多轴疲劳寿命模型及疲劳试验谱编制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对承受多参数、非比例载荷的结构,开展其疲劳寿命预测模型以及疲劳试验谱编制方法的研究。
     采用有限元方法分析了简单带孔结构件和实际发动机机匣在不同多参数载荷作用下的应力应变分布特点,计算了构件在不同多参数循环载荷下的疲劳损伤分布。结果表明,在多参数载荷作用下,构件的最大应力点和最大疲劳损伤点的位置将随载荷变化而变化。
     针对多参数载荷下多点、单轴应力破坏模式的结构,提出了一种基于损伤等效原则的多参数疲劳试验谱编制方法。该方法先采用疲劳损伤计算方法求得多轴随机载荷作用下的初始裂纹萌生位置,然后对该点的应力应变历程进行雨流计数,对得到的应力应变循环按幅值进行分组,统计各组的载荷循环数并计算其损伤平均值;再对各组进行多参数循环载荷搜索,使该多参数循环载荷作用下结构的最大损伤点位置与原谱作用结果一致,且循环损伤等于组平均损伤;最后将各组所搜索到的多参数循环载荷按一定顺序连接起来,即得到多参数疲劳试验谱。试验结果表明:利用该方法所编制的疲劳试验谱的试验寿命分散带在2倍之内,编谱方法是有效的。
     建立了一种椭圆形式的多轴疲劳寿命预测模型。该模型考虑临界损伤平面上的最大剪切应变幅和法向应变程两个参数,并引入最大等效应力来考虑非比例循环附加硬化的影响,在单轴拉伸及扭转应力状态下退化为常规的单轴疲劳应变寿命模型。经不同材料的常幅多轴疲劳试验数据分析表明,所建立的疲劳寿命预测模型可同时适用于多轴比例与非比例循环加载,且具有较小的寿命分散带和标准差,预测精度高,材料适用范围较广,计算简便有效。
     针对多参数载荷下单点多轴应力破坏模式的结构,发展了一种基于多轴疲劳损伤等效的疲劳试验谱编制方法。在获得材料的多轴疲劳破坏模式后,采用多轴雨流计数法对主要损伤参量进行计数并分组统计;根据各组损伤值及主要损伤参量平均值进行搜索,使在搜索到的多参数循环载荷作用下的损伤值及主要损伤参量与各组统计平均值一致;最后将各组搜索到的循环载荷按一定的顺序连接起来,得到疲劳试验谱。试验结果表明:利用该方法所编制的疲劳试验谱的试验寿命分散带在2倍之间,提出的疲劳试验载荷谱编制方法是有效的。
The fatigue life prediction model and the fatigue test spectrum formation of structures under multi-parameter and non-proportion loading are studied in this paper.
     The stress distributions of multi-hole thin cylinders and aeroengine cases under multi-parameter loading are analyzed by finite element method. The fatigue damage distributions of structures under multi-parameter loadings are calculated. The results show that the maximum stress point and the maximum damage position are changed with the multi-parameter loadings.
     Based on the damage equivalent principle, a new method which can be applied to structures with uniaxial stress failure modes under multi-parameter loadings is developed to create the multi-parameter fatigue test spectrum. At first the strain histories of the initial crack position are decomposed into a series of simple individual cycles by rain-flow counting method. The individual cycles are divided into several groups by strain amplitudes. In each group, the number of cycles is counted and the average damage value is computed. Then the multi-parameter cyclic loadings are searched in each group so that the maximum damage location under the loading is accord with the results under the effect of the original spectrum and the cyclic damage is equivalent with the average damage. The fatigue test spectrum is developed by linking these constant amplitude multi-parameter loadings. The experiment results show that the test life scatter band under the fatigue test spectrum which is compiled by this method is within 2 times compared with the original one, which proves the efficient of this method.
