矿区充填复垦土壤重金属分布规律及主要农作物污染评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿区土壤重金属污染及其修复是当今矿山生态及我国区域性、行业性领域的研究热点,对土地可持续利用、粮食安全、矿区环境与区域生态保护具有重要意义。通过对矿区充填复垦土壤进行系统、量化的野外及实验室研究,所得出的理论方法、数学模型、试验技术、相关数据、软件手段等可为国家指导矿区土地复垦和生态重建提供数据支持和科学指导,并可为相关矿区环境政策的制定提供参考。
     本文在较系统地综述了国内外矿区复垦土壤研究进展情况的基础上,重点开展了五方面的研究工作:
     1.充填复垦土壤特性
     场地实测与室内实验相结合,系统地研究了复垦土壤的理化、生物特性,包括土壤的渗透性、紧实度、孔隙水电导率、含水率、温度、pH值、有机质、氮磷钾、重金属、微生物(细菌、真菌、放线菌)种类种数;选用美国2800K1型渗透仪、英国三参数速测仪HH2/WET、美国紧实度仪soil compaction,测试分析了土壤的紧实度等。数据结论:煤矸石、粉煤灰充填(覆土厚度40cm)复垦土壤的pH值为7.98-8.78,含水率高于正常土壤10%-20%,渗透性系数为0.059-0.286,紧实度在200-300PSI,有机质含量低于对照土壤。这些研究结果对于国家制定矿区复垦技术标准及复垦工程的设计实施具有重要的参考价值。
     2.复垦土壤重金属分布规律
     研究了矿区充填复垦土壤重金属污染问题,首先探讨了充填复垦区域土壤重金属空间分布特征分析的理论与方法,通过采集、处理、测试245个土样的As、Cd、Cr、Cu、Hg、Pb、Zn等的含量,利用变化度、污染度和含量趋势等指标,解析研究了煤矸石充填复垦土壤、粉煤灰充填复垦土壤、对照土壤三类土壤的重金属分布特征;在此基础上,总结了七种元素的空间分布情况,对严重污染的Cd、轻度污染的Cr、正常范围的Pb进行了重点分析;采用线性、对数、指数、乘幂、多项式、克里格模型阐释了Cd、Cr及Pb的空间分布规律,得出结论:①简单模型:拟合的模型在一定程度上能反映出微量元素的变化趋势,三块场地模型拟合的误差均值保持在30%以内,其中,煤矸石场地误差最小,最大值为18.4%,最小值为8.3%;②多项式模型:由反演所得数据绘制的模拟迁移图具有现实应用意义,即可利用模型由测点的数值推知未测点的数值,得到相对连续的重金属含量值,分析其空间分布规律;③Kriging模型:以粉煤灰场地的Cd为例,建立的模型拟合精度较高。上述研究结果将为矿区污染土地的修复并进而制定相应治理措施提供依据。
     3.土壤特性与重金属污染相关性的方法与理论
     首先确定了可能影响土壤重金属分布的四个重要土壤特性:土壤紧实度、土壤pH值、土壤有机质以及土壤微生物;采用Pearson Correlation Coefficient方法,分析了pH值对重金属分布的影响、有机质与重金属分布的相关程度、紧实度与重金属污染的关系、微生物与重金属污染的相关性,结果表明:①充填复垦场地的pH值、有机质和紧实度与重金属含量的相关性较弱,相关系数都在-0.6到0.6之间,这也说明了在一定程度上,重金属空间分布的无规律性。②微生物与土壤重金属的相关性很大,在粉煤灰场地体现的更加明显,微生物的多少对土壤重金属含量产生直接的影响;最后应用集对理论(Set Pair Analysis Theory)研究了微生物与重金属的关联机理。这对于深入认识土壤重金属迁移机理的复杂性具有重要的科学意义,并可为其中难以定量和难以鉴别的污染相关因素的后续研究提供数据支持。
     4.主要农作物重金属污染物迁移规律研究
     比较研究了世界主要国家和地区对小麦、水稻和大豆中重金属污染物的限量标准,提出了小麦等主要农作物重金属污染物限量的选取标准;采用单项、综合污染指数分析了根际土壤As、Cd、Cr、Cu、Hg、Pb、Zn的污染状况,得出了复垦土壤综合污染指数小于1,全部测点均达到了土壤环境质量二级标准要求;定量解析了小麦不同部位的重金属含量,确定Cd、Cr为污染元素,研究结果:①复垦场地生长的成熟小麦,Cd、Cr在其不同器官中的分布迁移趋势是一致的;②对照场地生长的成熟小麦,Cd、Cr在其不同器官中的分布趋势存在差异;提出根富集系数率,进行曲线估计,建立了Cd回归方程、Cr偏微分方程。这些研究结果对矿区粮食安全的监控具有重要的实际应用价值。
     5.土壤、作物污染程度的可视化表达
     探索性地引入Surfer软件成图方法,借助多项式模型反演所得的数据,对矿区复垦土壤的结构进行可视化,直观地描述了土壤重金属分布的纵向、横向特征;应用Photoshop软件,对主要农作物小麦中重金属的污染迁移,以Cd、Cr为例,制作了量化模拟色彩映射图,真实地评价了小麦不同器官中重金属的污染程度。
The study on soil heavy metals pollution and its rehabilitation in mining area is the present focus on mine ecology or the territorial and industrial fields in China. It is provided with great importance to sustainable land use, food security, mining area environment, regional entironment protection and so on. After the systemic, quantized field or laboratorial research of the filling reclamation soil in mining area, theoretical method, mathematical model, experiment techniques, relevant data, software measure and some other achievements were made. They offered the data support and scientific guidance for the state to supervise the land reclamation and ecological construction in mining area, also offered the reference for making related environment policy of mining area.
     Systematically summarized the development of research at home and abroad on reclamation soil in mining area, this paper focuses on the following five research works:
     1. Research on filling reclamation soil characteristics
