hazards. First Report[M]. London, 1976
    [24] Health & Safety Commission. Advisory Committee on Major Hazards. Second Report[M]. London, 1979
    [25] Health & Safety Commission. Advisory Committee on Major Hazards. Third Report. The Control of Major Hazards[M]. London, 1984
    [26] Internation Labour Organization. Prevention of major industrial accidents[M]. Geneva: International Labour Office, 1991
    [27] C. Pinnagoda. Major Hazard Control[C]. The Proceedings of Occupational Safety and Health Congress for the Asian and Pacific Region, 19&20 August 1993, Singapore
    [28] 吴宗之.制定我国重大危险源辨识标准的探讨[J].劳动保护科学技术,1995,15(1):16~19
    [29] John E. Auger. Build a proper PSM program from the groud up[J]. C. E. P, 1995, 91(1): 47~53
    [30] Michelle R. Murphy. Prepare for EPA's Risk Management Rule[J]. C. E. P, 1994, 90(8): 77~82
    [31] 王广亮.从美国法规“高度危害化学物质处理过程的安全管理”谈我国重大危险源的控制[J].中国安全科学学报,1995,5(6):216~221
    [32] 温成瑶,葛模刚,卢忠瑜等.刘冲矿Ⅰ号矿体地压活动规律及预报[J].化工矿山技术,1995,24(6):11~14
    [33] 吴超,孟廷让.矿山安全系统工程基础[M].长沙:中南工业大学出版社,1992
    [34] Roland H E, Moriarfy B. System Safety Engineerung and Management[M]. John Wiley & Sons Inc New York, 1983: 221~244
    [35] 左东红,贡凯青.安全系统工程[M].北京:化学工业出版社,2004
    [36] 白春华,何学秋,吴宗之等.二十一世纪安全科学与技术的发展趋势[M].北京:科学出版社,2000
    [37] Wu Zongzhi. Safety Assessment and Major Hazard Control in China[C]. The Proceedings of Occupational Safety and Health Congress for the Asian and Pacific Region, 19&20 August 1993, Singapore
    [38] 张国顺.简论重大危险源灾害的评估与控制[J].科技导报,1994,(5):60~63
    [39] 吴宗之.关于建立我国重大危险源控制系统的探讨[J].劳动保护科学技术,1994,9(3):22~24
    [40] 吴宗之.重大危险源控制技术研究现状及若干问题探讨[J].中国安全科学学报,1994,4(2):17~22
    [41] 钱新明,陈宝智.重大危险源的辨识与控制[J].中国安全科学学报,1994,4(3):16~21
    [42] 程映雪,吴宗之.建立我国重大事故预防控制体系之探讨[J].中国安全科学学报,1995,5(6):1~4
    [43] 王志民,汪国华,吕武轩.安全控制技术——用“控制论”研究重大工业危险源[J]. 中国安全科学学报,1995,5(2):20~24
    [44] 钟茂华,陈宝智.基于神经网络的重大危险源分级研究[J].中国安全科学学报,1996,6(3):43~47
    [45] 吴建军.层次分析法在危险评价中的应用[J].阜阳师范学院学报(自然科学版),1996,39(3):47~50
    [46] 白勤虎,吴慈生,王新元.我国工业重大灾害的Delphi预测方法及其应用——重大危险源辫识的德尔菲(Delphi)专家系统设计[J].合肥工业大学学报(自然科学版),1996,19(4):40~45
    [47] 博文.国内动态——“劳动安全关键技术”通过验收[J].林业劳动安全,1996,(2):43~44
    [48] 吴宗之.论重大危险源辫识、评价与控制[J].劳动保护科学技术,1997,17(3):17~19
    [49] 钟茂华,陈宝智.基于神经网络的重大危险源动态分级研究[J].中国安全科学学报,1997,7(2):6~10
