典型量子系统中的纠缠调制及信息处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠是量子力学特有的现象,一直是物理学中一个引人注目的研究领域,是实现量子通信的关键要素。量子态是量子信息的载体,量子信息的处理是对编码的量子态进行传输过程,量子态制备和量子信息传输质量的评价,成为量子信息领域中的重要任务。依赖强度耦合双模多光子J-C模型和同时考虑原子运动和光场频率变化相互作用系统是具有典型意义的量子系统,本文研究这两类系统中的纠缠调控、各类量子态的制备及信息保真度的问题,得出了一系列新的有意义的结论:
     1、给出了依赖强度耦合双模J-C模型多光子过程的哈密顿量,在强场条件下,分别运用量子约化熵和量子相对熵研究二能级原子与双模相干场依赖强度耦合多光子过程中,原子和场之间的纠缠以及双模场的模间纠缠演化及纠缠态的制备。结果表明,这两类纠缠演化均与原子跃迁时吸收(或发射)的光子数k密切相关。在多光子过程中(k≥2),原子-场之间产生持续的最大纠缠,双模场的模间纠缠演化呈现非线性变化,两类纠缠失去对抗性。分别制备了与时间无关的原子-场EPR态和场的模间纠缠态。
     2、在旋波近似下,同时考虑原子运动和光场频率随时间作正弦函数变化,运用量子约化熵研究二能级原子与单模辐射场相互作用系统中场与原子的纠缠演化规律;利用数值计算的方法分别给出了在不考虑与考虑原子的运动的情况下场熵随时间的演化曲线,讨论了原子运动、场模结构、场频率的幅值和角频率变化对场熵的影响;解析制备了光场与原子的纠缠态、光场偶数态及原子相干叠加态,获得了调控和制备上述量子态的系统参数。结果表明场熵的演化受场频率变化的调制;原子的运动导致了场熵演化周期加倍;在场频率变化的角频率一定的情形下,场熵演化规律与场模结构参数的奇偶性有关;无论原子运动与否,都可周期性制备场-原子的近似EPR态。
     3、在旋波近似下,同时考虑原子运动和光场频率随时间作正弦函数变化,运用全量子理论研究了二能级原子与单模辐射场相互作用系统中量子态保真度的演化。数值讨论了原子初态、原子运动速度、场模结构参数、场频率变化的幅值和角频率对量子信息保真度的影响。结果表明,通过选择合适的原子初态、原子速度和场模结构及调节场频率变化,可获得原子量子态的完全保真输出。
Quantum entanglement is a strange phenomenon of quantum mechanics, and it is a research field which always be noted in Physics. Quantum entanglement is the key factor of experimental realization of quantum communication. Quantum state is the carrier of quantum information. Quantum information processing is the information transmission of the encoded quantum state. The preparation of quantum state and the evaluation of the quality of information transmission are very important tasks in this research field. The intensity-dependent coupling two-mode multiphoton Jaynes-Cummings model and the system that consists of a moving two-level atom interacting with a frequency variation field are significative typical quantum systems. This thesis has investigated entanglement evolution, preparation of quantum states and the fidelity of quantum information in the two systems. A series of significant results are obtained.
     1. The effective Hamiltonian of the two-mode multiphoton Jaynes-Cummings model is given via the intensity-dependent coupling in the rotating wave approximation. Considering strong field, the atom-field entanglement and the entanglement between two modes of coherent field, according to the above model, are investigated using the quantum reduced entropy and quantum relative entropy, respectively. It is showed that properties of these two types of entanglements are considerably relevant to the absorption or emission photon number k, per atomic transition. Different properties of entanglements in the processes of two-photon (k=1) and multiphoton (k>2) are revealed respectively. Given the preparation of entangled states discussed, the EPR states of atom-field irrelevant to time, as well as entangled states between two models of the coherent field are prepared, respectively.
     2. In the rotating-wave approximation, considering atomic motion and the field frequency varying with time in the form of sine-function at the same time, the evolution of the field quantum entropy in the system that consists of a two-level atom interacting with a single-mode field are studied. In two cases of neglecting atomic motion and considering atomic motion, figures of the time evolutions of the field entropy are plotted respectively using numerical calculations, and the influences of the atomic motion, the field-model structure parameter, amplitude and angular frequency of the field-frequency variation on the field entropy are discussed. The atom-field entangled states, field fock states and atomic high fidelity states are prepared by analytic method and the related system parameters of these quantum states operation are acquired. The results show that the time evolution behavior of the field entropy is modulated by the frequency variation of field, the interaction between the field and atom will weaken with the increase of the amplitude of variation of the field frequency, the period of the field entropy agrees with the period of field-frequency variation; the atomic motion will result in the period of the field entropy doubled; the evolution of the field entropy is related to the parity of field-mode structure parameter; the approximate EPR states of field-atom can be prepared periodically whether the atom moves or not.
