原子—光场相互作用系统中的量子纠缠
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠已经成为量子计算和量子信息处理过程中的不可或缺的物理资源。量子纠缠态的制备、保持与调控是实现量子计算与量子信息处理的关键问题.本文研究原子与光场相互作用系统中的量子纠缠,考察原子的相干性、双光子过程中的Stark位移、原子跃迁频率之间的失谐量等对原子之间、光场之间、原子与光场之间的量子纠缠的影响,寻找制备高纠缠度、长寿命纠缠态的最佳系统参数条件,得到了一系列有创新意义的结果。
     第一章阐述原子-光场相互作用的基本理论和量子纠缠的基本理论。
     第二章研究双光子和单光子双JC模型中的纠缠突然死亡和纠缠持续现象。在双光子双JC模型中,考察Stark位移对原子纠缠和腔场纠缠的影响,研究用Stark位移控制原子纠缠的可能性。结果发现:忽略Stark位移时,原子纠缠出现突然死亡现象;考虑Stark位移时,此系统中的两原子不会出现退纠缠态,特别是当Stark位移参数取值较大时,两原子能保持稳态纠缠。在单光子双JC模型中,两原子与各自相互作用的光场之间经由不同的耦合常数相互作用,结果发现,耦合常数的不同使得两原子出现了长时间的纠缠。
     第三章研究两个相同二能级原子与单模热光场耦合时两原子间的纠缠动力学,结果表明当腔场温度很高(即模热光场的平均光子数取很大的值)时,原子的初始相干性导致原子纠缠显著增强。通过调节系统的初始参量,例如原子的初始相干程度、相对相位以及单模热光场的平均光子数,可以调控两原子间的纠缠程度。
     第四章研究二项式光场与级联三能级原子的量子纠缠,讨论了光场与原子的初始参量对其量子纠缠性质的影响。结果表明,利用二项式光场的特性,可以揭示从相干态到数态之间的所有态光场与三能级原子相互作用时的量子纠缠性质。选择适当的系统参数可以制备稳定的光场-原子qutrit纠缠态。
     第五章讨论一个运动的∨型三能级原子与关联的双模SU(1,1)相干态场相互作用系统中的量子纠缠。结果发现系统中的量子纠缠动力学极大依赖于场模结构参数p和模间光子数之差q。通过选择合适的系统参数和相互作用时间,可以制备原子-光场的qutrit最大纠缠态。此外,原子与双模SU(1,1)相干态场之间纠缠的增强或减弱总是与双模SU(1,1)相干态场的模间纠缠相反,两种纠缠相互制约。
     第六章对全文进行了总结和展望。
Quantum entanglement has been recognized as a useful resource in quantum computer and quantum information processing.Thus the issue of creating, preserving and controlling entanglement has great practical importance in actual quantum information processing.In this dissertation,quantum entanglement in the system with atom-field interaction is investigated.The effects of atomic coherence, Stark shift and detuning on entanglement are investigated,and the optimal system parameters for the genetation of the strong and long-lived entangled state are found.Some significant new results are obtained as follows:
     In chapter 1,the basic theories of atom-field interaction and quantum entanglement are expatiated.
     In chapter 2,the sudden death and long-lived entanglement between the two two-level atoms in two-photon and single-photon double JC models are investigated. In a two-photon double JC model,we study the effect of the Stark shift on the entanglement between the two two-level atoms and and that between the two cavity fields,and examine the possibility of controlling the entanglement by the dynamic Stark shift.These results show that the so-called entanglement sudden death can occur if the Stark shift is ignored.However,when the Stark shift is considered,the two atoms are not disentangled at any time,and for large values of the Stark shift parameter,the two atoms can remain in a steady entangled state. In a single-photon double JC model with different coupling constants,we find that the two atoms are in the long-lived entangled states due to difference of the two atom-cavity coupling constants.
     In chapter 3,the entanglement dynamics in a system of two two-level atoms resonantly interacting with a single-mode thermal field are studied.It is shown that,when the temperature of the cavity is high enough(corresponding to the large value of the mean photon number),the entanglement is greatly enhanced due to the initial atomic coherence,which is helpful for controlling the atomic entanglement by changing the initial parameters of the system,such as the su-perposition coefficients and the relative phases of the initial atomic coherent state and the mean photon number of the cavity field.