     A new multi-axial fatigue life prediction model, in which the parameters of the maximum shear strain amplitude and normal strain excursion are included and the influence of the additional cyclic hardening of maximum equivalent stresses are considered, is developed. The life prediction model developed can be degenerated to the traditional strain based life prediction model under uniaxial tension or torsion loadings. The experiment results show that the new life prediction model can be applied to both proportional and non-proportional loadings in different materials with smaller life scatter band and higher precision.
     Based on damage equivalent principle, a new method of creating the fatigue test spectrum is developed for the multi-axial stress destroying mode with single danger position under multi-parameter loadings. At first, the failure mode under multi-axial fatigue loadings is studied. The main damage parameters are counted by the multi-axial rain-flow counting method and divided into several groups. The damage value and the main damage parameters are searched in each group, so that these values under multi-parameter cyclic loadings are accord with the statistic average values of each group. The fatigue test spectrum could be created by linking these cycles with constant amplitudes. The experiment results show that the life scatter band under the fatigue test spectrum which is compiled by this method is within 2 times compared with the original one, which proves the efficient of the method developed for compiling the fatigue test specrum.
引文
[1]中国航空工业总公司发动机系统工程局,航空涡喷、涡扇发动机结构设计准则,第四册,机匣,1997.
    [2]国防科学技术工业委员会,GJB241-87,航空涡轮喷气和涡轮风扇发动机通用规范,国防科学技术工业委员会军标出版社,1988.
    [3]《航空发动机设计手册》总编委会,航空发动机设计手册第17册—载荷及机匣承力件强度分析,北京,航空工业出版社,2001.
    [4]宋迎东,张勇,温卫东等,多参数载荷组合的概率分布研究,航空动力学报,2001,16 (4):331~334.
    [5]宋鹏晨,航空发动机载荷谱仿真与极值载荷估计,[硕士学位论文],南京,南京航空航天大学,2006.
    [6]杨艳红,发动机构件多轴疲劳寿命分析与试验载荷谱编制方法研究,[硕士学位论文],南京,南京航空航天大学,2004.
    [7]郦明,奥托.布克斯鲍姆,哈茨.罗华克,结构抗疲劳设计,北京,煤炭工业出版社,1987:1~287.
    [8] Schutz.W,Standardized stress-time histories—An overview,J.M.Potter,R.T.Watanabe,Develop of fatigue loading spectra,ASTM STP 1006,Philadepphia,ASTM Committee E-9 on Fatigue and SAE Committee on Fatigue Design and Evalution,1989:3~16.
    [9] H.O.Fuchs,R.I.Stephens,工程中的金属疲劳(漆平生,徐桂琴) ,北京,中国农业机械出版社,1980:1~207.
    [10]高镇同,疲劳应用统计学,北京,国防工业出版社,1986:1~396.
    [11] G.M.van.Dijk, Statistical loading data processing,NASA Special Publication ,1972,No,309
    [12] J.H.Crews,Jr.,Crack initiation at stress concentrations as influenced by prior local plasticity,Achievement of high fatigue resistance in metals and alloys,ASTM STP 467,1970:37.
    [13] E. J.Gumbel,Statistics of extremes,Columbia university press,New York,1958
    [14]王增国,疲劳载荷谱的参数研究,航空与航天,1996,6 (3):17~19.
    [15] T.H.Topper,B.I.Sandor,J.Morrow,Cumulative fatigue damage under cyclic strain control,Journal of material,1969,4 (1):200.
    [16] R.I.Stephens,D.K.Chen,B.W.Hom,Fatigue crack growth with negative stress ratio following single overloading in 2024-T3 and 7075-T6 Aluminum Alloy,fatigue crack growth under spectrum loads,ASTM STP 595,1976:163.
    [17]巩建鸣,沈士明,戴树和,变幅载荷谱中加载顺序对疲劳裂纹扩展速率的影响,南京化工学院学报,1992,14 (4):38~44.
    [18]平安,王德俊,徐灏,疲劳载荷谱编制方法的统一,机械工程学报,1996,32 (3):15~19.
    [19] Heuler.P,Seeger.T,A criterion for omission of variable amplitude loading histories,International Journal of Fatigue,1986,8 (4):225~230.