    [50] 许开立,陈宝智.易燃易爆重大危险源事故概率计算[J].中国安全科学学报,1997,7(5):1~5
    [51] 彭晓红.重大危险源计算机监控与预警系统[J].中国安全科学学报,1997,7(4):20~25
    [52] 方玲珠.港口石油化工码头重大危险源监控与预警技术探讨[J].中国安全科学学报,1997,7(4):26~30
    [53] 高进东,吴宗之.六城市重大危险源现状分析[J].劳动保护科学技术,1999,19(4):24~26
    [54] 汪朝东.三峡工程施工中主要危险源辨识及控制[J].中国三峡建设,1998,(1):29~31
    [55] 吴宗之.易燃、易爆、有毒重大危险源评价方法与控制措施[J].中国安全科学学报,1998,8(2):57~61
    [56] 韩爱军,陈天云,李凤生等.爆炸危险源危险性定量评估方法的改进[J].爆破器材,1999,28(2):32~36
    [57] 李军红,颜慧,郑渊等.大危险源普查监控系统建立研究之一:重大危险源快速评价[J].南开大学学报(自然科学),2000,33(4):82~86
    [58] 白勤虎,白芳,何金梅.生产系统的状态与危险源结构[J].中国安全科学学报,2000,10(5):71~76
    [59] 李一.重大危险源等级、评估和定级方法介绍[J].职业卫生与应急救援,2000,18(4):217~219
    [60] 刘铁民.我国安全科技成就“九五”回顾及“十五”展望[J].林业劳动安全,2001,14(1):6~8
    [61] 崔超产,黎忠文.GIS在城市重大危险源管理中的应用[J].劳动保护杂志,2001,8(4):32~35
    [62] 沈立.重大工业隐患的地域监控体系研究[J].中国安全科学学报,2001,11(3):1~6
    [63] 丁大鹏,吴芳谷,刘骥.焦化厂焦炉煤气脱硫工程危险源辨识及危险评价[J].安全,2002,(6):8~10
    [64] 沈立.关于重大隐患监控GIS模式的研究[J].中国安全科学学报,2002,12(5):1~5
    [65] 杨振宏.重大危险源挖掘诊断系统研究[J].辽宁工程技术大学学报,2003,22(4):509~511
    [66] 林香民,李剑峰.重大危险源辨识的模糊性与分级控制管理[J].安全与环境学报,2003,3(6):3~5
    [67] 吴宗之,高进东.重大危险源普查与建立重大事故预防控制体系[J].安全与环境学报,2003,3(5):59~63
    [68] 吴宗之.论重大危险源监控与重大事故隐患治理[J].中国安全科学学报,2003,13(9):20~23
    [69] 林香民,李剑峰,王庆鹏.旅游重大危险源及其辨识[J].安全与环境工程,2004,11(1):92~94
    [70] 林香民,李剑峰.漂流旅游重大危险源及其评价[J].安全与环境学报,2004,4(2):63~65
    [71] 孙云,庞奇志.浅谈对重大危险源的有效控制[J].安全与环境工程,2004,11(1):74~76
    [72] 国家安全生产监督管理局,国家煤矿安全监督局.关于开展重大危险源监督管理工作的指导意见(安监管协调字[2004]56号)[EB/OL].http://www.jsrq.com.cn/show-xinxi.asp?typenew=攻策法规&id=998,2004-05-25
    [73] 虞汉华,赵林度.城市重大危险源分布合理性与可持续发展[J].工业安全与环保,2005,31(1):35~37
    [74] 施卫祖.完善重大危险源监督管理制度[J].劳动保护,2005,(2):56~57
    [75] 吴宗之.中国重大危险源监控制度的形成和发展[EB/OL].http://www.ytsafety.gov.cn/viewnews.jsp?newsID=5808, 2005-03-07
    [76] 张甫仁,景国勋,顾志凡等.论矿山重大危险源辨识、评价及控制[J].中国煤炭,2001,27(10):41~43
    [77] 王明忠,丁志民.论矿山重大危险源辨识、评价及控制[J].新疆有色金属,2004,(6):79~81
    [78] 刘辉,朱易春.冶金矿山危险源辨识与应急预案[J].南方金属,2004,140(5):5~7
    [79] 孙猛,吴宗之,张宏元.煤矿重大危险源辨识评价若干问题的研究与探讨[J].中国 安全科学学报,2003,13(5):35~38
    [80] 孙猛、陈全.矿山重大危险源辨识评价若干问题的研究与探讨[EB/OL].http://www.chinasafety.ac.cn/item/Article_Show.asp?ArticleID=399, 2004-08-25
    [81] 唐敏康,朱易春,刘辉.金属矿山重大危险源辩识与控制[J].金属矿山,2004,340(10):73~76
    [82] 钟茂华,陈宝智.突变理论在矿山安全中的应用[J].中国安全科学学报,1998,8(1):69~73