     In chapter 4,quantum entanglement between a binomial field and a cascade three level atom is studied,and the influences of the initial state parameters of the field and the atom on the quantum entanglement are discussed.The results show that quantum entanglement of all states from the coherent state to number state interacting with a cascade three level atom can be displayed by using the binomial field property.Steady field-atom qutrit entanglement state can be prepared via the appropriate selection of system parameters.
     In chapter 5,the entanglement in a system of a moving∨-type three-level atom interacting with the SU(1,1)-related coherent fields is studied.It is shown that the entanglement depends on the value of field-mode structure parameter p and the difference in photon between the two modes of q,and a maximal atomfield qutrit entanglement state can be prepared via the appropriate selection of system parameters and interaction time.In addition,the entanglement between the moving∨-type three-level atom and the SU(1,1)-related coherent fields and the entanglement between the SU(1,1)-related coherent fields go up and down in a contrary way,and they can impair each other due to the moving three-level atom interacting with the two-mode coherent fields.
     In chapter 6,the summarization and the prospect are presented.
引文
[1]Scully M.O.,Zubairy M.S.Quantum optics[M].London:Cambridge University Press,1997.
    [2]彭金生,李高翔.量子光学导论[M].北京:科学出版社,1996.
    [3]曾谨言.量子力学[M].北京:科学出版社,2000.
    [4]E.Schr(o|¨)dinger,Die Gegenwartige Situation in der Quanten-Mechanik[J].Natur-wissenschaften 1935,23:807.
    [5]周正威,郭光灿.量子信息讲座续讲[J].物理.2000,29:695.
    [6]张永德.量子信息物理原理[M].北京:科学出版社.2006.
    [7]A.Einstein,B.Podolsky,and N.Rosen,Can quantum-mechanical description of physical reality be considered complete?[J].Phys.Rev.1935,47:777.
    [8]N.Bohr,Can quantum-mechanical description of physical reality be considered complete?[J].Phys.Rev.1935,48:696.
    [9]G.J.Milburn著,郭光灿等译.费曼处理器[M].南昌:江西教育出版社.1999:49.
    [10]苏如铿.量子力学[M].上海:复旦大学出版社,1997:621.
    [11]J.S.Bell,On the einstein podolsky rosen paradox[J].Physics 1964,1:195
    [12]J.F.Clauser,M.A.Horne,A.Shimony et al,Proposed experiment to test local hidden-variable theories[J].Phys.Rev.Lett.1969,23:880.
    [13]A.Aspect,P.Grangier,G.Roger,Experimental tests of realistic local theories via bell's theorem[J].Phys.Rev.Lett.1981,47:460.
    [14]A.Aspect,P.Grangier,G.Roger,Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment:a new violation of Bell's inequalities[J].Phys.Rev.Lett.1982,49:91.
    [15]A.Aspect,P.Grangier,G.Roger,Experimental test of bell's inequalities using time-varying analyzers[J].Phys.Rev.Lett.1982,49:1804.
    [16]A.Aspect,Bell's inequality tell more ideal than ever[J].Nature,1999,398:189.
    [17]张开银,王树春,赵丽娟,黄晖,张光寅,许京军.量子物理的基础及其光学实验[J].激光技术,2001,25:232.
    [18]G.Weihs et al,Violation of Bell's inequality under strict einstein locality conditions [J].Phys.Rev.Lett.1998,81:5039.
    [19]Y.H.Shih,C.O.Alley,New type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion[J].Phys.Rev.Lett.1988,61:2921.
    [20]Z.Y.Ou,L.Mandel Violation of Bell's inequality and classical probability in a two-photon correlation experiment[J].Phys.Rev.Lett.1988,61:50.
    [21]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information [M].Cambridge:Cambridge University Press,2000.
    [22]D.Gottesrnan and I.L.Chuang,Quantum teleportation is a universal computational primitive[J].Nature,1999,402:390.
    [23]A.Ekert Quantum cryptography based on Bell's theorem[J].Phys.Rev.Lett.1991,67:661.