     Reclamation site observation combined with indoor experiment, the physical, chemical and biological characteristics of filling reclamation soil had been systematically studied, concretely including the permeability, compaction, pore-water conductivity, water content, temperature, pH value, organic matter, nitrogen-phosphorus-kalium, heavy metals, microorganism (bacteria, fungi and actinomyces) species or kinds; Soil compaction had been tested and analyzed using the 2800K1 Guelph---permeability testing machine made in America, W.E.T Sensor Kit---the British three-parameter rapid measure instrument HH2/WET, the American compactness meter. The data conclusions includes: the pH of both the coal-fly-ash and coal-gangue filling reclamation soil (cover soil thickness is 40cm) is between 7.98 and 8.78; the soil water content is 10%-20% higher than natural soil; the permeability coefficient varies from 0.059 to 0.286; the soil compaction is between 200 PSI to 300PSI; organic matter content is lower than natural soil. To sum up, the index values of filling reclamation soil’s physical and chemical properties are within the normal area of natural soil, and have no obvious difference. These outcomes have significant reference value to the state for making land reclamation technical standards and to designing and implementing of the reclamation project.
     2. Research on the distribution of reclamation soil heavy metals
     The problems about filling reclamation soil heavy metal pollution in mining area were brought forward. Firstly, the research went on the theoretics and methods used for analyzing heavy metal’s spatial distribution characteristics in filling reclamation area. Two hundreds and forty five soil samples were collected and processed, and then the heavy metal concentrations of the soil samples, such as As, Cd, Cr, Cu, Hg, Pb, Zn and others were determined. For three kinds of the soil heavy metals, coal-gangue filling reclamation soil, coal-fly-ash filling reclamation soil and natural soil for comparison, the author analyzed and studied theirs distribution by varying multiple, contamination degree and concentrations trend. Based on these, the distributions of seven elements were summarized, and Cd arisen severe pollution, together with Cr arisen slight pollution and Pb in normal were emphatically analyzed. Expounding the spatial distribution of Cd, Cr and Pb by linearity, logarithm, index, power, polynomial, Kriging and other mathematical models, conclusions were made as follows:①Simple model: to a certain degree, the fitted model can figure out the change tendency of microelements, all the grand means of model fitted error of the three sites kept within 30%, thereinto, the site error of coal gangue was the least, and the maximum is 18.4% while the minimum is 8.3%.②Polynomial model: Making the analog transition diagram by the data inverted has practical meaning. The numerical value of unmensurated points can be deduced from mensurated points using models, and then gained the correspondingly seriate heavy metal contents, the spatial distributions can be analyzed.③Kriging model: The built models have high fitting precision, taking Cd of coal-fly-ash site as an example. The research results above will provide foundations for rehabilitating the polluted land in mining area and then setting corresponding govern measures.