    [83] 张甫仁,景国勋.矿山重大危险源评价及瓦斯爆炸事故伤害模型建立的若干研究[J].工业安全与环保,2002,28(1):42~45
    [84] 张兵,许正元.矿山危险源的监控与管理[J].金属矿山,2003,328(10):54~56
    [85] 山东招金集团有限公司.矿山事故分析及系统安全管理[M].北京:冶金工业出版社,2004
    [86] Kratzsch H. Mining Subsidence Engineering[M]. Springervedag. Berlin Heidelberg, New York, 1983
    [87] Siriwardane H J. A Numerical Procedure for Prediction of Subsidence Caused by Longwall Mining[C]. Proceedings Fifth International Conference on Numerical Methods in Geomechanics, Kawamoto T and Ichikawa Y, eds., A. A. Balkema, Boston, 1995, 1595~1602
    [88] Karmis M, Goodman G and Hasenfus G. Subsidence Prediction Techniques for Longwall and Room and Pillar Panels in Appalachia[M]. the Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. 1984
    [89] 何国清,杨伦.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991
    [90] 邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003
    [91] 吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2001
    [92] Jager J C, Cook N G W. Fundamentals of Rock Mechanics[M]. Chapman and Hall, London, 1976
    [93] Toppownier P, Brace W F. Development of stress-induced microcrack in westerly granite[J]. Int. J. Rock Mech. & Min. Sci., 1996, 33(2): 103~112
    [94] Kawakata H, Cho A, Yanagidani T, et al. The observations of faulting in Westerly granite under triaxial eoppression by X-ray CT scan[J]. Int. J. Rock Mech. & Min. Sci., 1997, 34(3): 151~162
    [95] Sugawara K, Obara Y, Kancko K, et al. Visualization of three-dimension structure of rocks using X-ray CT method[C]. Proc. of Asian Conf. on Rock Mechanics, Seoul, 1997, 769~774
    [96] 葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社, 2004
    [97] Goodman R E. Introduction to rock mechanics[M]. Second Edition. New York: John Wiley&Sons, 1989
    [98] 王文星.岩体力学[M].长沙:中南大学出版社,2004
    [99] 李通林,谭学术,刘伟伟.矿山岩石力学[M].重庆:重庆大学出版社,1991
    [100] 胡德富,孔宪立,李华.地下采空区引起的地表斜坡变形和滑移的研究[C].见:中国地质学会工程地质委员会、中科院地质研究所主编.第四届全国工程地质大会论文选集(三).北京:海洋出版社,1992.1179~1190
    [101] 孔宪立,胡德富.采空区地表斜坡变形破坏类型及其运动机制[M].同济大学学报,1995,23(3):247~252
    [102] 肖远,王思敬,杜永廉.层状岩体结构变形破坏研究[C].见:中国地质学会工程地质委员会、中科院地质研究所主编.第四届全国工程地质大会论文选集(二).北京:海洋出版社,1992.696~703
    [103] 于学馥,宋存义.不确定性科学决策方法[M].北京:冶金工业出版社,2003.