    [24]C.H.Bennett,G.Brassard,C.Cr(?)peau,R.Jozsa,A.Peres,and W.K.Wootters,Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.1993,70:1895.
    [25]C.H.Bennett and S.J.Wiesner,Communication via one-and two-particle opera-tors on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett.1992,69:2881.
    [26]J.K.Korbicz,J.I.Cirac and M.Lewenstein,Spin squeezing inequalities and cntanglement of n qubit states[J].Phys.Rev.Lett.2005,95:120502.
    [27]P.W.Shor,Scheme for reducing decoherencc in quantum computer memory[J].Phys.Rev.A,1995,52:R2493
    [28]R.Jozsa,D.S.Abrams,J.P.Dowling,C.P.Williams,Quantum clock synchronization based on shared prior entanglement[J].Phys.Rev.Lett.2000,85:2010.
    [29]S.F.Hueiga,C.Macchiavello,T.Pellizzari,A.K.Ekert,M.B.Plenio,J.I.Cirae,Improvement of frequency standards with quantum entanglement[J].Phys.Rev.Lett.1997,79:3865.
    [30]H.Lee,R.Kok and J.P.Dowling,Quantum imaging and metrology[R]Proceedings of the Sixth International Conference on Quantum Communication,Measurement and Computing,edited by J.H.Shapiro and O.Hirota,Princeton:Rinton Press 2002;quant-ph/0306113.
    [31]R.Raussendorf and H.J.Briegel,A one-way quantum computer[J].Phys.Rev.Lett.2001,86:5188.
    [32]R.Raussendorf,D.E.Browne and H.J.Briegel,Measurement-based quantum computation on duster states[J].Phys.Rev.A.2003,68:022312.
    [33]C.Brukner,V.Vedral and A.Zeilinger,Crucial role of quantum entanglement in bulk properties of solids[J].Phys.Rcv.A 2006,73:012110.
    [34]T.Roscilde,P.Verrucchi,A.Fubini,S.Haas,and V.Tognetti,Studying quantum spin systems through entanglement estimators[J].Phys.Rev.Lett.2004,93:167203.
    [35]V.Vedral,High temperature macroscopic entanglement[J].New.J.Phys.2004,6:102.
    [36]A.Osterloh,L.Amico,G.Falci and R.Fazio,Scaling properties of the entanglement at a quantum phase transition[J].Nature(London) 2002,416:608.
    [37]G.Vidal,J.Latorre,E.Rico and A.Kitaev,Entanglement in quantum critical phenomena[J].Phys.Rev.Lett.2003,90:227902.
    [38]M.B.Plenio,S.Virmani,An introduction to entanglement measures[J].Quant.Inf.ComPut.2007,7:1.
    [39]M.A.Rowe et al,Experimental violation of a Bell's inequality with efficient detection[J].Nature(London),2001,409:791.
    [40]张永德.量子力学[M].北京:科学出版社.2000.
    [41]A.Rauschenbeutel,G Nogues,S.Osnaghi,et al.Step-by-step engineered multiparticle entanglement[J].Science.2000,288:2024.
    [42]R.G.DeVOe and R.G.Brewer,Step-by-step engineered multiparticle entanglement [J].Phys.Rev.Lett.1996,76:2049.
    [43]D.Riesch,K.Abich,W.Neuhauser,et al.Raman cooling and heating of two trapped Ba~+ ions[J].Phys.Rev.A 2002,65:053401.
    [44]J.I.Cirac and P.Zoller,Quantum computations with cold trapped ions[J].Phys.Rev.Lett.1991,74:4091.
    [45]N.Gershefeld and I.L.Chuang,Bulk spin-resonance quantum computation[J].Science,1997,275:350.
    [46]H.Pu and P.Meystre,Creating macroscopic atomic Einstein-Podolsky-Rosen states from bose-einstein condensates[J].Phys.Rev.Lett.2000,85:3987.
    [47]L.M.Duan,A.Sorensen,J.I.Cirac,et al.Squeezing and Entanglement of atomic beams[J].Phys.Rev.Lett.2000,85:3991.