     3. Methods and theoretics about the relativity between soil characteristic and heavy metal pollution
     The four important specialties like to effect on soil heavy metals distribution were ascertained first: soil compaction, the pH of soil, soil organic matter as well as soil microorganisms; employing in the Pearson Correlation Coefficient method, how pH affects the distribution of heavy metal, the correlation degree between organic matter and the distribution of heavy metal, the connections between compaction and heavy metal pollution, along with the relevancy between microorganism and heavy metal pollution were analyzed; The data results show that:①The soil pH, soil organic matter and soil compaction of the filling reclamation site all only have slight relativities with heavy metals, and relativity coefficient are amongst -0.6 and 0.6. To a certain extent, this also account for that the spatial distribution of heavy metals has no regularity.②Soil microorganisms have quite high relativity with soil heavy metals, and this presents much more obvious for a coal-fly-ash site. The quantity of microorganisms has a direct effect on the heavy metal content of soil. Finally, the relationship mechanism between microorganisms and heavy metals was studies by the application of Set Pair Analysis Theory. This has concernful scientific significance for in-depth understanding the complexity of soil heavy metals’migration mechanism, and also can afford definite data support for the further study on the factors related to pollution which difficult to quantify or distinguish.
     4. Research on heavy metal pollution migration of main crops
     Investigated and compared the Limit Standard of the heavy metal contaminations in wheat, rice and soybeans in primary countries and regions in the world, the selection standards of the heavy metal contaminations quota in wheat and other main crops were advanced. The rhizospheric soil’s pollution situations of As, Cd, Cr, Cu, Hg, Pb and Zn were analyzed by single contamination index method, also comprehensive contamination index method. It is concluded that comprehensive contamination index of reclamation soil was less than 1, and all the observation points reached to the secondary standard requirements of soil environment quality. The heavy metals content of wheat’s different parts were quantitatively parsed, and confirmed Cd and Cr as contaminations. The followings are the research results:①The distributions and migration tendencies of each different parts of the mature wheat growing on reclamation sites is in consistent.②There are differences in the distributions and migration tendencies of each different parts of the mature wheat growing on control sites. Root enrichment coefficient ratio was put forward, and curve estimation was done, and Cd regression equation and Cr partial differential equation were established. These research outcomes are provided with important practical value for monitoring the food security in mining area.
     5. Introduction of the description technique with the software of Surfer and Photoshop
     Exploringly introducing the software Surfer to produce map, using refutations data from polynomial model, we visualize the reclaimed soil structure of mining area, and intuitively described the vertical and horizontal distribution features of heavy metals in the soil; using the software Photoshop, taking Cd and Cr for example, we produced a quantitative simulation of color mapping maps to describe the migration of heavy metals pollution in the main crops wheat, and obtained a reliable evaluation of the heavy metals pollution levels in different organs of wheat.
引文
[1]崔继宪.煤炭开采土地破坏及其复垦利用技术[J].煤矿环境保护,1997,11(1): 35-40.
    [2]李树志.当前煤矿土地复垦工作应重点研究的几个问题[J].中国土地科学,1999,13(2): 12-16.
    [3]中国矿业协会调研部陈国铭.依靠科技进步提高矿产资源的综合开发利用能力. http://www.chinamining.com.cn/report/default.asp?V_DOC_ID=1506
    [4] Appleton, T.J.; Colder, R.I.; Kingman, S.W.; Lowndes, I.S.; Read, A.G. Microwave technology for energy-efficient processing of waste[J]. Applied Energy ,2005, 81(1):85-113.
    [5]Schulz, D. Recultivation of mining waste dumps in the Ruhr area, Germany[J]. Geomechanics Abstracts , 1997, 1997(2):126 .
    [6]Hanson, David R.; Vandergrift, Thomas L.; DeMarco, Matthew J.; Hanna, Kanaan. Advanced techniques in site characterization and mining hazard detection for the underground coal industry[J]. International Journal of Coal Geology, 2002, (50) :275-301.
    [7]Hilary I Inyang. Framework for recycling of wastes in construction[J]. Journal of Environmental Engineering. 2003,129(10):887-898.
    [8] Jaana Sorvari. By-products in earth construction: Environmental Assessments[J]. Journal of Environmental Engineering. 2003,129(10):899-909.
    [9]才庆样,高更君,尚涛.露天矿剥离与土地复垦一体化作业优化研究[J].煤炭学报,2002,27(3): 276-280.
    [10]魏忠义,胡振琪,司继涛等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J].农业环境保护,2002,21(1):13-15,18.