    [20]王秋景,管迪华,汽车零部件加速疲劳试验方法,汽车技术,1997,143 (11):14~17.
    [21]王智,李淑文,刘文琦,歼击机载荷谱编制方法的研究,航空学报,1990,11 (8):B393~B395.
    [22] A.K.Khosrovaneh,N.E.Dowling,Fatigue loading history reconstruction based on the rainflowtechnique,International Journal of Fatigue,1990,12 (2):99~108.
    [23] P.Heuler,H.Klaschke,Generation and use of standardised load spectra and load–time histories,International Journal of Fatigue,2005,27:974~990.
    [24] Schutz.D,Lowak.H,de.Jonge.JB,et.al,A standardised load sequence for flight simulation tests on transport aircraft wing structures, LBF-Report FB-106,NLR-Report TR 73,1973.
    [25] Haibach.E,Fischer.R,Schutz.W,A standard random load sequence of Gaussian type recommended for general application in fatigue testing; its mathematical background and digital generation,Bathgate.RG,Fatigue testing and design,London,The Society of Environmental Engineers,1976:29.1~29.21.
    [26] Aicher.W,Branger.J,G.M.van.Dijk,et.al,Description of a fighter aircraft loading standard for fatigue evaluation FALSTAFF,Common report of F+W Emmen,LBF, NLR, IABG,1976.
    [27] Lowak.H,de.Jonge.JB,Franz.T,Schutz.D, MiniTWIST—a shortened version of TWIST, NLR-Report MP 79018, LBF-Report TF-146,1979
    [28] PR.Edwards,J.Darts, Standardised fatigue loading sequences for helicopter rotors (HELIX and FELIX), RAE-Reports TR 84084 and TR 84085,Royal Aircraft Establishment,1984
    [29] G.E.Breitkopf,Basic approach in the development of TURBISTAN, a loading standard for fighter aircraft engine disks,JM.Potter,RT.Watanabe,Development of fatigue loading spectra,ASTM-STP 1006,Philadelphia,American Society for Testing and Materials,1989:65~78.
    [30] JW.Bergmann , W.Schutz , Standardisierter Lastablauf fur heibe Turbinen- und Verdichterscheiben von Kampfflugzeugen-Hot TURBISTAN(Standardised load sequence for hot turbine and compressor discs of military aircraft),Report TF-2809, IABG Ottobrunn,Germany,1990
    [31] AA.ten.Have,WISPER and WISPERX—final definition of two standardised fatigue loading sequences for wind turbine blades,NLR Report CR 91476 L,Amsterdam,1991
    [32] CM.Sonsino,H.Klatschke,W.Schutz,M.Huck,Standardized load sequence for offshore structures—wave action standard history—WASH 1,Fraunhofer-institut fur Betriebsfestigkeit (LBF), Industrieanlagen-Betriebsgesellschaft mbH (IABG). LBF-Report No. FB-181, 1988, IABG-Report No. TF-2347,1988
    [33] W.Schutz,H.Klatschke,M.Huck,CM.Sonsino,Standardized load sequence for offshore structures—WASH I, Fatigue Fract Eng Mater Struct,1990,13 (1):15~29.
    [34] M.Brune , H.Zenner , Verbesserung der Lebensdauerabschatzung fur Bauteile in Walzwerksantrieben (Improvement of life prediction for components of steel mill drives),Report ABF40.1,Germany,VBFEh Dusseldorf,1990
    [35] H. K. D.Schutz , P.Heuler,Standardized multiaxial load sequences for car wheel suspension components—car loading standard—CARLOS multi. , Fraunhofer-Institut fur Betriebsfestigkeit(LBF), Darmstadt. Report No. FB-201,1994
    [36] H. K. D.Schutz ,Standardized load sequences for car powertrains with manual gears-car loading standard-CARLOS PTM,Fraunhofer-Institut fur Betriebsfestigkeit(LBF), Darmstadt Report No. 7558,1997
    [37] D.Schutz,H.Klatschke,H.Steinhilber,P.Heuler,W.Schutz,Standardized load sequences for car wheel suspension components,car loading standard—CARLOS,Fraunhofer-Institut fur Betriebsfestigkeit (LBF), Darmstadt, Industrieanlagen-Betriebsgesellschaft mbH (IABG),Ottobrunn, LBF-Report No. FB-191,1999.
