干涉型光纤微弱电场传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感器以其抗干扰性强、灵敏度高等特点越来越受到人们的重视。随着窄线宽激光光源、单模光纤及相关光器件性能的不断完善,光纤传感器种类在增加,性能也在不断提高。光纤干涉型微弱电场传感器就是其中的一种,它被认为是纯电学检测手段的最有竞争力的替代技术。在设计和工艺实现方面,光纤微弱电场传感器的光学结构正从Mach-Zehnder结构向Michelson结构转变,而换能材料则正从线性压电材料向非线性电致伸缩材料转变。本论文主要研究光纤微弱电场传感器原理,高灵敏度光纤微弱电场传感器系统的设计和工艺制作。主要内容包括:
     1.详细分析了基于全光纤Michelson干涉仪和电致伸缩换能材料的微弱电场传感系统的原理,论证、推导了相关公式,并在此基础上进行了系统总体结构设计。
     2.详细阐述和分析了电致伸缩材料的原理和特性,设计了一种以PLZT电致伸缩材料为敏感元件的“工”字型光纤微弱电场换能器,对其制作工艺进行了实验研究,给出了关键参数设置和制作方法。
     3.完成了系统的制作,实现了一套基于非线性电致伸缩材料PLZT和改进的全光纤Michelson干涉仪的微弱电场探测系统。对系统性能进行了大量的实验测试和分析。实验结果表明,该系统较好地解决了1/f噪声问题,对被测电场具有非常好的线性响应。系统具有较高的灵敏度,在5Hz的频率点上最小可探测电场达到了0.022(V/m)/(Hz)~(1/2) ,获得了预期效果。
     4.参与了微弱磁场光纤传感器的研究(这部分工作因篇幅原因不作为主要内容写入本论文),在此基础上提出一种将微弱电场传感系统和微弱磁场传感系统复用的多维度测量方法。同时还对空间三维矢量场的测量方法进行了探讨。
The fiber optic sensor becomes more and more popular due to its unique characteristics of immunity to electro-magnetic interference and high sensitivity. With the rapid development of narrow linewidth laser, single-mode fiber and related fiber-optic devices, more types of fiber optic sensors have been developed and the performances are been improved. Among them, the fiber-optic interferometric sensor detecting weak electric-field is the one, which is considered as the most competitive alternatives for a pure electrical detection. The trend in the design and implementation technology of weak electric field sensor in fiber optics evolves from Mach-Zehnder structure to Michelson structure and from linear piezoelectric material to nonlinear electrostrictive materials. This dissertation studies the principle of fiber-optic weak electric field sensor. A high-sensitivity, high-resolution interferometric fiber-optic weak electric-field sensor is designed and implemented. The main content includes:
     (1) The principle of weak electric-field sensor based on the all-fiber Michelson interferometer and the electrostrictive material is studied. Formula regarding the performance is derived. And the structure of the fiber-optic weak electric-field sensor system is designed.
     (2) The characteristics of the electrostrictive material are analyzed in details. A novel structure, which utilizes the electrostrictive ceramic (e.g., PLZT) as the sensitive element, is designed. The key issues related to the implementation technique are presented.
     (3) A sensor system detecting slow-varying weak electric-field based on above principle and material is implemented. The sensitivity and resolution of the sensor system are examined by a series of experiments. The results show that the system can overcome the1/ f noise issue and has good linear response to the weak DC electric-field. The sensor has a minimum detectable electric field of 0.022(V/m)//(Hz)~(1/2) at 5 Hz, which well matches the design goal.
     (4) The author has been engaged in the research of fiber optic sensor detecting the weak magnetic field. This study will not be included as part of the content in the dissertation due to the limitation in length. Based on this aspect of knowledge, a multiplexing integrated system for detecting electric and magnetic field is proposed. A three-dimensional vector field measurement method is demonstrated using the weak magnetic field fiber optic sensor.
引文
[1] 何勇, 光电传感器及其应用. 化学工业出版社, 2004: 1-6.
    [2] 雨宫好文[日], 传感器入门. 科学出版社, 2000: 1-8.
    [3] 薛青, 干涉型光纤磁场传感器稳定性研究. 上海交通大学, 2006.
    [4] 郭小明,罗承沐, 张贵新, 利用LiNbO3晶体电光效应测量脉冲电压. 电工电能新技术. 1995(2): 1-5.