    [11]胡振琪,张光灿,毕银丽等.煤矸石山刺槐林分生产力及生态效应的研究[J].生态学报,2002,22(5): 621-628.
    [12] M. Zribi, V. Ciarletti, O. Taconet. Characterisation of the Soil Structure and Microwave Backscattering Based on Numerical Three-Dimensional Surface Representation: Analysis with a Fractional Brownian Model. REMOTE SENS. ENVIRON. 2000, 72:159–169.
    [13] Sumio Horiuchi, Masato Kawaguchi, Kazuya Yasuhara. Effective use of fly ash slurry as fill material[J].Journal of Hazardous Materials76, 2000: 301–337.
    [14] John Sencindiver, Kyle Stephens, Jeff Skousen. Soil Health of Mountaintop Removal Mines in Southern West Virginia. Project Report of Division of Plant and Soil Sciences West Virginia University,January 24,2001:1-31.
    [15] Kevin A. Morin, Nora M. Hutt. Relocation of net-acid-generating waste to improve post-mining water chemistry. Waste Management 21 (2001) 185-190.
    [16]胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617-622.
    [17]龙健,黄昌勇,滕应等.我国南方红壤矿山复垦土壤的微生物特征研究[J].水土保持学报,2002,16(2): 126-129.
    [18]毕银丽,胡振琪,司继涛.接种菌根对充填复垦土壤营养吸收的影响[J].中国矿业大学学报,2002,31(3): 252-257.
    [19]卞正富.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84.
    [20]张文敏,张美庆. VA菌根用于矿山复垦的基础研究[J].矿冶,1996,5(3):17-21,32.
    [21]马彦卿.矿山土地复垦与生态恢复[J].有色金属,1999,51(3):23-25.
    [22]刘海滨.矸石的特性及风化机理探讨[J].煤矿环境保护,1996,9(6):43-45.
    [23]王学军,李本纲,陶澍等.土壤微量金属含量的空间分析[M].北京:科学出版社,2005.
    [24]夏立江,王宏康等.土壤污染及其防治[M].上海:华东理工大学出版社,2001.
    [25]杨梅,刘洪斌,武伟.重庆三峡库区耕地土壤重金属含量的空间变异性研究[J].中国生态农业学报,2006,14(1):100-103.
    [26]董霁红,卞正富,王贺封.矿山充填复垦场地重金属含量的对比研究[J].中国矿业大学学报,2007,36(4):531-536.
    [27]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003.
    [28]李法云,曲向荣,吴龙华等.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006.
    [29] Martin J Haigh. Soil quality standards for reclaimed coalmine disturbed lands : a discussion paper. International Journal of Surface Mining [J].Reclamation and Environment,1995, 9:187- 202.
    [30] L R Hossner. Reclamation of surface mined lands [M].VolumeII. Florida:CRC Press, Inc. ,1998. 204– 206.
    [31]周启星,宋玉芳等.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [32]赵景逵.矿区土地复垦技术与管理[M].北京:农业出版社,1993.
    [33]卞正富. Technological Innovation in Treating Coal Mining Wastes from Underground Mine. In: Proceedings of International Symposium on Application of Natural Materials for Environmental Geotechnology, Edited by Hideo Minato, Oct 29-Nov 2, 2001, Tokyo, Japan
    [34]卞正富.复垦土壤的理化特性及其改良[A].青年学术文集[C],北京:煤炭工业出版社,1993.
    [35]于君宝,王金达,刘景双等.矿山复垦土壤营养元素时空变化研究[J].土壤学报,2002,39(5):750-753.
    [36]朱祖祥.土壤学(上,下册)[M].北京:农业出版社,1983.
    [37] Martin J Haigh. Soil quality standards for reclaimed coal mine disturbed lands:a discussion paper. International Journal of Surface Mining [J]. Reclamation and Environment,1995, 9:187-202.
    [38] Ali Boularbah, Christophe Schwartz, Gabriel Bitton, et al.Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants[J]. Chemosphere,2006,63:811-817.
    [39]孙铁珩,李培军,周启星等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005.
    [40] Emilio Carpene, Giulia Andreani, Marta Monari et al. Distribution of Cd, Zn Cu and Fe among selected tissues of the earthworm(Allolobophora caliginosa) and Eurasian woodcock(Scolopax rusticola)[J]. Science of the Total Environment, 2006, (363):126-135.
    [41] R. W. Macdonald, L. A. Barrie, T. F. Bidleman et al. Contaminants in the Canadian Arctic:5 years of progress in understanding sources, occurrence and pathways[J]. The Science of the Total Environment, 2000,(254):93-234.