    [38] H.Klatschke,Standardized load sequences for car powertrains with automatic gears—car loading standard—CARLOS PTA,Fraunhofer-Institut fur Betriebsfestigkeit (LBF), Darmstadt. Report No.110310/110370,2002
    [39] LE.Tucker,S.Bussa,The SAE cumulative fatigue damage test program,W. RM,Fatigue under complex loading—analyses and experiments,SAE AE-6,1977:1~54.
    [40] JW.Fash,FA.Conle,GL.Minter, Analysis of irregular loading histories for the SAE biaxial fatigue program,GL.Leese,D.Socie,Multiaxial fatigue: analyses and experiments. SAE AE-14,1989:33~59.
    [41] T.Seki , S.Yokoyama , Analysis method of pooled data for accelerated life testing ,Microelectronics Reliability,1998,38:1931~1934.
    [42] Sang-Jun.Park,Sang-Deuk.Park,Kwang-Suck.Kim,Ji-Hyun.Cho,Reliability evaluation for the pump assembly using an accelerated test,International Journal of Pressure Vessels and Piping,2006,83:283~286.
    [43] S. Charruau,F.Guerin,J.Hernández.Dominguez,J.Berthon,Reliability Estimation of Aeronautic Component by Accelerated Tests , Microelectronics Reliability , 2006 ,46:1451~1457.
    [44] S. Ozsoy,Mehmet.Celik,F.Suat.Kad?oglu,An accelerated life test approach for aerospace structural components,Engineering Failure Analysis,2008,15:946~957.
    [45] Alaattin.Erkanlia,Refik.Soyer,Simulation-based designs for accelerated life tests,Journal of Statistical Planning and Inference,2000,90:335~348.
    [46] Vilijandas.Bagdonaviciusa,Olga.Cheminadeb,Mikhail.Nikulin,Statistical planning and inference in accelerated life testing using the CHSS model,Journal of Statistical Planning and Inference,2003,126:535~551.
    [47] Geunho.Lee,Hyoungeui.Kim,Dosik.Kim,Study of the Accelerated Life Test Method for Power Train Components Under Cyclic Loads Using Weibull-IPL (Inverse Power Law) Model , ASME 2003 International Mechanical Engineering Congress and Exposition (IMECE2003) ,Washington, DC, USA ,2003
    [48] P.R.Underhill,D.L.DuQuesnay,Effect of small cycles and load spectrum truncation on the fatigue life scatter in 7050 Al alloy,International Journal of Fatigue ,2008,xxx: xxx~xxx.
    [49] L.Molent,M.McDonald,S.Barter,R.Jones,Evaluation of spectrum fatigue crack growth using variable amplitude data,International Journal of Fatigue,2008,30:119~137.
    [50] Jayantha.A.Epaarachchia,Philip.D.Clausen,The development of a fatigue loading spectrum for small wind turbine blades, Journal of Wind Engineering and Industrial Aerodynamics ,2006,94:207~223.
    [51] Yasushi.Uematsu,Raku.Tsuruishi,Wind load evaluation system for the design of roof cladding of spherical domes,Journal of Wind Engineering and Industrial Aerodynamics,
    [52] Takao.Kobayashi,Donald.A.Shockey,Charles.G.Schmidt,Richard.W.Klopp,ssessment of fatigue load spectrum from fracture surface topography , Int. J. Fatigue , 1997 , 19 (1):S237~S244.
    [53] Zhang.Weifang,Li.Yunju,Liu.Gaoyuan,Zhao.Aiguo,Tao.Chunhu,Fatigue life retro estimation of wing structure under different load spectra,Engineering Failure Analysis,2004,11:605~612.