    [104] 缪协兴,陈智纯.软岩力学[M].徐州:中国矿业大学出版社,1995
    [105] 何学秋.安全工程学[M].徐州:中国矿业大学出版社,2000
    [106] 吴德伦,黄质宏,赵明阶.岩石力学[M].重庆:重庆大学出版社,2002
    [107] 谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004
    [108] 范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993
    [109] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002
    [110] Langer M. Rheological behavior of rock masses[C]. Proc. 4th Int. Cong. Rock Mech., 1979, 3: 29~62
    [111] 周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    [112] Baylys B. A possible use of structural factor in constitutive equation for rock[C]. In: Energetics of Geological Processes. Saxena S K. (ed) SPRING-VERLAG; 1977, 31~45
    [113] Gioda G. On the non-linear squeezing effects around circular tunnels[J]. Int. J. Numerical Analysis Methods in Geomechanics, 1979, 48~56
    [114] He Xueqiu, Zhou Shining. Rheological hypothesis of coal and gas outburst mechanism[J]. Journal of China University of Mining & Technology, 1994, 4(1): 15~23
    [115] 何学秋,马尚权.安全科学的“R-M”基本理论模型研究[J].中国矿业大学学报,2001,30(5):425~428
    [116] 靳钟铭,张惠轩,康天合.顶板大面积来压机理研究[J].山西煤炭,1994,(6):14~18
    [117] 钟茂华,魏玉东,范维澄等.事故致因理论综述[J].火灾科学.1999,8(3):36~42
    [118] 隋鹏程.产业灾害——伤亡事故致因理论[J].劳动保护科学技术.2000,20(2):9~13
    [119] Hohenemser C, Kates R, Slovic P. The nature of technological hazard[J]. Science. 1983, 220: 378~384
    [120] Rob James, Geoff Wells. Safety reviews and their timing[J]. Journal of loss Prevention in the process Industries, 1994, 7(1): 11~12
    [121] Yosef S, Sheirf. On risk & risk analysis[J]. Reliability Engineering and System Safety, (31), 155~178
    [122] Henrich H W, Petersen D, Roose N. Industrical Accident Prevention[M]. 5th ed., NewYork, McGraw-Hill, 1980
    [123] 陈宝智.危险源辨识、控制及评价[M].成都:四川科学技术出版社,1996
    [124] 陈宝智.安全原理[M].第2版.北京:冶金工业出版社,2002
    [125] 钱新明,陈宝智.事故致因的突变模型[J].中国安全科学学报,1995,5(2):1~4
    [126] 钱新明.危险评价突变模型研究[D].沈阳:东北大学,1996
    [127] 钟茂华.事故过程的动力学特性分析及优化控制研究[D].沈阳:东北大学,1998
    [128] 何学秋.安全科学基本理论规律研究[J].中国安全科学学报,1998,8(2):5~9
    [129] 马尚权,何学秋.煤矿事故中“安全流变-突变论”的研究[J].中国安全科学学报,1999,9(5):6~9
    [130] 张力,何学秋.安全流变理论及其在煤矿事故中的应用[J].中国安全科学学报,2001,11(1):6~11
    [131] 刘军.突变理论在岩石力学中的应用及发展趋势[J].自然杂志,2001,22(5):264~267
    [132] Satunders P T.突变理论入门[M].凌复华译.上海:上海科学技术文献出版社,1983
    [133] 唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100~107
    [134] 陈忠辉,徐小荷,唐春安.单轴压缩下岩石失稳破裂的突跳[J].东北大学学报,1994,15(5):476~480
    [135] 于广明.地层沉陷的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1~5
    [136] 潘一山,章梦涛,李国臻.洞室岩爆的尖角型突变模型[J].应用数学和力学,1994,15(10):893~900
    [137] 秦四清,何怀锋.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质工程地质,1995,(5):17~20
    [138] 潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1):23~30
    [139] 潘岳,张孝伍.狭窄煤柱岩爆的突变理论分析[J].岩石力学与工程学报,2004,23(11):1797~1803
    [140] 邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究[J].岩土工程学报,2001,23(1):38~41