    [42]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [43]金亮,李恋卿,潘根兴等.苏北地区土壤-水稻系统重金属分布及其食物安全风险评价[J].生态与农村环境学报,2007,23(1):33-39.
    [44]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥理工大学博士学位论文,2005.
    [45]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [46]郑国璋.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2007.
    [47] Hala M. Abdel Migid,Yehia A. Azab, Waeel M. Ibrahim. Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent[J]. otoxicology and Environmental Safety, 2007, (66):57-64.
    [48] Elza Kovacs, William E. Dubbin, Janos Tamas. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing[J]. Environmental Pollution, 2006, (141):310-320.
    [49]胡振琪,魏忠义,秦萍.塌陷地粉煤灰充填复垦土壤的污染性分析[J].中国环境科学, 2004,24(3):311-315.
    [50]董霁红,卞正富,王贺封,王辉.徐州矿区充填复垦场地作物重金属含量研究[J].水土保持学报,2007,21(5):180-182.
    [51]卞正富.矿区土地复垦界面要素的演替规律及其调控研究[D].北京:高等教育出版社,2001.
    [52]刘勋鑫,王翠红,廖超林,李洪斌.土壤重金属特性空间变异性方法研究[J].农业网络信息,2007(6),106-108.
    [53]樊燕,武伟,刘洪斌.土壤重金属与土壤理化性质的空间变异及研究[J].西南师范大学学报(自然科学版),2007,32(4):58-63.
    [54]田均良,刘普灵,李雅琦.黄土高原土壤剖面元素相对迁移强度初探[J].水土保持研究,1995,2(4):51-55.
    [55]张学询,吴燕玉,陈涛等.张士灌区镉、铅等重金属迁移分布规律及其治理途径[J].环境科学,1982,3(6):7-10.
    [56] Ettler V, Vane6k A, Mihaljevic M, et a1.Contrasting lead speeiation in forest and tilled soils heavily polluted by lead metallurgy[J].Chemosphere,2005(58):1449-1459.
    [57] Sterckeman_r,Douay F,Proix N,et a1.Vertical distribution of Cd,Pb and Zn in soils near smelters in the North of France[J].Environmental Pollution,2000,107:377-389.
    [58]阮心玲,张甘霖,赵玉国等.基于高密度采样的土壤重金属分布特征及迁移速率.环境科学,2006,27(5):1020-1025.
    [59]隋红建,饶纪龙.土壤溶质运移的数学模拟研究一现状及展望[J].土壤学进展,1992,20(5):1-7.
    [60]莫争.典型重金属Cu、Pb、Zn、Cr、Cd在土壤环境中的迁移转化[C].中国科学院生态环境研究中心,2001.
    [61]庞欣.农用稀土提高植物抗重金属胁迫的研究及在土壤中迁移转化过程定量化建模[C].中国科学院生态环境研究中心(北京),2001.
    [62]壬庆仁,崔岩山,董艺婷.植物修复重金属污染土壤整治的有效途径[J].生态学报,2001,21:326-331.
    [63]孙铁珩,李培军,周启星等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005.
    [64]隋红建,吴璇,崔岩山.土壤重金属迁移模拟研究的现状与展望[J].农业工程学报,2006,22(6),197-200.
    [65]胡大伟,卞新民,李思米,许泉.基于GRNN网络模型的土壤重金属空间分布的研究[J].土壤通报,2007,38(2),334-340.
    [66]杨远.主要重金属在水稻土-水稻-小麦籽粒中的分布与聚集特征研究[D].四川农业大学硕士学位论文, 2005.
    [67]邵洪波.污水灌溉条件下冬小麦生长及重金属分布规律的试验研究[D].中国农业大学硕士论文,2002.
    [68]周启星,高拯民.沈阳张士污灌区锅循环的分室模型与污染防治对策研究[J].环境科学学报,1995,15(3):273-281.
    [69]廖敏,黄昌勇等.pH对隔在水土系统中的迁移和形态的影响[J].环境科学学报,1996, 16(2).
    [70]吴燕玉,陈涛等.张士灌区镉污染综合防治技术的研究[J].中国环境科学,1985,5(3) .
    [71]廖自基编著.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992.
    [72]韩晋仙.开封市化肥河污灌区土壤-小麦系统重金属污染及其迁移[D].河南大学硕士学位论文,2000.