    [54] Klemenc.Jernej,Fajdiga.Matija, Prediction of loading spectra under diverse operating conditions by a localised basis function neural network,International Journal of Fatigue ,2005,27: 555~568.
    [55] Klemenc.Jernej,Fajdiga.Matija,Predicting smoothed loading spectra using a combined multilayer perceptron neural network,International Journal of Fatigue,2006,28:777~791.
    [56]阎楚良,卓宁生,高镇同,雨流法实时计数模型,北京航空航天大学学报,1998,24 (5):623~624.
    [57] M.P.Repetto,Cycle counting methods for bi-modal tationary Gaussian processes,Probabilistic Engineering Mechanics,2005,20:229~238.
    [58] Klemenc.Jernej,Fajdiga.Matija,Improved modelling of the loading spectra using a mixture model approach,International Journal of Fatigue,2007,xxx: xxx~xxx.
    [59] C.H.McInnes,P.A.Meehan,Equivalence of four-point and three-point rainflow cycle counting algorithms,International Journal of Fatigue,2008, 30 547~559.
    [60] J.J.Xiong,R.A.Shenoi,A load history generation approach for full-scale accelerated fatigue tests,Engineering Fracture Mechanics,2008,75:3226~3243.
    [61]徐绍彦,歼六飞机机体结构疲劳定寿技术总结,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:38~54.
    [62]歼五机机翼载荷及试验方法,一一二厂,1974.
    [63]郭丽娟,强五飞机机体结构定寿技术总结,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:9~24.
    [64]姜秀川,歼六飞机机翼疲劳载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:110~130.
    [65]于文芳,江义平,歼六飞机起落架疲劳分析及其寿命确定,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:87~95.
    [66]赵重庆,强五飞机机翼-前机身疲劳载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:87~95.
    [67]赵重庆,强五飞机尾翼疲劳载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:87~95.
    [68]高志成,歼七飞机疲劳载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:87~95.
    [69]高志成,歼七飞机疲劳试验载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第一集),沈阳,航空航天工业部科学技术委员会,1989:87~95.
    [70]钟景明,曾贤虹,李锦华,陆英育,歼七II飞机尾翼疲劳载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:167~181.
    [71]许琉光,王正,严冬,歼七III型飞机载荷谱的编制,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:167~181.
    [72]张熙箴,贾国荣,王栋林,解思适,歼八飞机重心载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:167~181.
    [73]张熙箴,歼八飞机飞续飞载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:167~181.
    [74]孟繁沛,王国余,聂忠良,李令芳,运七飞机机翼疲劳试验载荷谱,《飞机结构疲劳定寿文集》编审委员会,飞机结构疲劳定寿文集(第三集),沈阳,航空航天工业部科学技术委员会,1991:167~181.
    [75]刘文琦,空测载荷值外推,1988,
    [76]熊峻江,高镇同,阎楚良,孟繁沛,飞机结构疲劳加速谱编制及损伤概率分布,航空学报,1997,18 (1):1~5.
    [77]阎楚良,高镇同,飞机高置信度中值随机疲劳载荷谱的编制原理,航空学报,2000,21 (2):118~123.
    [78]刘文珽,蒋冬滨,飞机结构关键危险部位加速腐蚀试验环境谱研究,航空学报,1998,19 (4):434~438.
    [79]航空发动机工业总公司发动机管理局,WPX发动机寿命研究,1988
    [80]程德金等,WPX发动机载荷谱空测研究报告,630所,1987
    [81] WP×加速任务试车技术研究,430厂,1984
    [82]林宏镇等,××发动机设计载荷谱研究报告之一~十三,空军第八研究所、南京航空航天大学科研报告,1994
    [83]航空航天工业部第606研究所、北京机械结构强度研究中心,航空发动机载荷谱剖面数据处理与载荷谱编制系统,1992
    [84]宋迎东,航空发动机飞行载荷谱预测,航空动力学报,1997,12 (1):89~91.