     3. In the rotating-wave approximation, considering atomic motion and the frequency of the field varying with time in the form of sine-function at the same time, the evolution of the fidelity of quantum information in the system that consists of a two-level atom interacting with a single-mode field are studied. The influences of the initial state of the atom, the atomic motion, the field-model structure parameter, amplitude and angular frequency of the field-frequency variation on the fidelity of quantum states are discussed by numerical calculations. The results show that the complete fidelity output of the atomic state can be obtained by choosing appropriate initial atomic state, appropriate atomic velocity and appropriate field-model structure and adjusting field-frequency variation.
引文
[1] Einstein A, Podolsky B and Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete[J]. Phys. Rev., 1935, 47: 777.
    [2] N.Bohr. Can Quantum-Mechanical Description of Physical Reality be Considered Complete[J]. Phys. Rev., 1935, 48: 696-702.
    [3] Schrodinger E. Die gegenw?rtige Situation in der Quantunmechanik[J]. Naturwissenschaften, 1935, 23: 807-812.
    [4] Bell J S. On the Einstein Podolsky Rosen Paradox[J]. Physics, 1964, 1: 195-200.
    [5] Bell J S. On the problem of hidden variables in quantum mechanics[J]. Rev. Mod. Phys., 1966, 38: 447-452.
    [6] A. Aspect, P. Grangier and G. Roger. Experimental Tests of Realistic Local Theories via Bell’s Theorem[J]. Phys. Rev. Lett., 1981, 47: 460-463.
    [7] A. Aspect, P. Grangier and G. Roger. Experimental Realization of Einstein–Podolsky–Rose -Bohm Gedanken Experiment: A New Violation of Bell’s unequalities[J]. Phys. Rev. Lett., 1982, 49: 91-94.
    [8] Bennett C H, Brassard G, Ekert A K. Quantum Crypotography[J]. Scientific American, 1992,1: 50-57.
    [9] Ekert A K. Quantum cryptography based on Bell’s theorem[J]. Phys. Rev. Lett., 1991, 67(6):661-663.
    [10] Deutsch D. Quantum Theory, the Church-Turing Principle and Universal Quantum Computer[J]. Proc.R.Soc.London, 1985, A 400: 97-117.
    [11] Shor P W. Algorithms for Quantum Computation Discretelog and Factoring[J]. In Proceeding of the 35th IEEE Symposium on Foundations of Computer Science, 1994: 20.
    [12] Grover L K. A Fast Quantum Mechanics Algorithm for Database Search[J]. Proceedings, 28th, ACM symposium on Theory of Computation, 1996: 212.
    [13] Grover L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys. Rev. Lett., 1997, 79: 325.
    [14] Greenberg Y S. Application of superconducting quantum interference devices to nuclear magnetic resonance[J]. Rev.Mod.Phys., 1998, 70: 175-222.
    [15] Bennett C H et al. Teleporting an unknown quantum state via dual classical andEinstein-Podolsky-Rasen channels[J]. Phys. Rev. Lett. 1993, 70: 1895-1899.
    [16] Bouwmeester D, Pan J W et al. Experimental quantum teleportation[J]. Nature, 1997,390: 575.
    [17] Schmidt E. Zur. Theorie der linearen und nichtlinearen Integralgleichungen[J]. Math Ann, 1907, 63: 433-476.
    [18] Werner. R. F. QuantumStates with Einstein-Podolsky-Rosen Correlations admitting a Hidden-variable Model[J]. Phys. Rev. A, 1989, 40: 4277-4281.
    [19] Bennett C H, et al. Exact asymptotic measures of multipartite pure-state entanglement[J]. Phys. Rev. A, 2000, 63(1): 012307.
    [20] Rowe M. A. et al. Experimental violation of a Bell’s inequality with efficient detection[J]. Nature, 2001, 409: 791-794.
    [21] A. Peres, Separability Criterion for Density Matreces[J]. Phys. Rev. Lett., 1996, 77: 1413-1415.
    [22] M. Horodecki and P. Horodecki. Reduction Criterion of Separability and Limits for a Class of Distilltion Protocols[J]. Phys. Rev. A, 1999, 59: 4206-4219.
    [23] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying En-tanglement[J]. Phys. Rev. Lett., 1997, 78: 2275-2279.
    [24] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information[M].北京:高等教育出版社, 2003:510.
    [25] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters, Mixed-state entanglement and quantum error correction[J]. Phys. Rev. A, 1996, 54: 3824-3851.
    [26] William K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits[J]. Phys. Rev. Lett., 1998, 80: 2245.
