运动原子与光场相互作用系统的纠缠演化特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息科学作为量子力学、计算机科学和信息学相融合发展起来的一门新兴的交叉学科,诞生于二十世纪八十年,因为其依靠量子纠缠性、量子相干性、非局域性及不可克隆等许多当前经典信息技术所不具备的基本量了特性,近二十年来,已引起国内外物理学家浓厚兴趣而得到迅猛发展,并取得丰硕研究成果。
     量子纠缠作为量子力学不同于经典物理最深刻、最奇特和最不可思议的奇妙现象,也是量了信息科学和量了计算的重要资源,因此人们从多方面对量了纠缠本质、演化、度量和应用等进行了广泛研究。这一方面有助十深入理解量子力学的基本问题;另一方面也有助于把握量子纠缠在量子信息处理中的所起的作用。
     本文应用全量子理论和数值计算方法分别研究了双运动原子与单模光场和双运动原子与双模光场相互作用体系的纠缠演化特性,得出了一系列有意义的结论。
     第一章主要介绍量子信息科学中与本文相关的一些基本理论,量子纠缠的概念、性质和度量、相干态光场形式、光场与原子作用的儿种典型理论模型、推广的Tavis-Cummings模型;
     第二章研究了Tavis-Cummings模型中两个二能级运动原子与单模Fock态光场相互作用系统中的两原子纠缠演化特性。通过考察改变两原子初始纠缠量和原子运动速度参量,得出原子运动速度参量和两原子初始纠缠量对两原子纠缠动力学的显著影响,发现了如何通过选择合适的原子初态和原子运动速度参量,保持两原子最大纠缠态的方法;
     第三章研究了两个二能级运动原子与双模纠缠相干光场相互作用过程中的纠缠动力学行为。结果表明:两原子初始纠缠量、光场的平均光子数、光场的初始纠缠量和原子运动速度参量对两原子纠缠动力学有显著影响。当光场较弱时,两原子纠缠演化振荡的幅值随光场纠缠量的增加而明显增加;而当光场较强时,两原子纠缠量随光场纠缠量的增加而增加;两原子纠缠演化的振荡幅值和纠缠量都随着平均光子数的增多而减小;选择合适的初始状态、光场纠缠量与原子运动速度参量,可导致两原子纠缠出现突然死亡和复苏,而且当原子运动速度增大或减小时,可以控制纠缠的突然死亡和复苏,当速度大于某一值时,可避免纠缠突然死亡的出现。
     第四章对全文进行了总结并对相关问题进行了展望。
Quantum information science, as an emerging interdisciplinary field of subjects in computer science, information science and quantum physics, has been established since the 1980s.1980s. Quantum information technology is based on quantum featuress such as quantum entanglement, quantum coherence, quantum non-locality, quantum non-cloning and so on, which are not available for present traditional information techniques. In the past two decades, quantum information technology has attracted domestic and overseas physicists'interests. It has been developing swiftly with plentiful and substantial achievements obtained.
     In the quantum world, quantum entanglement is the most profound, the most intriguing, the most incredible and wonderful phenomenon, which is totally different from the classical physics. It is also an important resource for quantum information processing and quantum computing. So far, there are lots of extensive researches focused on the essence, evolution, quantification, and applications of quantum entanglement. On the one hand, these researches are helpful to understand the basic problems of quantum mechanics. On the other hand, it will help us to find out the role of the quantum entanglement in quantum information processing. In this thesis, the entanglement of two moving atoms interacting with a single-mode field is investigated by using quantum theory and numerical methods, as well as the entanglement of two moving atoms interacting with a dual-mode field. A series of valuable conclusions are obtained.
     Chapter I:As an introduction, in this chapter, we introduce the basic principles of quantum information science used in this work:quantum entanglement, as well as its nature and quantification coherent state field, several typical models about interaction between atoms and optical field, and the generalized Tavis-Cummings model.
     Chapter II:The entanglement of two moving two-level atoms interacting with a single-mode Fock field is investigated in Tavis-Cummings model. The entanglement dynamics of the two atoms are studied by varying the parameters of the initial entanglement of two atoms and the atomic velocity. The results indicate that the influences of these parameters on the two-atom entanglement are remarkable, and the maximum entanglement can be maintained when the some specific parameters are chosen.
     ChapterⅢ:The entanglement of two moving two-level atoms interacting with a dual-mode entangled coherent field is also investigated. The results show that the initial entanglement of two atoms, the average photon number of the field and the velocity of atoms affect the entanglement dynamics of the two atoms remarkably. In the weak field case, the oscillating amplitude of the two-atom entanglement dynamics increases with the increase of the fields entanglement. In the strong field case, the dynamics of the entanglement of the two atoms increases with the increasing initial field entanglement. However, the oscillating amplitude of the entanglement dynamics decrease with the increase of the average photon number of the field. When appropriate parameters of the atomic initial state, the fields entanglement, and the atomic velocity are chosen, two-atom entanglement can reach zero in finite time (entanglement sudden death) and then revive in some specific time(entanglement revival). In addition, the sudden death and revival of the two-atom entanglement can be controlled by appropriately selecting the atomic velocity.