    [85]宋迎东,高德平,航空发动机设计任务循环的选取,航空动力学报,1999,20 (2)
    [86]宋迎东,高德平,发动机航线类飞行综合载荷谱研究,推进技术,2000,21 (4):54~56.
    [87]宋迎东,高德平,发动机飞行任务剖面的主成份聚类法,航空动力学报,2002,17 (2):196~200.
    [88]宋迎东,高德平,尚伟钧,航空发动机设计任务循环计算机预测程序设计,航空动力学报,1996,11 (3):189~191.
    [89]宋迎东,尚伟钧,教练机发动机使用任务循环推导,航空动力学报,1995,10 (3):158~160.
    [90]宋迎东,高德平,发动机持久/蠕变载荷谱的编制,南京航空航天大学学报,2000,32 (4):478~482.
    [91]宋迎东,高德平,林宏镇,程卫华,教练机发动机加速任务试车谱的编制,航空动力学报,1999,14 (1):47~50.
    [92]曹丹霞,王至尧,转向架载荷谱数据处理系统,铁道车辆,1992,(12):49~53.
    [93]冯锡曙,郑松林,李国英,拖拉机疲劳载荷谱规范化的研究,机械强度,1990,12 (2):54~57.
    [94]顾明,范祖尧,港口起重机矩形杆件风振疲劳载荷谱编制的分析,机械强度,1990,12 (1):30~34.
    [95]黄吕权,夏琴香,模锻锤载荷谱和应力谱的确定方法,西北工业大学学报,1990,8 (2):216~225.
    [96]吕澎民,赵邦华,王明复,孟广甫,货车铸钢侧架随机载荷谱下的疲劳寿命预估研究,铁道学报,1994,16 (1):101~107.
    [97]马汝建,非线性海浪载荷谱的研究,石油大学学报,1993,17 (2):49~53.
    [98]明平顺,张智勇,马前祖,汽车部件疲劳载荷谱的计算机统计处理,武汉汽车工业大学学报,1997,19 (2):6~9.
    [99]南基信,秦四成,张盾,履带推土机双参数载荷谱的编制,农业机械学报,1996,27 (10):166~169.
    [100]潘宏侠,斐焕斗,温静,坦克车辆行动部分载荷谱测试研究,测试技术学报,1998,12 (2):24~29.
    [101]吴森,李毅,黄民,王建军,魏任之,横切割头掘进机载荷谱的测定及分析,中国矿业大学学报,1996,25 (3):27~32.
    [102]阎楚良,李方坤,双击式水轮机载荷谱及其数据处理,吉林工业大学学报,1994,24 (3):80~86.
    [103]赵惠祥,张继通,重载货物列车车钩压缩程序载荷谱编制方法,上海铁道大学学报,1998,19 (10):16~23.
    [104] K.Kanazawa,K.J.Miller,M.W.Brown,cyclic deformation of 1 pecent Cr-Mo-V steel under out-of-phase,Fatigue Fracture Engineering Material Structure,1979,2:217~228.
    [105] D.Socie , Multiaxial Fatigue Damage Models , Journal of Engineering Materials and Technology,1987,109:293~298.
    [106] K.S.Kim,J.C.Park,Shear strain based multiaxial fatigue parameters applied to variable amplitude loading,International Journal of Fatigue,1999,21:475~483.
    [107] Y.S.Garud,A new approach to the evalution of fatigue under multiaxial loadings,Method for predicting material life ,,ASME,1979:247~263.
    [108] D.F.Socie,L.E.Wail,J.L.Kock,Biaxial fatigue of inconel 718 including mean stress effect,multiaxial fatigue, ASTM STP 853,1985:463~481.
    [109] EH.Jordan,MW.Brown,KJ.Miller,Fatigue under severe nonproportional loading,Multiaxial Fatigue, ASTM STP 853,American Society for Testing and Materials,1985:569~585.