    [5] 郭小明,苏进喜,罗承沐, 纳秒级脉冲电压的电光测量. 清华大学学报(自然科学版). 1997(4): 65-67.
    [6] 阎永志, 光纤电压电场传感器基本特性的研究与应用. 压电与声光. 1989(11): 15-21.
    [7] Z. P. Wang, Y. N. Ning A. W. Palmer, General review of optical current sensors. in Proceedings of SPIE - The International Society for Optical Engineering, Beijing, China: 1994, vol. 2321, pp. 158-161.
    [8] T. Bosselmann, Electric and magnetic field sensing for high-voltage applications. in Proceedings of SPIE - The International Society for Optical Engineering, 1997, vol. 3099, pp. 305-316.
    [9] J. Jarzynski, R. P. de Paula, Fiber optic electric field sensor technology. in Proceedings of SPIE - The International Society for Optical Engineering, Cambridge, MA, Engl: 1987, vol. 718, pp. 48-55.
    [10] A. Mendez, T. F. Morse K. A. Ramsey, Fiber optic electric-field microsensor. in Fiber Optic and Laser Sensors X, Boston, MA, USA: 1993, vol. 1795, pp. 153-164.
    [11] F. Rahmatian, N. A. F. Jaeger, High accuracy optical electric field and voltage sensors. in Optical Fiber Sensors Conference Technical Digest, 2002. OFS 2002, 2002, vol. 1, pp. 411-414.
    [12] A. H. Rose, S. M. Etzel K. B. Rochford, Optical fiber current sensors in high electric field environments. Journal of Lightwave Technology. 1999, 17(6): 1042-1048.
    [13] K. Bohnert, P. Pequignot J. Kostovic, Optical fiber voltage sensor for 420 kV air-insulated electric power systems. in Lasers and Electro-Optics, 1998. CLEO 98. Technical Digest. Summaries of papers presented at the Conference on, 1998, vol.
    [14] S. J. Huang D. C. Erickso, The potential use of optical sensors for the measurement of electric field distribution. Power Delivery, IEEE Transactions on. 1989, 4(3): 1579-1585.
    [15] S. T. Vohra F. Bucholtz, Fiber-optic ac electric-field sensor based on the electrostrictive effect. OPTICS LETTERS. 1992, Vol. 17(March 1).
    [16] S. T. Vohra, F Bucholtz A. D. Kersey, Fiber-optic dc and low-frequency electric-field sensor. OPTICS LETTERS. 1991, Vol. 16(September 15).
    [17] N. Kuwabara, K. Tajima R. Kobayashi, Development and analysis of electric field sensor using LiNbO3 optical modulator. Electromagnetic Compatibility, IEEE Transactions on. 1992, 34(4): 391-396.
    [18] N. Kuwabara, K. Tajima F. Amemiya, Development of wide-band and highly sensitive electric field sensor using LiNbO3 optical modulator,. in Electromagnetic Compatibility, 1991. Symposium Record. IEEE 1991 International Symposium on, 1991, vol. 267-272.
    [19] J. Rodriguez-Asomoza C. Gutierrez-Martinez, Electric field sensing system using aTi:LiNbO_3 optical coherence modulator. in Instrumentation and Measurement Technology Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE, 2001, vol. 2, pp. 1075-1078.
    [20] C. Gutierrez-Martinez, G. Trinidad-Garcia J. Rodriguez-Asomoza, Electric field sensing system using coherence modulation of light. Instrumentation and Measurement, IEEE Transactions on. 2002, 51(5): 985-989.
    [21] K. Ja-yoon, R. Cheol-hwi, C. Yong-moo, A possible application of the non-uniform electric field measurement using Pockels effect in GIS (gas insulated switchgear). in Plasma Science, 2003. ICOPS 2003. IEEE Conference Record - Abstracts. The 30th International Conference on,, 2003, vol. 150.
    [22] H. Kopola, A. Thansandote J. Chrostowski, An optical E-field sensor. in Precision Electromagnetic Measurements, 1990. CPEM '90 Digest., Conference on, 1990, vol. 196-197.
    [23] K. P. Koo, J. G. H. Sigel, An electric field sensor utilizing a piezoelectric polyvinylidene fluoride (PVF2) film in a single-mode fiber interferometer. Quantum Electronics, IEEE Journal of. 1982, 18(4): 670-675.