    [48]R.Horodecki,P.Horodecki,M.Horodecki,K.Horodecki.Quantum entanglement[J/OL],arXiv:quant-ph/0702225,Available at http://xxx.lanl.gov/abs/quant-ph/0702225.
    [49]V.Vedral and M.B.Plenio,Entanglement measures and purification procedures[J].Phys.Rev.A 1998,57:1619.
    [50]M.J.Donald,M.Horodecki and O.Rudolph,The uniqueness theorem for entanglement measures[J].J.Math.Phys.2002,43:4252.
    [51]M.Horodecki,Entanglement measures[J]Quant.Inf.Comput.2001,1:3.
    [52]F.Mintert,A.R.R.Carvalho,M.Kus and A.Buchleitner,Measures and dynamics of entangled states[J].Phys.Rep.2005,415:207.
    [53]S.J.D.Phoenix and P.L.Knight,Fluctuation and entropy in models of quantum optical resonance[J].Ann.Phys.(N.Y.) 1988,186:381.
    [54]S.J.D.Phoenix and P.L.Knight,Establishment of an entangled atom-field state in the Jaynes-Cummings model[J].Phys.Rev.A 1991,44:6023.
    [55]S.J.D.Phoenix and P.L.Knight,Periodicity,phase,and entropy in models of two-photon resonance[J].J.Opt.Soc.Am.B 1990,7:116.
    [56]J.von Neumann.Mathematical Foundations of Quantum Mechanics(translated by Beyer R T)[M].Princeton:Princeton University Press,1955.
    [57]S.Bose and V.Vedral,Mixedness and teleportation[J]Phys.Rev.A 2000,61:040101.
    [58]A.Wehrl,General properties of entropy[J]Rev.Mod.Phys.1978,50:221.
    [59]E.Schmidt.Zur theorie der linearen und nichtlinearen integralgleichungen[J].Math.Ann.1907,63:433.
    [60]A.Ekert and P.L.Knight.Entangled quantum systems and the Schmidt decomposition [J].Am.J.Phys.1995,63:415.
    [61]L.P.Hughston,R.Josza and W.K.Wootters.A complete classification of quantum ensembles having a given density matrix[J].Phys.Lett.A,1993,183:14.
    [62]J.Gea-Banacloche.Collapse and revival of the state vector in the Jaynes-Cummings model:An example of state preparation by a quantum apparatus[J].Phys.Rev.Lett.1990,65:3385.
    [63]W.H.Zurek,S.Habib and J.P.Paz,Coherent states via decoherence[J].Phys.Rev.Lett.1993,70:1187.
    [64]J.G.Peixoto de Faria and M.C.Nemes,Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation:Analytical results[J].Phys.Rev.A 1999,59:3918.
    [65]张立辉,李高翔,彭金生位相损耗腔中简并双光子拉曼耦合系统中的熵特性[J].物理学报2002,51:541.
    [66]M.G.A.Paris,Entanglement and visibility at the output of a Mach-Zchnder interferomcter[J].Phys.Rev.A,1999,59:1615.
    [67]G.Lindblad,Completely positive maps and entropy inequalities[J].Commun.Math.Phys.1975,40:147.
    [68]L.Henderson and V.Vedra,Information,Relative Entropy of Entanglement,and Irreversibility[J].Phys.Rev.Lett.2000,84:2263.
    [69]K.(?)yczkowski,P.Horodecki,A.Sanpera and M.Lewenstein.Volume of the set of separable states[J].Phys.Rev.A 1998,58:883.
    [70]G.Vidal and R.F.Werner,Computable measure of entanglement[J].Phys.Rev.A 2002,65:032314.
    [71]W.K.Wootters,Entanglement of formation of an arbitrary state of two qubits[J].Phys.Rev.Lett.1998,80:2245.
    [72]A.Peres,Separability criterion for density matrices[J].Phys.Rev.Lett.1996,77:1413.
    [73]K.(?)yczkowski,Volume of the set of separable states.Ⅱ[J].Phys.Rev.A.1999,60:3496.
    [74]T.C.Wei and Paul M.Goldbart,Geometric measure of entanglement and applications to bipartite and multipartite quantum states[J].Phys.Rev.A 2003,68:042307.