    [73]严连香.不同工业企业周围土壤-作物系统重金属空间变异及其迁移转化规律研究[D].南京农业大学硕士学位论文,2007.
    [74]武淑华,朱伊君,顾亚中.小麦重金属含量与土壤质量之间关系研究[J].黑龙江环境通报,2002,26(3):97-100.
    [75]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较训究[J].农业环境保护,1996,15:145-149.
    [76]吴燕玉,王新,梁仁禄等.Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究[J].环境科学学报,1998,18(4):407-414.
    [77]莫争,王春霞,陈琴等.重金属Cu、Pb、Zn、Cr、Cd在水稻植株中的富集和分布[J].环境化学,2002,21:110-116.
    [78]沈志勇.南京市郊土壤重金属形态特征及生物累积研究[D].河海大学硕士学位论文,2007.
    [79]刘建国,李坤权,张祖建等.水稻不同品种对铅吸收、分配的差异及机理[J].应用生态学报,2004,15:291-294.
    [80]冯绍元,邵洪波,黄冠华.重金属在小麦蔬菜体中残留特征的田间试验研究[J].农业工程学报,2002,18(4):113-115.
    [81]张孝飞.徐州地区土壤重金属污染及其对农产品安全的影响[D].南京农业大学硕士学位论文,2003,59-65.
    [82]李永华,王五一,杨林生,李海荣.湘西多金属矿区汞铅污染土壤的环境质量[J].环境科学,2005,26(5):187-191.
    [83]黄昌勇.土壤学[M].北京:中国农业出版社,2000,3.
    [84]卞正富,翟广忠.矿区土地复垦规划的理论和实践[M].北京:煤炭工业出版社,1996,11.
    [85]胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J].农业工程学报,2003,19(2):217-218.
    [86]高祥伟,胡振琪,费鲜芸等.粉煤灰改良复垦土壤重金属污染的可拓评价[J].煤炭工程,2006(5):71-72.
    [87]冯跃华,胡瑞芝,云惊奇等.粉煤灰理化性质与硅素释放规律的研究[J].中国生态农业学报,2005,7(13):48-50.
    [88]汪海珍,徐建民等.粉煤灰对土壤和作物生长的影响[J].土壤与环境,1999,8(4).
    [89]董霁红,王莹.煤矿塌陷区废渣充填复垦土壤理化性质研究[J].矿业研究与开发,2008,28(1):68-71.
    [90]张国良.矿区环境与土地复垦[M].徐州:中国矿业大学出版社,1997.
    [91]胡振琪,戚家忠等.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6).
    [92] Ester van der Voet, Jeroen B. Guinee, Helias A.Udo de Haes et al. Heavy metals: a problem solved? : methods and models to evaluate policy strategies for heavy metals[M]. Kluwer Academic Pubishers,2000.
    [93] Pradeep Jain, Hwidong Kim, Timothy G. Townsend. Heavy metal content in soil reclaimed from a municipal solid waste landfill[J]. Waste Management, 2005, (25):25-35.
    [94] Bernd G. Lottermoser. Mine wastes: characterization, treatment,and environmental Impacts [M]. Berlin: Springer,2003.
    [95] A. Sainz, J. A. Grande, M.L. de la Torre et al. Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers[J]. Journal of Environmental Managenment, 2002, (64):345-353.
    [96]魏复盛,陈静生.中国土壤环境背景值研究[J].环境科学,1991,12(4):12-19.
    [97]魏忠义,胡振琪等.煤矿区复垦土壤重构研究[M].北京:中国矿业大学出版社,2002.
    [98]高焕梅,孙燕,和林涛.重金属污染对土壤微生物种群数量及活性的影响[J].江西农业学报,2007,19(8):83-85.
    [99]李法云,曲向荣,吴龙华等.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2005.
    [100]宋书巧,吴欢,黄胜勇.重金属在土壤-农作物系统中的迁移转化规律研究[J].广西师院学报,1999,16(4):87-92.
    [101]白建峰.淮南煤矸石中若干有害重金属元素含量及其迁移性研究[D].安徽理工大学硕士学位论文,2004.
    [102]郭瑞林.同异反灰色相关分析方法及其在小麦中的应用[J].农业系统科学与综合研究,2005,21(3):170-174.
    [103]严爱兰,张林凤.基于集对分析联系数的体育统计相关系数研究[J].湖北体育科技,1999,第一期:59-63.