    [24] E. F. Carome, K. P. Koo, PVF2 phase shifters and modulators for fiber optic sensor systems. in 1980 Ultrasonics Symposium, 1980, vol. 710-712.
    [25] L. Fabiny, S. T. Vohra F. Bucholtz, High-resolution fiber-optic low-frequency voltage sensor based on the electrostrictive effect. Photonics Technology Letters, IEEE. 1993, 5(8): 952-953.
    [26] 薛青,陈建平,张翼,施长海,洪琳,李新碗, Michelson干涉型光纤磁场传感器稳定性研究. 光纤与电缆及其应用技术. 2006.
    [27] 张翼,陈建平,薛青,施长海,洪琳,叶爱伦,李新碗, Michelson干涉型光纤弱磁场传感器信号检测电路研究. 半导体光电. 2006.
    [28] 施长海, 干涉型光纤微弱磁场传感器研究. 上海: 上海交通大学, 2006.
    [29] Clay K Kirkendall, Anthony Dandridge, Overview of high performance fibre-optic sensing. Journal of Physics D: Applied Physics. 2004.
    [30] L. Fabiny, S. T. Vohra, F. Bucholtz, High-resolution fiber-optic low-frequency voltage sensor based onthe electrostrictive effect. IEEE Photonics Technology Letters. 1993, VOL. 5(August 1993).
    [31] Sandeep T. Vohra, Larry Fabiny Frank Bucholtz, Multiplexed fiber optic electric and magnetic field sensors. in SPIE, Vol. 2294, pp.
    [32] 施长海,陈建平,李新碗,王晓扬, 干涉型光纤微弱磁场传感系统换能器的设计. 传感器与微系统. 2006.
    [33] Changhai Shi, Jianping Chen, Xinwan Li, Ailun Ye, Junhe Zhou, Yi Zhang, Qing Xue Lin Hong, Visibility in magnetostrictive fiber-optic interferometric sensors and its dependence on the input SOP. Chinese Optics Letters. 2006, Vol. 4(January 10).
    [34] 张翼, 干涉型光纤弱磁场传感器信号检测电路的设计与研究. 上海交通大学, 2006.
    [35] 欧云, 压电式发动机主动悬置的设计理论及控制方法研究. 吉林大学, 2003.
    [36] 曾庆勇, 微弱信号检测. 浙江: 浙江大学出版社, 1994: 53-66.
    [37] 郑瑞清, 智能型电致伸缩液压悬置隔振特性研究. 吉林: 吉林大学, 2004.
    [38] 樊慧庆,张立同,张良莹,姚熹, 弛豫型铁电体的研究进展. 材料导报. 1999, 13(4).
    [39] 孟凡志,董文, 铁电陶瓷材料实验研究及应用. 长春工程学院学报(自然科学版). 2001, 2(3): 15-17.
    [40] 温保松,严鸿萍,马佳华, PMN基电致伸缩陶瓷电致应变温度特性. 无机材料学报. 2000, 15(6).
    [41] 屈绍波,杨祖培,高峰,田长生, 弛豫铁电体有序—无序转变理论及进展. 材料工程. 2000.
    [42] 温保松,严鸿萍,马佳华, 铌酸镁的合成与铌镁酸铅基电致伸缩陶瓷性能关系研究. 无机材料学报. 1999, 14(6).
    [43] 王世潘, 迟豫铁电体PZT:La陶瓷的电致伸缩效应的研究. 压电与声光. 1982, 10(5): 43-50.
    [44] 郑瑞清, 智能型电致伸缩液压悬置隔振特性研究. 吉林大学, 2004.
    [45] 中国电子科技集团公司第二十六研究所, WTDS1513017 电压-位移特性曲线. 2007.
    [46] Arthur Kay, 运算放大器电路中固有噪声的分析与测量,21IC中国电子网,2007,http://www.21ic.com/news/n17331c71.aspx.
    [47] 洪琳,陈建平,施长海,薛青,张翼,李新碗, 马赫-曾德尔干涉型光纤磁传感器灵敏度分析. 传感器技术. 2006.
    [48] Changhai Shi, Jianping Chen, Xinwan Li, Ailun Ye, Junhe Zhou, Yi Zhang, Qing Xue Lin Hong, A Novel Configuration for the Transducer of Magnetostrictive Fiber-Optic Interferometric Sensors. APOC. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700