    [75]T.C.Wei,M.Ericsson,Paul M.Goldbart and W.Munro,Connections between relative entropy of entanglement and geometric measure of entanglement[J].Quant.Inf.Comput.2004,4:252.
    [76]D.A.Meyer and N.R.Wallach,Global entanglement in multiparticle systems[J].J.Math.Phys.2002,43:4273.
    [77]F.Verstraete,M.Popp and J.I.Cirac,Entanglement versus correlations in spin systems[J].Phys.Rev.Lett.2004,92:027901.
    [78]V.Coffman,J.Kundu and W.K.Wootters,Distributed entanglement[J].Phys.Rev.A 2000,61:052306.
    [79]R.Lohmayer,A.Osterloh,J.Siewert and A.Uhlmann,Entangled three-qubit states without concurrence and three-tangle[J].Phys.Rev.Lett.2006,97:260502.
    [80]K.Audenaert,F.Verstraete,Tijl De Bie and Bart De Moor,Negativity and Concurrence of mixed 2×2 states[J/OL].arXiv:qumat-ph/0012074,Available at http://xxx.lanl.gov/abs/quant-ph/0012074
    [81]F.Verstraete,K.Audenaert,Jeroen Dehaene and Bart De Moor,A comparison of the entanglement measures negativity and concurrence[J].J.Phys.A:Math.Gen.2001,34:10327.
    [82]S.Hill and W.K.Wootters,Entanglement of a pair of qumatum bits[J].Phys.Rev.Lett.1997,78:5022.
    [83]H.K.Lo and S.Poperscu.Concentrating entanglement by locad actions-beyond mean values[J/OL],arXiv:qumat-ph/9707038,Available at http://xxx.lanl.gov/abs/qumat-ph/9707038v2
    [84]D.N.Matsukevich and A.Kuzmich,Quantum state transfer between matter and light[J].Science 2004,306:663.
    [85]J.Volz,M.Weber,D.Schlenk,et al.Atom-photon entanglement[J/OL]arXiv:quant-ph/0511183 Available at http://xxx.lanl.gov/abs/quant-ph/0511183.
    [86]B.Julsgaard,J.Sherson,J.I.Cirac et al,Experimental demonstration of quantum memory for light[J].Nature 2004,432:482.
    [87]D.Boschi et al,Experimental realization of teleportating an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.1998,80:1121.
    [88]L.M.Duan,M.D.Lukin,J.I.Cirac,P.Zoller,Long-distance quantum communication with atomic ensembles and linear optics[J].Nature 2001,414:413.
    [89]J.Preskill,Lecture notes on quantum information and computation[J/OL].Available at http://www.theory.caltech.edu/people/preskill/ph219/.
    [90]W.H.Zurek,Decoherence,einselection,and the quantum origins of the classical[J].Rev.Mod.Phys.2003,75:715.
    [91]T.Yu,J.H.Eberly,Finite-time disentanglement via spontaneous emission[J].Phys.Rev.Lett.2004,93:140404.
    [92]T.Yu,J.H.Eberly,Quantum open system theory:bipartite aspects[J].Phys.Rev.Lett.2006,97:140403.
    [93]J.H.Eberly,and T.Yu,The end of an entanglement[J].Science 2007,316:555.
    [94]M.Y(o|¨)nac,T.Yu and J.H.Eberly,Sudden death of entanglement of two Jaynes+Cummings atoms[J].J.Phys.B 2006,39:S621.
    [95]M.Y(o|¨)nac,T.Yu and J.H.Eberly,Pairwise concurrence dynamics:a four-qubit model[J].J.Phys.B 2007,40:S45.
    [96]M.Y(o|¨)nac and J.H.Eberly,Qubit Entanglement driven by remote optical fields[J].Opt.Lett.2008,33:270.
    [97]M.P.Almeida,F.de Melo,M.Hor-Meyll,A.Salles,S.P.Walborn,P.H.Souto Riberio and L.Davidovich,Environment-induced sudden death of entanglement[J].Science 2007,316:579.
    [98]C.V.Sukumar,B.Buck,Multi-phonon generalization of the Jayncs-Cummings model[J].Phys.Lett.A 1981,83:211.