    [104]赵克勤.集对分析中的不确定性理论及若干应用[J].有色冶金设计与研究,1995,16(3):40-43.
    [105]赵克勤,宣爱理.集对论一种新的不确定性理论方法与应用[J].系统工程,1996,14(1):18-23.
    [106] Zhiying Hu, Christine W.Chan, Gordon H.Huang. Multi-objective optimization for process control of the in-situ bioremediation system[J]. CCECE/CCGEI, Saskatoon, 2005:786-789.
    [107] Akiko Ike, Rutchadaporn Sriprang, Hisayo Ona et al. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J]. Chemosphere, 2006:1-7.
    [108] Tapan Adhikari, M.C.Manna, M.V.Singh et al. Bioremediation measure to minimize heavy metals accumulation in soils and crops irrigated with city effluent[J]. Food, Agriculture &Environment, 2004,2(1):266-270.
    [109] Alena Luptakova, Maria Kusnierova. Bioremediation of acid mine drainage contaminated by SRB[J]. Hydrometallurgy, 2005, (77):97-102.
    [110] Allen V.Barker, Gretchen M.Bryson. Bioremediation of heavy metals and organic toxicants by composting[J]. The Scientific World Journal, 2002, (2):407-420.
    [111] C. Garcia, D.A. Moreno, A.Ballester et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals ngineering,2001,14(9):997-1008.
    [112]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [113] Gavin M. Mudd, Srijib Chakrabarti, Jayantha Kodikara. Evaluation of engineering properties for the use of leached brown coal ash in soil covers[J]. Journal of Hazardous Materials, 2006:1-4.
    [114]周东美,王玉军,郝秀珍等.铜矿区重金属污染分异规律初步研究[J].农业环境保护,2002,21(3):225-227.
    [115] C.Mico, L.Recatala, M.Peris et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chempsphere, 2006, (65):863-872.
    [116] GB15618—1995,土壤环境质量标准[S].
    [117] V. Antoniadis, J.D. Mekinley. Measuring heavy metal migration rates in a low-permeability soil[J]. Environ Chem Lett, 2003, (1):103-106.
    [118]韩志萍.铬铜镍在芦竹中的富集与分布[J].环境科学与技术,2006,29(3):106-108.
    [119]刘扬林,蒋新元.株洲市白马乡土壤和农作物重金属污染评价[J].土壤,2004,36(5):551-556.
    [120]中华人民共和国国家标准GB2715-2005粮食卫生标准[S].
    [121]董霁红,卞正富,雷少刚,BEXTEN Jutta.徐州矿区充填复垦土壤特性实验研究[J].水土保持研究,2007,14(4):271-274.
    [122]贺明荣,王振林.土壤紧实度变化对小麦籽粒产量和品质的影响[J].西北植物学报,2004,24(4):649—654.
    [123] Jae E. Yang, Jeffrey G. Skousen, Yong-Sik Ok et al. Reclamation of abandoned coal mine waste in Korea using lime cake by products[Z]. technical communication,1-7.
    [124] W. A.Elshorbagy, A.M.O. Mohamed. Evaluation of using municipal solid waste compost in landfill closure caps in arid areas[J]. Waste management, 2000, (20):499-507.
    [125] Lindon K A Sear. Fly ash standards, market strategy and UK practice[C]. 2001 International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Paper#36.
    [126] Natalia Moreno, Xavier Querol, Andres Alastuey et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[C]. 2001 International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Paper#28.
    [127] Loreal V. Heebink, David J. Hassett. Coal fly ash trace element mobility in soil stabilization [C]. 2001 International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Paper#64.
    [128]武冬梅,张建红等.施肥对煤矸石风化物微生物活性的影响[J].水土保持学报,2000,14(9).
    [129]王辉,卞正富等.徐州柳新采煤塌陷地充填复垦土壤的特性及其分类的初步探讨[J].矿山测量,2004.9(3).
    [130]张字镭,党琰,贺平安.利用Pearson相关系数定量分析生物亲缘关系[J].计算机工程与应用,2005.(33):79-82.
    [131]姜勇,李琪,张晓珂,梁文举.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报,2006,17(1):97-101.
    [132]王季槐,沈海亮.估计植物分布的定量方法—克里格方法[J].贵州科学,2005,23(2):7-9.
    [133] D. Barrie Johnson, Kevin B. Hallberg. Acid mine drainage remediation options: a review[J]. Science of the Total Environment, 2005, (338):3-14.