     ChapterⅣ:We will summarize the results and give some outlooks about the further investigation.
引文
[1]周世勋,量子力学教程[M],高等教育出版社,2004
    [2]曾谨言,量子力学导论[M],北京大学出版社,2005
    [3]喀兴林,高等量了力学[M],高等教育出版社,2004
    [4]张永德 量子信息物理原理[M].北京:科学出版社,2006
    [5]赵千川[译]。量子计算和量子信息[M].北京:清华大学出版社,2004
    [6]李承祖,黄明球,陈平形,梁林海.量了通信与量了计算[M].长沙:国防科技大学出版社,2000
    [7]C. H. Bennett, C. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporti ng an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels[J]. Phys.Rev. Lett.,1993,70:1895-1899.
    [8]D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. zeilinger. Experimental quantum teleportation[J].Nature (London),1997, 390:575.
    [9]Nielsen M A, Kill E, Lanflamme R. Complete quantum telportation using nuexear magnetic resonance[J]. Nature,1998,396(6706):52-55.
    [10]A.Furusawa,J.L.sorensen.S.L. Braunstein,C. A. Fuchs,H. J. Kimble, E. S. Polzik, Unconditional quantum teleportation[J]. Scienee,1998,282(5389):706-709.
    [11]A. K. Ekert. Quantum cryptography based on Bell's theorem[J]. Phys.Rev.Lett.,1991,67:661.
    [12]C. H. Bennett,et al. Quantum cryptography[J]. Scientific American,1992, 50,October.
    [13]C. H. Bennett,et al. Experimental quantum cryptography[J]. J. Cryptography 1992,5:3-28.
    [14]C. H. Bennett,et al. Quantum cryptography using any two nonorthogonal stater[J]. Phys. Rev. Lett.,1992,68:3121.
    [15]C. H. Bennett, S. J. Wiesner. Communication via one-and-two particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett.,1992,69:2881.
    [16]A. Barenco,A.K.Ekert,Dense coding based on quantum entanglement[J]. J. Mod. Opt. Vol.1995,42:1253.
    [17]R. Feynman. Simulating physics with computers[J]. Int. J. Theor, Phys.1982,21: 467.
    [18]R. Feynman. Quantum mechanical computers[J]. Opt. News.11,1985:Found. Phys.1986,16:507.
    [19]N.Linden,S. Popescu. Good dynamics versus bad kinematics:Is entanglement needed for quantum computation? [J]. Phys. Rev. Lett.,2001,87:047901.
    [20]R. Penrose. Quantum computation, entanglement and state reduction [J]. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1998,356(1743): 1927-1938.
    [21]H. Chen. Constructing quantum codes. Front. Comput. Sci. China,2008, 2(2):143-146
    [22]A.E instein,B. Podolsky, and N.Rose. Can qantum-mechanical description of physical reality be considered complete[J]?Phys. Rev.1935,47:777
    [23]E. Schrodinger. Die gegenwartige situation in der qantum-mechanik[J]. Naturwissenschaften.1935,23:807
    [24]M.A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information[M], Cambridge Univ. Press,2000
    [25]K. L. Grover. Quantum mechanics helps in serching for a needle in a haystack [J]. Phys. Rev. Lett.,1979,79:325.
    [26]A. Barenco, A. K. Eker. Dense conding based on quantum entanglement[J]. Journal of Mordem Optics,1995,42:1253.
    [27]T. Yu, J. H. Eberly.Finite-time disentanglement via spontaneous emission[J]. Phys. Rev. Lett.2004,93:140404.
    [28]TAVIS M, CUMMINGS F W. Exact solution for an n-molectde- radiation-field hamihonian[J]. Phys Rev A,1968,170:379-384.
    [29]工忠纯.外场驱动对Tavis-Cummings模型中量子态保真度的影响[J].物理学报,2006,55(9):4624-4630
    [30]姜春蕾,方卯发,吴珍珍.双纠缠原子在耗散腔场中的纠缠动力学[J].物理学报,2006,55(9):4647-465.
    [31]单传家,夏云杰Tavis-Cummings模型中两纠缠原子纠缠的演化特性[J].物理学报2006,55(04):1585-1590.
    [32]左战春,夏云杰Tavis-Cummings模型中三体纠缠态纠缠量的演化特性[J].物理学报,2003,52(11):2687-2693.