    [99]P.Alsingh,M.S.Zubairy,Collapse and revivals in a two-photon absorption process [J].J.Opt.Soc.Am.B 1987,4:177.
    [100]M.Abdel-aty,Quantum field entropy and entanglement of a three-level atom twomode system with an arbitrary nonlinear medium[J].J.Mod.Opt.2003,50:161.
    [101]A.Joshi and R.R.Puri,Quantum electrodynamics of a rydberg atom making two-photon transitions in the binomial state of the field in a lossless cavity[J].J.Mod.Opt.1989,36:215.
    [102]R.R.Puri and R.K.Bullough,Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity[J].J.Opt.Soc.Am.B 1988,5:2021.
    [103]T.Nasreen and M.S.K.Razmi,Effect of the dynamic Stark shift on dipole squeezing in two-photon processes[J].Phys.Rev.A 1992,46:4161.
    [104]A.Joshi,Nonlinear dynamical evolution of the driven two-photon Jaynes-Cummings model[J].Phys.Rev.A 2000,62:043812.
    [105]F.L.Semi(?)o and K.Furuya,Entanglement in the dispersive interaction of trapped ions with a quantized field[J].Phys.Rev.A 2007,75:042315.
    [106]M.F.Fang and X.Liu,Influence of the Stark shift on the evolution of field entropy and entanglement in two-photon processes[J].Phys.Lett.A 1996,210:11.
    [107]S.Bay,M.Elk and P.Lambropoulo,Aspects of the degenerate two-photon laser[J].J.Phys.B.1995,28:5359.
    [108]A.-S.F.Obada,F.A.Mohammed,H.A.Hessian,A.-B.A.Mohamed,Entropies and entanglement for initial mixed state in the multi-quanta JC model with the Stark shift and Kerr-like medium[J].Int.J.Theor.Phys.2007,46,1027-1044.
    [109]B.Ghosh,A.S.Majumdar and N.Nayak,Control of atomic entanglement by the dynamic Stark effect[J].J.Phys.B 2008,41:065503.
    [110]M.Abdel-Aty and H.Moya-Cessa,Sudden death and long-lived entanglement of two trapped ions[J].Phys.Lett.A 2007,369:372.
    [111]M.Brune,J.M.Raimond,P.Goy,L.Davidovich and S.Haroche,Realization of a two-photon maser oscillator[J].Phys.Rev.Lett.1987,59:1899.
    [112]M.Brune,J.M.Raimond and S.Haroche,Theory of the Rydberg-atom twophoton micromaser[J].Phys.Rev.A 1987,35:154.
    [113]L.Davidovich,J.M.Raimond,M.Brune and S.Haroche,Quantum theory of a two-photon micromaser[J].Phys.Rev.A 1987,36:3771.
    [114]I.Ashraf,J.Gea-Banacloche and M.S.Zubairy,Theory of the two-photon micromaser:Photon statistics[J].Phys.Rev.A 1990,42:6704.
    [115]A.H.Toor,S.Y.Zhu and M.S.Zubairy,Theory of the two-photon micromaser:Linewidth[J].Phys.Rev.A 1996,53:3529.
    [116]L.M.Duan,A.Kuzmich and H.J.Kimble,Cavity QED and quantum-information processing with "hot" trapped atoms[J].Phys.Rev.A 2003,67:032305.
    [117]N.Cumings,and B.L.Hu,Dynamics of atom-field entanglement from exact solutions:Towards strong coupling and non-markovian regimes[J/OL],quant-ph /0708.2257v2.Available at http://xxx.lanl.gov/abs/0708.2257v2
    [118]L.Zhou,H.Xiong and M.Suhail Zubairy,Single atom as a macroscopic entanglement source[J].Phys.Rev.A 2006,74:022321.
    [119]S.V.Prants,M.Yu.Uleysky and V.Yu.Argonov,Entanglement,fidelity,and quantum-classical correlations with an atom moving in a quantized cavity field[J].Phys.Rev.A 2006,73:023807.