    [141] 白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149~154
    [142] 高谦.地下大跨度采场围岩突变失稳风险预测[J].岩土工程学报,2000,22(5):523~527
    [143] 郭文兵,邓喀中,邹友峰.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996~2000
    [144] 秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486~492
    [145] 刘军,秦四清,张倬元.缓倾斜层状岩体失稳的尖点突变模型研究[J].岩土工程学报,2001,23(1):42~45
    [146] 谢和平,段发兵,周宏伟等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37~41
    [147] 王旭春,黄福昌,张怀新等.A.H.威尔逊矿柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604~608
    [148] 邓跃进,董兆伟,张正禄.大坝变形失稳的尖点突变模型[J].武汉测绘科技大学学报,1998,24(2):170~173
    [149] 潘岳,解金玉.关于“缓倾斜层状岩体失稳的尖点突变模型研究”的讨论[J].岩土工程学报,2001,23(4):516~518
    [150] 刘本玉,叶燎原.人工智能技术在防震减灾工程中的应用[M].北京:中国建筑工业出版社,2003
    [151] 朱大奇.人工神经网络研究现状及其展望[J].江南大学学报(自然科学版),2004,3(1):103~110
    [152] Grossberg S. Some networks that can learn, remember and reproduce any number of complicated space-time patterns[J]. Study Applied Mathematics, 1970, 11(49): 135~166
    [153] Carpenter G A, Grossberg S. The ART of adaptive pattern recognition by self-organizing neural network[J]. IEEE Transactions on Computer, 1988, 15(1): 77~88
    [154] Hopfield J. Computing with neural circuits: A Model[J]. Science, 1986, 233: 625~633
    [155] Piggio T. Computational vision and regularization theory[J]. Nature, 1985, 21(3): 314~319
    [156] Kosko B. Bidirectional associative memories[J]. IEEE Transactions on Man, System and Cybemitics, 1988, 26(18): 49~59
    [157] Narendra K, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks, 1990, 1(1): 4~27
    [158] Miller W T. Real-time application of neural networks for sensor-based control robbts, With Vision[J]. IEEE Transactions on Man, System and Cybernitics, 1989, 27(19): 825~831
    [159] Aibara K. Chaotic neural networks[J]. Physical LetterA, 1991, 158(8): 373~376
    [160] Inoue M, Nagayoshi A. Achaos neural-computer[J]. Physical Letter A, 1991, 158(8): 377~386
    [161] Bulsari A. Some analytical solutions to the general approximation problem for feedback neural networks[J]. Neural Networks, 1993, 28(6): 991~996
    [162] 廖晓昕.细胞神经网络的数学理论(Ⅰ)、(Ⅱ)[J].中国科学(A辑),1994,24(9):902~910,24(10):1037~1046
    [163] Jenkins B K, A R Tanguay. Jr Architectures for Neural Networks Implementation, Handbook of Neural Computing and Neural Networks[M]. Bost: MIT Press, 1995: 673~677
    [164] Okada Hiroyuki. Initializing multilayer neural network with fuzzy logic[C]. In: Proceedings of INCNN'92, New York: IEEE, 1992, 1239~1244
    [165] Cai Yaling, Hon Keung Kwan. A fuzzy neural network with fuzzy classification[A]. In: Proceedings of ASME SCT'94[C]. Wuhan: Press of Huazhong University of Science and Technology, 1994, 894~899
    [166] 施式亮,王海桥.矿井安全非线性动力学评价[M].北京:煤炭工业出版社,2001
    [167] 高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [168] Martin T Hagan, Howard B Demuth, Mark Beale. Neural network design[M]. New York PWS Publishing Company, 2002