    [27] Charles H. Bennett l, Gilles Brassard2, Sandu Popescu3, et al., Purification of Noisy Entanglement and Faithful Teleportation via Noisy Chan-ne1s[J]. Phys. Rev. Lett., 1996, 76: 722-725.
    [28] V. Vedral, et a1. Statistical inference,distinguishability of quantum states, and quantum entanqlement[J]. Phys. Rev. A, 1997, 56: 4452.
    [29]张小冬,余向阳.超短激光脉冲操控双量子比特的量子态[J].光子学报, 2009, 38(2): 418-421.
    [30] PHOENIX S J D, KNIGHT P L. Establishment of an entangled atom-field state in theJaynes-Cummings model[J]. Phys. Rev. A. 1991, 44: 6023-6029
    [31] LIU Wang-yun, AN Yu-ying, YANG Zhi-yong. Influence of frequency detuning on evolution of quantum field entropy in multimode nondegenerate multi-photon Jaynes-Cumming model[J]. Acta Photonica Sinica, 2008, 37(5): 1057-1062.
    [32]黄燕霞,汪毅,詹明生.非线性Jaynes-Cummings模型的动力学特性[J].物理学报,2002, 51(10): 2249-2255.
    [33]方卯发、周鹏.附加克尔介质双光子Jaynes-Cummings模型场熵特性[J].物理学报,1994, 43(4): 570-578.
    [34]黄燕霞,郝东山,汪毅. Kerr效应对非线性Jaynes-Cummings模型场熵和缠结的影响[J].光子学报, 2002, 31(12): 1448-1452.
    [35] Phoenix S J D and Knight P L. Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. (ICY), 1988, 186: 381-407
    [36] Knoll L, Orlowski A. Distance between density operator: Applications to the Jaynes-Cummings model[J]. Phys. Rev. A, 1995, 51(2): 1622-1630.
    [37] Jozsa R. Fidetity for mixed quantum states[J]. J. Mod. Opt, 1994, 41(12): 2315-2323.
    [38] A. Uhlmann. The“Transition Probability”in the State Space of a Algebra[J]. Rep.Math.Phys, 1976, 9:273-279.
    [39] R.Jozsa and B.Schumacher. A new proof of the quantum noiseless coding theorem[J]. J.Mod.Opt, 1994, 41:2343-2349.
    [40] Duan Luming. Guo Guangcan. Perturbative expansions for the fidelities and spatially correlated dissipation of quantum bits. Phys.Rev.A, 1997, 56(6):4466-4470.
    [41]夏云杰,王光辉,杜少将.双模最小关联混合态作为量子信息通道实现量子隐形传态的保真度[J].物理学报, 2007, 56(08): 4331-4336.
    [42] G. Rempe, et al. Observation of sub-poissonian photon statistics in a micromaser[J]. Phys. Rev. Lett., 1990,84: 2783-2786.
    [43] Buck B, Sukumar C V. Exactly soluble model of atom-phonon coupling showing period decay and revival[J]. Phys. Lett. A, 1981, 81(2,3):132-135.
    [44] Zhou P, Peng J S. Effect of atomic coherence on the collapses and revivals in some generalized Jaynes-Cummings models[J]. J. Mod. Opt., 1992, 39(1): 49-62.
    [45]方卯发.依赖强度耦合J-C模型场熵的演化[J].光学学报, 1995, 15(3): 296-300.
    [46] Li C X, Fang M F. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling[J]. Chinese Physics B, 2003, 12(3): 294-299.
    [47] Zhou P, Hu Z L, and Peng J S. Effect of Atomic Coherence on the Collapses and Revivals in Some Generalized Jaynes-Cummings Models[J]. J. Mod. Opt. 1992, 39(1): 49-62
    [48]方卯发.依赖强度耦合J-C模型的场熵演化[J].光学学报, 1995, 15(3): 296-300.
    [49] Li C X and Fang M F. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling[J]. Chin. Phys. 2003, 12(3): 294-299.
    [50]高云峰、冯健、张桂明.与原子依赖强度耦合双模压缩真空态的量子纠缠[J].原子与分子物理学报, 2006, 23(5): 887-891
    [51]顾震宇、季沛勇.等离子体密度对多光子电离的影响[J].物理学报, 2002, 51(05): 1022-1025.
    [52]唐志列、梁瑞生、常鸿森.双光子和多光子共焦显微镜的成像理论[J].物理学报, 2000, 49(06): 1076-1080.
    [53] Zhou P, Peng J S. A generalized Jaynes-Cummings model with intensity-dependent coupling[J]. Chinese Science Bulletin, 1991, 36(24): 2047-2050.
    [54] Zhou P, Peng J S. Dynamics of the atom in the multiphoton Jaynes-Cummings model with intensity-dependent coupling[J]. Physica A: Statistical Mechanics and its Applications, 1993, 193(1): 114-122.