    [33]王忠纯Tavis-Cummings模型中原子运动时光场的非经典特性[J].物理学报,2006,55(1):0192-0196.
    [34]Lawande A J S V. Squeezing and quasiprobabilities for at wo-photon Jaynes —Cummings model with atomic motion[J].. Int. J. Mod phys (B),1992,6(10),3539-3545.
    [35]Joshi A, Lawande S V. Effeet of atomic motion on Rydberg atoms under-going two—photon transitions in alossless cavity[J]. Phys. Rev. A,1990,42(3),1752-1756.
    [36]Fang M F. Effeets of atomic motion and field mode strueture on the field entroy and Schrodinge—cat states in the Jaynes—Cummings model[J], Physiea A,1998,259(2),193-204.
    [37]陈菊梅,方卯发,原子质心运动和场模结构对场相位动力学的影响[J].光学学报,2000,20(7),890-895
    [38]刘安玲,方卯发.双光子过程中模场与运动原子相互作用的非经典性质[J],量子光学学报,2000,6(4),139-143
    [39]Bartzis V, Generalized Jaynes—Cummings model with atomic motion[J]. Physica A,1992,180(4),428-434
    [40]刘堂昆,王继锁,詹明生.含原子运动的Jaynes—Cummings模型中的量子态保真度[J],原子分子物理学报.2001,18(1)58-63
    [41]D IEDR ICH F, BERGQU IST J C, ITANO W N, et al. Laser Cooling to the Zero2oint Energy of Motion[J]. Phys.Rev.Lett.,1989,62 (4):403-406.
    [42]Bartzis V. Generalized Jaynes-Cummings model with atomic motion[J]. Physica A,1992,180:428
    [43]Schlicher R R.Jaynes-Cummings model with atomic motion[J]. Opt Commun. 1989,70:97
    [44]Joshi A,Lawande S V. Squeezing and quasiprobabilities for a two-photon Jaynes- Cummings model with atomic motion. Int J Mod Phys B,1992,6:3539
    [45]廖湘萍,方卯发.原子质心运动和场模结构对场熵压缩特性的影响[J].量子电子学报,2005,22(2):212-216
    [46]刘堂昆,王继锁,詹明生.含原子运动的模型中的量子态保真度[J].原子与分子物理学报,2001,18(1)58-63
    [47]刘小娟,工琴惠.具有原子运动的双光子J-C模型的场熵和薛定谔猫态[J].量子光学学报,1999,5(1):1-9
    [48]N. Bohr, Ca Quantum-Mechanical DescriPtion of Physical Reality be Considered Complete?[J]. Phys. Rev.,1935,48:696.
    [49]J.S. Bell, On the Einstein-Podolsky-Rosen Paradox[J]. Physics,1964, 1:195-200
    [50]]J. F. Cluaesr et al. Proposed experiment to test loeal hidden-varibale theories[J]. Phys. Rev. Lett.,1969,23(15):880.
    [51]A.Aspect, P. Grangier and G.Roger, Experimental Tests of Realistic Local Theories via Bell's Theorem, Phys. Rev. Lett.,1981,47(7):460-463
    [52]A.Aspect, P.Grangier and G.Roger,Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment:A New Violation of Bell'sunequalities, Phys. Rev. Lett.,1982,49(2):91-94
    [53]D. BruB, Charactering entanglement, J. Math. Phys.43,4237 (2002)
    [54]S-B. Zheng and G-C Guo, Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED[J]. Phys. Rev. Lett.2000,85; 2392-2395.
    [55]S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, Coherent Control of an Atomic Collision in a Cavity[J]. Phys. Rev.Lett.,2001,87:037902.
    [56]A. G. White, D. F. V James, P. H. Eberhard, et. al. Nonmaximally entangled staets:Production, characterization, and utilization[J]. Phys. Rev.Lett., 1999,83(16):3103.
    [57]M. Eibl, N. Kiesel, M. Bouernnnane, et. al. Experimental realization of a three-qubit eniangled W staets[J]. Phys. Rev.Lett.,2004,92(7):077901.
    [58]M. Bourennnae, M. Eibl, C. Kurtsiefer, et al. Experimental detection of multiPartite entanglement using winiess opeartosr [J]. Phys. Rev. Lett.,2004, 92(8):087902.
    [59]Z. Zhao, J. W. Pan. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nuatre,2004,430:54-58.
    [60]J. W. Pan, D. Bouwmeester,M. Daniell et. al. Experimental test of quantum nonlocality in three-photon GHZ entanglement[J]. Nature(London),2000, 403:515-519.
    [61]J. F. Cluaser et al.Proposed Experiment to test local hidden-varibale theories[J].Phys. Rev. Lett.,1969,23:880.
    [62]W. Dur, G. Vidal and J. L. Ciare. Three qubits can be entangled in two inequivalent ways[J]. Phys. Rev. A,2000,62:062314.