    [169] Ventura D. Quantum computing and neural information processing[J]. Information Science, 2000, 128: 273~296
    [170] 郭立.岩爆倾向性动态预测模型及其应用研究[D].长沙:中南大学,2004
    [171] Perus M, Eeimovicp. Memory and pattern recognition in associative neural networks[J]. International Journal of Applied Science and Compution, 1998(4): 283~310
    [172] 袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999
    [173] 闻新.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003
    [174] 庞彦军,刘开第.综合评价系统客观性指标权重的确定方法[J].系统工程理论与实践,2001,21(8):37~42
    [175] Vanegas L V, Labib A W. Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation[J]. International Journal of Production Research, 2001, 39(6): 1147~1162
    [176] 张玉祥.巷道围岩稳定性识别模糊神经网络与模糊数学研究[J].岩土工程学报,1998,20(3):90~93
    [177] 吕贵春,马云东.矿井瓦斯涌出量预测的灰色建模法[J].中国安全科学学报,2004,14(10):22~24
    [178] 景国勋,张强,周爱桃.基于灰色系统理论的煤与瓦斯突出预测[J].中国安全科学学报,2004,14(8):17~21
    [179] 刘辉,王海宁,蒋达华.灰理论在企业职工工伤事故频率预测中的应用[J].工业安全与环保,2005,31(4):45~47
    [180] 程学军,胡文琦,蔡美峰.声发射技术和非线性理论在预报岩体失稳中的应用[J].北京科技大学学报,1998,20(5):409~411
    [181] 廖野澜.监测位移的灰色预报[J].岩石力学与工程学报,1996,15(3):269~274
    [182] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [183] 袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991:221~233
    [184] 刘思峰,郭天榜.灰色系统理论及其应用[M].北京:科学出版社,2002:102~156
    [185] 孙伟,刘杰,杨东平.应用神经网络对精煤灰分含量进行实时预报[J].中国矿业大学学报,2005,34(2):194~197
    [186] 张玉祥.岩土工程时间序列预报问题初探[J].岩石力学与工程学报,1998,17(5):552~558
    [187] Singh V K, Singh D, Singh T N. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks[J]. Int J R Rock Mech Min Sic, 2001, 38: 269~284
    [188] Raman H, Sunilkumar N. Multivariate modeling of water resources time series using artificial neural networks[J]. Hydrologicial Sciences Journal, 1995, 40(2): 145~163
    [189] 纪洪广,乔兰,张树学等.深部岩体稳定性评价的声发射-压力耦合模式[J].中国矿业,2001,10(2):51~54
    [190] 邵兆刚,丁原辰.塔北油区岩石声发射全过程曲线类型及特征[J].地质力学学报,1998,4(1):16~20
    [191] 罗一忠,余阳先,文衍瑜等.大厂铜坑矿地压活动预报准则探讨[J].有色金属(矿山部分),2001,(6):28~31
    [192] 长沙矿山研究院.广西大厂巴里锡矿大面积地压及2#盲竖井扩建工程可靠性研究报告[R],鉴定资料,1990
    [193] 蔡美峰.金属矿山采矿设计优化与地压控制——理论与实践[M].北京:科学出版社,2001:45~58
    [194] Brown E T (Editor). Analytical and computational methods in engineering rock mechanics[M]. Allen & Unwin, London, 1987
    [195] Brown E T et al. Characteristic line calculation for rock tunnels[J]. Journal of Geotech Engng Am Soc Civ Engrs, 1983, 109: 15~39
    [196] 黄润秋,许强.显式拉格朗日差分法在岩土边坡工程中的应用[J].岩石力学与工程学报,1995,14(4):346~354
    [197] 韩斌.金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研究[D].长沙:中南大学,2004
    [198] Turner M J. Stiffness and deflection analysis of complex structures[J]. Journal of Aeronautical Science, 1956, 23: 805~824
    [199] Clough R W. The finite element method in plane stress analysis[C]. Proc 2nd ASCE Conference on Electronic Computation, Pittsburgh, 1960