    [120]E.Solano,G.S.Agarwal and H.Walther,Strong-driving-assisted multipartite entanglement in cavity QED[J].Phys.Rev.Lett.2003,90:027903.
    [121]M.O.Scully,Correlated spontaneous-emission lasers:Quenching of quantum fluctuations in the relative phase angle[J].Phys.Rev.Lett.1985,55:2802.
    [122]M.O.Scully and M.S.Zubairy,Theory of the quantum-beat laser[J].Phys.Rev.A 1987,35:752.
    [123]J.Bergou,M.Orszag and M.O.Scully,Correlated-emission laser:Phase noise quenching via coherent pumping and the effect of atomic motion[J].Phys.Rev.A 1988,38:768.
    [124]J.Krause and M.O.Scully,Theory of the holographic laser:Correlated emission in a ring cavity[J].Phys.Rev.A 1987,36:1771.
    [125]M.O.Scully,K.W(?)dkiewicz,M.S.Zubairy,J.Bergou,N.Lu and Meyerter Vehn,Two-photon correlated-spontaneous-emission laser:Quantum noise quenching and squeezing[J].Phys.Rev.Lett.1988,60:1832.
    [126]M.Ohtsu and K.-Y.Liou,Correlated spontaneous emission between two longitudinal modes in an extended-cavity semiconductor laser[J].Appl.Phys.Lett.1988,52:10.
    [127]M.O.Scully,Enhancement of the index of refraction via quantum coherence[J].Phys.Rev.Lett.1991,67:1855.
    [128]A.Leviatan and B.Shao,Deformed single-particle levels in the Boson-Fermion model[J].Phys.Rev.Lett.1990,64 110.
    [129]S.E.Harris,J.E.Field and A.Imamo(?)lu,Nonlinear optical processes using electromagnetically induced transparency[J].Phys.Rev.Lett.1990,64:1107.
    [130]A.Javan,Theory of a three-level maser[J].Phys.Rev.1956,107:1579.
    [131]M.O.Scully,S.Y.Zhu and A.Gavrielides,Degenerate quantum-beat lazer:Lazing without inversion and inversion without lasing[J].Phys.Rev.Lett.1989,62:2813.
    [132]F.l.Li,H.Xiong and M.S.Zubairy,Coherence-induced entanglement[J].Phys.Rev.A 2005,72:010303(R).
    [133]X.Y.Wang,S.D.Du and X.S.Chen,Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field[J].J.Phys.B 2006,39:3805.
    [134]V.Vedral,M.B.Plenio,M.A.Rippin and P.L.Knight,Quantifying entanglement [J].Phys.Rev.Lett.1997,78:2275.
    [135]C.H.Bennett,D.P.DiVincenzo,J.A.Smolin and W.K.Wootters,Mixed-state entanglement and quantum error correction[J].Phys.Rev.A 1996,54:3824.
    [136]S.Bose,I.Fuentes-Guridi,P.L.Knight and V.Vedral,Subsystem purity as an enforcer of entanglement[J].Phys.Rev.Lett.2001,87:050401.
    [137]M.S.Kim,J.Lee,D.Ahn and P.L.Knight,Entanglement induced by a singlemode heat environment[J].Phys.Rev.A 2002,65:040101.
    [138]L.S.Aguiar,P.P.Munhoz,A.Vidiella-Barranco and J.A.Roversi,The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field[J].J.Opt.B 2005,7:S769.
    [139]L.Zhou,H.S.Song and C.Li,Entanglement induced by a single-mode thermal field and the criteria for entanglement[J].J.Opt.B 2002,4:425.
    [140]E.K.Bashkirov,Entanglement induced by the two-mode thermal noise[J].Laser Phys.Lett.2006,3:145.
    [141]P.Horodecki,Separability criterion and inseparable mixed states with positive partial transposition[J].Phys.Lett.A 1997,232:333.
    [142]M.Brune,J.M.Raimond,P.Goy,L.Davidovich and S.Haroche,Realization of a two-photon maser oscillator[J].Phys.Rev.Lett.1987,59:1899.
    [143]P.Zhou and J.S.Peng,Dipole squeezing in the two-photon Jaynes-Cummings model with superposition state preparation[J].Phys.Rev.A 1991,44:3331.