    [63]A. Acin, D. BruB, M. Lewenstein and A. Snapear. Classification of Mixed Three-Qubit States[J]. Phys. Rev. Lett.,2001,87:040401.
    [64]D. Bruβ. Characterizing entanglement [J]. J. Math. Phys.,2002,43:4237.
    [65]杨青.量子纠缠动力学若干问题研究[D].合肥:安徽大学博士学位论文,2009.
    [66]李大创.海森堡模型中纠缠特性的研究[D].合肥:安徽大学博士学位论文,2009.
    [67]C.H.Bennett,D. P. DiVincenzo, J. A. Smolin, and W.K. Wootters. Mixed-state entanglement and quantum error correction [J].Phys. Rev.A, 1996,54:3824-3851.
    [68]C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels[J]. Phys.Rev.Lett.,1996,76:722-725.
    [69]J.von Neumann. Mathematical Foundation of Quantum Mechanics [M]. Princeton:Princeton Univ.Press,1955.
    [70]V. Vedral. The Role of Relative Entropy in Quantum Information Theory, arXiv:quant-ph,0102094.
    [71]V. Vedral and M. B. Plenio. Entanglement measures and purification procedures[J]. Phys. Rev. A,1998,57:1619.
    [72]V. Vedral, M. B. Plenio,M. A. Rippin,and P. L. Knight. Quantifying Entanglement [J]. Phys. Rev. Lett.,1997,78:2275.
    [73]C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed-state entanglement and quantum error correction [J]. Phys. Rev. A,1996,54:3824.
    [74]S. Hill and W. K. Wootters. Entanglement of a Pair of Quantum Bits [J]. Phys. Rev. Lett.,1997,78:5022.
    [75]W. K. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits[J]. Phys. Rev. Lett.,1998,80:2245.
    [76]K. Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein. Volume of the set of separable states [J]. Phys. Rev. A,1998,58:883.
    [77]K. Zyczkowski. Volume of the set of separable states. Ⅱ[J]. Phys. Rev. A,1999,60:3496.
    [78]A. Peres. Separability Criterion for Density Matrices [J]. Phys. Rev. Lett. 1996,77:1413.
    [79]G. Vidal, R. F. Werner. Computable measure of entanglement [J]. Phys. Rev. A,2002,65:032314.
    [80]W. Dur, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways [J]. Phys. Rev. A,2000,62; 062314.
    [81]W. Dur, J. I. Cirac, and R. Tarrach. Separability and Distillability of Multiparticle Quantum Systems [J]. Phys. Rev. Lett.,1999,83:3562.
    [82]D. BruB, D. P. DIVincenzo, A. Ekert, C. A. Fuehs, C. Macchivaello, and J. A. Smolin, Optimal universal and state-dependent quantum cloning, Phys.Rev.A,1998, 57:2368.
    [83]G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A,2002, 65:032314.
    [84]Joshi A, Lawande S V. Squeezing and quasiprobabilities for a two-photon Jaynes-Cummings model with atomic motion[J]. Int. J. Mod. Phys. B,1992,6:3539.
    [85]M. S. Kim, Jinhyoung Lee, D. Ahn and P. L. Knight. Entanglement induced by a single-mode heat environment[J]. Phys. Rev. A.65:040101.
    [86]黄春佳,贺慧勇,周明,方家元,黄祖洪.光场与纠缠双原子相互作用过程中的熵 演化特性[J].物理学报.2006,55(4):1764-1768.
    [87]宋军,曹卓良.两纠缠原子与二项式光场相互作用的动力学[J].物理学报.2005,54(2)0696-0702.
    [88]张春强,谢芳森等.双光子Jaynes-Cummings模型中运动原子与光场的纠缠特性[J].激光杂志,2007,28(2):70-72.
    [89]张彩花,萨楚尔夫,格日乐.运动纠缠双原子与薛定谔猫态光场相互作用系统的场熵演化[J].原子与分子物理学报,2008,25(06):1415-1420.
    [90]张彩花,萨楚尔夫,格日乐.运动纠缠双原子与压玉缩相干态光场相互作用系统的场熵演化[J].量子光学学报,2009,15(02):144-149.
    [91]崔英华,萨楚尔夫,宫艳丽.T-C模型中运动原子与二项式光场互作用的量子纠缠[J].光电子.激光,2008,19(09):1265-1268.
    [92]汪贤才,曹卓良.双模光场与运动三能级原子作用系统的反聚束效应[J].原子与分子物理学报,2007,24(04):785-792.
    [93]杨瑞芳,萨楚尔夫,哈日巴拉.与双模压缩真空态作用的运动原子熵压缩[J].量子电子学报,2007,24(03):323-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700