    [110] M.W.Brown,K.J.Miller,A theory for fatigue failure under multiaxial stress-strain conditions,Proc. Inst. Mechanical Engineers,1973,187:745~755.
    [111]陈旭,高庆,孙训方,何国球,非比例载荷下多轴低周疲劳研究最新进展,力学进展,1997,27 (3):313~325.
    [112] C.Han,X.Chen,K.S.Kim,Evaluation of multiaxial fatigue criteria under irregular loading,International Journal of Fatigue,2002,24:913~922.
    [113]金丹,陈旭,多轴随机载荷下的疲劳寿命估算方法,力学进展,2006,36 (1):65~74.
    [114] A. E. 1049-85,Standard practices for cycle counting in fatigue analysis,Annual book of ASTM standards,Vol.03.01,philadelphia,1997:710~718.
    [115] J.A.Bannantine,D.F.Socie,Multiaxial fatigue life estimation techniques,M.Mitchell,R.Langraf,Advances in fatigue lifetime predictive techniques,ASTM STP 1122,Philadephia,American societyfor testing and materials,1991:249~275.
    [116] R.J.Anthes,Modefied ranflow counting keeping the load sequence,International Journal of Fatigue,1997,19:641~647.
    [117] T.E.Langlais,J.H.Vogel,T.R.Chase,Multiaxial cycle counting for critical plane methods,International Journal of Fatigue,2003,25:641~647.
    [118] Andrea.Carpinteri,Andrea.Spagnoli,Sabrina.Vantadori,A multixial fatigue criterion for random loading,Fatigue Fract. Engng. Mater. Struct,2003,26:515~522.
    [119] M.W.Brown,D.K.Suker,C.H.Wang, Analysis of Mean Stress in Multiaxial Random Fatigue,Fatigue Fracture Engineering Material Structure,1996,19 (2~3):323~333.
    [120] K.S.Kim,K.M.Nam,G.J.Kwak,S.M.Hwang,A fatigue life model for 5% chrome work roll steel under multiaxial loading,International Journal of Fatigue,2004,26:683~689.
    [121] Andrea.Carpinteri,Ewald.Macha,Roberto.Brighenti,Andrea.Spagnoli,Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method,International Journal of Fatigue,1999,21:89~96.
    [122] Andrea.Carpinteri,Ewald.Macha,Roberto.Brighenti,Andrea.Spagnoli,Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method,International Journal of Fatigue,1999,21:83~88.
    [123]王雷,王德俊,一种随机多轴疲劳的寿命预测方法,机械强度,2003,25 (2):204~206.
    [124] C.H.Wang,M.W.Brown,life prediction techniques for variable amplitude multiaxial fatigue,Journal of engineering materials and technology,1996,118:367~370.
    [125] W.Zhang,K.J.Miller,A study of cumulative damage under variable loading-mode conditions,Fatigue & Fracture of Engineering Materials & Structures,1996,19:229~239.
    [126] Lin.H,H.Nayeb-Hashemi,C.A.Berg,Cumulative damage behavior of anisotropic Al-6061-T6 as a function of axial-torsional loading mode sequence,J Engng Mater Tech,1994,116:27~34.
    [127] C.T.Hua,D.F.Socie,Fatigue damage in 1045 steel under constant amplitude loading,Fatigue of Engineering Materials and Structures,1984,8 (2):101~114.
    [128] J.J.F.Bonnen,T.H.Topper,The effect of bending overloads on torsional fatigue in normalized 1045 steel,International Journal of Fatigue ,1999,21:23~33.
    [129] J.J.F.Bonnen,F.A.Conle,T.H.Topper,The role of in-phase and out-of-phase overloads on the torsional fatigue of normalized SAE-1045 steel,International Journal of Fatigue,2001, 23:S385~S394.
    [130] CM.Sonsino,Influence of load and deformation-controlled multiaxial tests on fatigue life to crack initiation,International Journal of Fatigue,2001, 23:159~167.
    [131]王英玉,金属材料的多轴疲劳行为与寿命估算,[博士学位论文],南京,南京航空航天大学,2005.