    [55]方卯发,王麓雅.依赖强度耦合多光子Jaynes-Cummings模型中场的位相特性[J].量子电子学报, 1993, 10(3): 255-260.
    [56]周清平.依赖强度耦合多光子过程中的缠绕与薛定谔猫态[J].光学学报, 1998, 18(6): 712-716.
    [57]王晓光.任意依赖强度耦合的多光子Jaynes-Cummings模型中原子的偶极压缩效应[J]. 1998, 19(1): 28-33.
    [58] Liu Tangkun. Squeezing phenomenon of multiphoton process of two cavity field[J]. Journal of Central China Normal University(Nat. Sci.), 1994, 28(2): 185-188
    [59]张登玉.简并多光子过程中两能级原子消相干性的消除.光子学报, 2002, 31(5): 537-540.
    [60]张成强、谭霞、夏云杰.双模相干场域Bell态原子多光子作用的原子布局数演化[J].量子电子学报, 2006, 23(6): 825-829.
    [61]王成志、方卯发.双模压缩真空态与原子相互作用中的量子纠缠于退相干[J].物理学报, 2002, 51(09): 1989-1995.
    [62] Liu X J, Fang M F. Entangled states in the two-mode coherent fields interacting with a two-level atom[J]. Chin. Phys. 2003, 12 (09): 971-976.
    [63] Napoli A, Messin A. Dressed states and exact dynamics of intensity-dependent two-mode two-photon Jaynes-Cummings models[J]. J. Mod. Optics, 1996, 43(4): 649-673.
    [64]卢道明.原子与频率随时间变化场相互作用系统中场熵的演化[J].光子学报, 2007, 36(11) :2142-2147.
    [65]卢道明.多光子J-C模型中频率随时间变化场的压缩效应[J].光子学报, 2009, 38(7) :1840-1845.
    [66]刘小娟,方卯发,周清平.具有原子运动的双光子J-C模型中量子力学通道与量子互熵[J].物理学报, 2005, 54(02): 703-709.
    [67]刘小娟,赵明卓,刘一曼等.运动原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制[J].物理学报, 2010, 59(5) :3227-3235.
    [68]刘堂昆,王继锁,詹明生.含原子运动的Jaynes-Cummings模型中的量子态保真度[J].原子与分子物理学报, 2001, 18(1): 58-63.
    [69]许静平,羊亚平.场频率变化时原子与场的相互作用[J].物理学报, 2004, 53(7) :2139-2144.
    [70] Shor P W . Scheme for reducing decoherence in quantum computer memory[J]. Phys.Rev.A , 1995, 52: 2493-2496.
    [71] Cottesman D LANL. Stabilizer codes and quantum error correction,'Ph.D. thesis, California Institute of Technology, Pasadena, CA[J]. 1997, e-print quant-ph/9705052
    [72] Deusch D, Ekert A, Jozsa R et al. Erratum Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels[J]. Phys.Rev.lett., 1998, 80: 2022.
    [73] Gover L K. Quantum mechanical helps in seaching for a needle in a Haystack[J]. Phys.Rev.Leet., 1997, 79: 325-328.
    [74]刘堂昆,王继锁,柳晓军等.非共振相互作用系统中密度算符间距的演化.物理学报,1999,48(11):2051-2059.
    [75]刘堂昆,王继锁,柳晓军等.纠缠态原子与相干光场作用的量子信息保真度.光学学报,2000, 20(11): 1449-1455.
    [76] Samuel L. Braunstein, A. Mann and M. Reven. Maximal violation of Bell inequalities for mixed states[J]. Phys. Rev. Lett., 1992, 68: 3259.
    [77] D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger. Bell’s Theorem without inequalities[JI. Am.J.Phys., 1990, 58: 1131.
    [78] W. Dur, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways[J]. Phys. Rev. A, 2000, 62: 062314
    [79] Reinhard F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable mode[J]. Phys. Rev. A, 1989, 40: 4277.
    [80]李承祖等编著.量子通信和量子计算.长沙:国防科技大学出版社, 2000: 92-94.
    [81] Charles H. Bennett, Sandu Popescu, Daniel Rohrlich, et al., Exact and as-ymptotic measures of multipartite pure-state entanglement[J]. Phys.Rev. A, 2001, 63: 012307-012318.
    [82] V. Vedral and M. B. Plenio, Entanglement measures and purification procedures[J]. Phys. Rev. A, 1998, 57: 1619-1633.
    [83] S.-J. Wu and Y.-D. Zhang, Calculating the relative entropy of entanglement[J].e-print Quant-ph/0004018
    [84]谭霞、张成强、夏云杰.双模场域原子相互作用中的量子纠缠和内禀退相干[J].物理学报, 2006, 55(05): 2263-2268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700