    [134] D. A. L. Vignati, M. Camusso, J. Dominik. Estimation of the truly dissolved concentrations of Cd, Cu, Ni, and Zn in contrasting aquatic environments with a simple empirical model[J]. Ecological Modelling, 2005, (184):125-139.
    [135]薛强,王惠芸,梁冰.煤矸石淋溶重金属运移过程的水动力学模型及应用[J].辽宁工程技术大学学报,2005,24(5):763-766.
    [136]刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究[J].农业环境科学学报,2003,22(1):64-66.
    [137]王海宁,蒋良富.煤矸石堆周围土壤中重金属含量污染分析[J].广州化工,2005,33(2):42-45.
    [138]白建峰,史永红,崔龙鹏,躺修义.煤矸石堆积对矿区土壤中重金属的影响[J].安徽理工大学学报,2004,5(24):10-13.
    [139] F.A. Vega, E.F. Covelo, M.L. Andrade. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics[J]. Journal of Colloid and Interface Science, 2006(298):582-592.
    [140]时鹏辉,李多松,万田英等.煤矸石的综合利用及其技术要求[J].山东煤炭科技,2006(1):65-67.
    [141]赵文霞,马玲,郭淑恒,杜昭.粉煤灰中重金属元素浸出特性研究[J].粉煤灰综合利用,2006,3:5-7.
    [142] F.A. Vega, E.F. Covelo, M.L. Aandrade et al. Relationships between heavy metals content and soil properties in minesoils[J]. Analytica Chimica Acta, 2004, (524):141-150.
    [143]王学峰,朱桂芬,张会勇.粉煤灰和石灰对土壤重金属污染的影响[J].河南师范大学学报,2004,32(5):133-136.
    [144] Amanda Black, Dave Craw. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand[J]. International Journal of Coal Geology, 2001, (45):180-193.
    [145] B. Kalandadze. Influence of the mining and processing enterprise on soil types in adjoining areas[J]. Agronomy Research, 2003,1(2):131-137.
    [146] Anna F. Bertocchi, Marcello Ghiani, Roberto Peretti et al. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn[J]. Journal of Hazardous Materials, 200,6(B134):112-119.
    [147] Wayne Coates. Tree species selection for a mine tailings bioremediation project in Peru[J]. Biomass and BIoenergy,2005, (28):418-423.
    [148] Soon-Oh Kim, Kyoung-Woong Kim. Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis[J]. Journal of Hazardous Materials, 2001, (B85):195-211.
    [149]龙健,黄昌勇,腾应等.重金属污染矿区复垦土壤微生物生物量及酶活性的研究[J].中国生态农业学报,2004,(12):146-148.
    [150] Kostas Komnitsas, Kostas Modis. Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics[J].Science of the Total Environment, 2006, (371):190-196.
    [151]王嘉,王仁卿,郭维华.重金属对土壤微生物影响的研究进展[J].山东农业科学,2006,(1):101-104.
    [152] Anna Rosa Sprocati, Chiara Alisi, Lia Segre et al. Investigating heavy metal resistance,bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine[J]. Science of the Total Environment, 2006, (366):649-658.
    [153] S.Venkata Mohan, M. Rama Krishna, P. Muralikrishna et al. Solid phase bioremediation of pendimethalin in contaminated soil and evaluation of leaching potential[J]. Bioresource Technology,2006:1-6.
    [154] C.M.A Iwegbue, N.O. Islrlmah, C. Igwe et al. Characteristic levels of heavy metals in soil profiles of automobile mechanic waste dumps in Nigeria[J]. Envirommentalist, 2006, (26):123-128.
    [155] Jose Antonio Carrasco, Patricia Armario, Eloisa Pajuelo et al. Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic sill at the Aznalcollar pyrite mine[J]. Soil Biology& Biochemisty,2005, (37):1131-1140.
    [156] B. Kalandadze. Influence of the mining and processing enterprise on soil types in adjoining areas[J]. Agronomy Research, 2003,1(2):131-137.
    [157] Facundo Rivera-Becerril, Catherine Calantzis, Katarzyna Turnau et al. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three pisum sativum L.genotypes[J]. Journal of Experimental Botany, 2002,53(371):1177-1185.
    [158] E. Margui, V. Salvado, I. Queralt et al. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes[J]. Analytica Chimica Acta, 2004, (534):151-159.
    [159] Hector M. Conesa, Angel Faz, Raquel Arnaldos. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district(SE Spain)[J]. Science of the Total Environment, 2006, (366):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700