    [200] LUO Yizhong, WU Aixiang. Stability and reliability of pit slopes in surface mining Combined with underground mining in Tonglushan mine[J]. Journal of Central South University of Technology. 2004, 11(4): 434~439
    [201] LUO Yizhong, WU Alxiang, etc. Study on stability and structural dimension of access mechanized panel[J]. Journal of Central South University of Technology. 2005, 12(1): 73~77
    [202] Crough S L, Starfield A M. Boundary element methods in solid mechanics[M]. Allen & Unwin, London, 1983
    [203] Brady B H G, Brown E T. Rock mechanics for underground mining[M]Allen & Unwin, London, 1985
    [204] Crotty J M, Wardle L J. Boundary integral analysis of piecewise homogeneous media with structural discontinuities[J]. Int J Rock Mech Min Sci Geomech Abstr, 1985, 22: 419~427
    [205] Cundall P A. A Computer model for simulating progressive large scale movements in blocky rock system[C]. Proc Int Syrup Rock Fracture, Nancy, 1971, 2~8
    [206] Lorig L J, Brady B H G. A hybrid discrete element-boundary methods of stress analysis[C]. Proc O S Syrup Rock Mech, New York, 1982, 628~636
    [207] 姜立春.深凹露天矿高陡边坡失稳安全环境分析及工程控制研究[D].长沙:中南大学,2005
    [208] 王泳嘉,邢纪波.数值方法的新进展及其工程应用[M].东北工学院出版社,1987
    [209] 刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报.2001,20(2):190~196
    [210] 罗一忠.边坡稳定性分析中的能量法及其工程应用[J].中国锰业,1998,16(3):9~12
    [211] 谢学斌.硬岩矿床岩爆预测与控制的理论和技术及其应用研究[D].长沙:中南大学,1999
    [212] 蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩 石力学与工程学报,2001,20(1):38~42
    [213] 钟茂华,温丽敏,刘铁民等.关于危险源分类与分级探讨[J].中国安全科学学报,2003,13(6):18~20
    [214] 林韵梅.数值分类法及其在岩石力学中的应用[M].沈阳:东北工学院出版社,1989
    [215] Zhong Maohuo, Zhang Xiangkai, Wei Xing. Safety evaluation of engineering and construction projects in China[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(3): 201~207
    [216] Wei Guosong, Fan Weicheng, Wang Binghong, et al. Self-organized criticality of forest fire in China[J]. Ecological Modelling, 2001, 145(1): 61~68
    [217] 王维纲.高等岩石力学理论[M].北京:冶金工业出版社,1996:6~62
    [218] Kersten, Paul R. Implementation issues in the fuzzy c-medians clustering algorithm[J]. International Journal of Intelligent Systems, 2000, 15(4): 329~341
    [219] 谭云亮,王泳嘉,宋扬.矿山压力现象神经网络聚类研究[J].矿山压力与顶板管理,1995,3(4):168~171
    [220] Carpenter G A, Grossberg. ART2: Self-organization of stable category recognition codes for anolog input patterns[J]. Applied Optics, 1987, 26: 4919~4930
    [221] Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological cybernetics. 1982, 43(1): 56~69
    [222] 支晓伟,林柏泉,齐黎明.人工神经网络在煤与瓦斯突出预测中的应用[J].工业安全与环保,2005,31(4):42~45
    [223] 林少芬,赵强.Kohonen自组织神经网络在船舶防火安全分级上的应用[J].集美大学学报(自然科学版),1999,4(3):66~69
    [224] 付强,王志良,梁川.自组织竞争人工神经网络在土壤分类中的应用[J].水土保持通报,2002,22(1):39~44
    [225] 张云波,胡云昌.人工神经网络的建设工期定额地域分类[J].华侨大学学报(自然科学版),2004,25(3):270~274
    [226] Kohonen T. Self-organizing maps[M]. Springer-Vedag, Berlin, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700