    [144]L.Zhou,H.S.Song,Y.X.Luo and C.Li,Dissipative dynamics of two-photon Jaynes-Cummings model with the Stark shift in the dispersive approximation[J].Phys.Lett.A 2001,284:156.
    [145]X.Wang,A.S.Scrensen and K.Mφhner,Spin squeezing in the Ising model[J].Phys.Rev.A 2001,64:053815.
    [146]X.Wang,Spin squeezing in nonlinear spin-coherent states[J].J.Opt.B 2001,3:93.
    [147]V.Bu(?)ek and B.Hladk(?),Macroscopic superposition states of light via two-photon resonant interaction of atoms with cavity field[J].J.Mod.Opt.1993,40:1309.
    [148]A.Joshi,Two-mode two-photon Jaynes-Cummings model with atomic motion[J].Phys.Rev.A 1998,58:4662.
    [149]D.Stoler,B.E.A.Saleh and M.C.Teich,Binomial states of the quantized radiation field[J].Opt.Acta.1985,32:345.
    [150]G.Dattoli,J.Gallardo and A.Torre,Binomial states of the quantized radiation field:comment[J].J.Opt.Soc.Am B 1987,2:185.
    [151]M.Bourennane,A.Karlsson and G.Bjork,Quantum key distribution using multilevel encoding[J].Phys.Rev.A 2001,64:012306.
    [152]D.Bruss and C.Macchiavello,Optimal eavesdropping in cryptography with three-dimensional quantum states[J].Phys.Rev.Lett.2002,88:127901.
    [153]N.J.Cerf et al,Security of quantum key distribution using d-level systems[J].Phys.Rev.Lett.2002,88:127902.
    [154]D.Kaszlikowski et al,Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits[J].Phys.Rev.Lett.2000,85:4418.
    [155]D.Kaszlikowski et al,Three-qutrit correlations violate local realism more strongly than those of three qubits[J].Phys.Rev.A 2002,66:032103.
    [156]A.Acin,T.Durt,N.Gisin and J.I.Latorre,Quantum nonlocality in two threelevel systems[J].Phys.Rev.A 2002,65:052325.
    [157]J.L.Chen et al,Entangled three-state systems violate local realism more strongly than qubits:An analytical proof[J].Phys.Rev.A 2001,64:052109.
    [158]R.R.Schlicher,Jaynes-Cummings model with atomic motion[J].Opt.Commun.1989,70:97.
    [159]A,Joshi and S.V.Lawande,Effect of atomic motion on Rydberg atoms undergoing two-photon transitions[J].Phys.Rev.A 1990,42:1752.
    [160]V.Bartzis,Generalized Jaynes-Cummings model with atomic motion[J].Physica A 1992,180:428.
    [161]M.F.Fang,Effects of atomic motion and field mode structure on the field entropy and Schr(o|¨)dinger-cat states in the Jaynes-Cummings model[J].Physica A 1998,259:193.
    [162]W.K.Lai,V.Buzek and P.L.Knight,Interaction of a three-level atom with an SU(2) coherent state[J].Phys.Rev.A 1991,44:2003.
    [163]D.Cohon,Y.B.Aryeh and A.Mann,Transfer of correlations from squeezed states of radiation to atoms in a generalized Jaynes-Cummings mode[J].Phys.Rev.A 1991,49:2040.
    [1641 A.Joshi and S.V.Lawande,Squeezing and quasiprobabilities for a two-photon Jaynes-Cummings model with atomic motion[J].Int J.Mod.Phys.B 1992,6:3539.
    [165]A.Joshi and S.V.Lawande,Effect of atomic motion on Rydberg atoms undergoing two-photon transitions in a lossless cavity[J].Phys.Rev.A 1990,42:1752.
    [166]R.R.Schlicher,Jaynes-Cummings model with atomic motion[JI.Opt.Commum.1989,70:97.
    [167]C.G.Christopher,Correlated two-modc SU(1,1) coherent states:nonclassical properties[J].J.Opt.Soc.Am.B 1991,8:685.
    [168]E.Rains,Bound on distillable entanglement[J].Phys.Rev.A 1999,60:179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700