    [132] Wen.Yi-Kwei, Statistical combination of extrem loads,Journal of the Structural Engineering,1977,103 (5):1079~1093.
    [133] Howard.T.Pearce,Wen.Yi-Kwei,Stochastic combination of loads effects,Journal of the Structural Engineering,1984,110 (7):1613~1629.
    [134] Richard.D.Larrabee,C.Allin.Comell,Upcrossing rate solution for load combination,Journal of the Structural Division,1979,105 (1):125~132.
    [135] K.Breitund,R.Rackwits,Nonlinear combination of load processes,Journal of Structural Mechanics,1982,10 (2):145~166.
    [136]林忠民,工程结构可靠性设计与估计,北京,人民交通出版社,1990
    [137] R.R.Lauridia,Statistical Analysis of Aircraft Maneuvering Data,AIAA Paper 79-074,1979,
    [138]航空航天工业部《ASST》系统工程办公室,飞机强度规范参考资料(四) 1989
    [139] P.Heuler,H.Kl?tschke,Generation and use of standardised load spectra and load–time histories,International Journal of Fatigue,2005,27:974~990.
    [140]田丁拴,通过飞行试验编制飞机多参数疲劳载荷谱,飞行试验,1992,(3):13~22.
    [141]张.李健,某型飞机后机身、尾翼组合体疲劳试验随机加载谱的自动生成,航空学报,2007,28 (3):586~589.
    [142]张勇,魏夺魁,航空涡喷涡扇发动机多参数载荷谱编制方法研究,航空发动机,2004,30 (1):6~9.
    [143]史海秋,赵福星,某型发动机承力机匣疲劳载荷谱研究,燃气轮机试验与研究,2005,8 (1):41~44.
    [144]徐灏,疲劳强度高等教育出版社,1988
    [145]姚卫星,金属材料疲劳行为的应力场强法描述,固体力学学报,1997,18 (1):38~48.
    [146]国际航空编辑部,斯贝MK202发动机应力标准(EGD-3),1979.
    [147]中华人民共和国国家标准,GB 6397-86,金属拉伸试验试样,1986.
    [148]工程材料使用手册编辑委员会,工程材料实用手册,中国标准出版社,1989.
    [149]国家技术监督局,GB/T 15248-94,金属材料轴向等幅低循环试验方法,1994.
    [150]程德金,模糊数学在飞行试验数据处理中的应用,飞行力学,1994,12 (2)
    [151]平安,王德俊,徐灏,关于确定小载荷取舍标准的研究,农业机械学报,1993,24 (3):64~69.
    [152] A.Varvani-Farahani,A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions,International Journal of Fatigue,2000,22:295~305.
    [153]王英玉,姚卫星,材料多轴疲劳破坏准则回顾,机械强度,2003,25 (3):246~250.
    [154] Wang.Ying-Yu,Yao.Wei-Xing,Evaluation and comparison of several multiaxial fatigue criteria,International Journal of Fatigue,2004,26:17~25.
    [155] C.H.Wang,M.W.Brown,A path-independent parameter for fatigue under proportional and nonproportional loading,Fatigue Fracture. Engineering. Material. Structure,1993,16 (12):1285~1298.
    [156] A.Fatima,D.F.Socie,Biaxial fatigue of 1045 steel,(in press),Fatigue of engineering Material and structures,1986.
    [157]尚德广,王德俊,周志革,一种新的多轴疲劳损伤参量,东北大学学报,1997.
    [158] D.F.Socie,Multiaxial Fatigue Damage Models,Journal of Engineering Materials and Technology,1987,109:293~298.
    [159] F.A.Kandil,M.W.Brown,K.J.Miller,Biaxial low cycle fatigue fracture of 316 strainless steel at elevated temperatiures,The metal society ,London,1982:203~210.
    [160] Garud.Y.S,A new approach to the evaluation of fatigue under multiaxial loading ,methods for predicting material life,1979:247~263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700