ZnO透明导电薄膜和Se掺ZnO纳米材料的制备及其光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是II-VI族直接宽禁带化合物半导体材料,在400nm-2μm波长范围内有很高的透光率,是一种新型的透明半导体材料。另外,ZnO还具有成本低,无毒性,资源丰富,热稳定性高和容易合成等众多优点而成为制备光电器件的优良材料,具有很高的开发潜力和应用前景。另一方面,还具有丰富的纳米结构,包括纳米线、纳米管、纳米带、纳米棒等使人们对它保持着浓厚的兴趣。因此,纳米氧化锌作为一种新型功能材料在场效应晶体管、肖特基二极管、紫外光探测器、气敏传感器、纳米发电机等领域有良好的应用及发展前景。
     本文以ZnO为基础与金属Cu和Se粉制备了ZnO/Cu、ZnO/Cu/ZnO多层透明导电薄膜和ZnO:Se纳米颗粒。研究了不同Cu层溅射时间对透明导电薄膜性能的影响,另外也通过表面光电压研究了ZnO:Se纳米粒子的光电特性,本论文的主要内容如下:
     1选纯度99.99%的ZnO粉末和自制稀粘合溶剂作为原料,采用合理的烧结工艺在空气气氛下制备出优良的ZnO陶瓷靶材。由XRD图谱可得制备出的ZnO陶瓷靶材与ZnO粉体物相一致均为多晶的六角纤锌矿结构,结晶良好,没有产生其它杂相。
     2采用射频磁控溅射技术,以高纯度ZnO为靶材,在高纯Ar环境,气体压强设定1.0Pa,固定靶和衬底的距离为65mm,溅射功率为80W的条件下在玻璃衬底上制备了ZnO薄膜。研究了不同溅射时间对ZnO薄膜光学透光率的影响。从透射图可得5min溅射的ZnO薄膜的透光率均在90%以上,10min溅射的ZnO薄膜的透光率基本上在85%以上,而15min溅射的ZnO薄膜出现最低的透光率基本上在70%以上,这主要是溅射时间的增加,薄膜的厚度增加,越来越多的光子被材料吸收,导致平均透光率呈下降趋势。说明溅射时间对薄膜的光学特性影响很大。
     3以ZnO陶瓷靶和金属Cu靶为基础在室温条件下利用直流磁控溅射和射频磁控溅射技术在玻璃衬底上制备了ZnO/Cu多层透明导电薄膜。通过改变金属Cu层的溅射时间,并采用紫外-可见-近红外(UV-Vis-NIR)分光光度计和霍尔测试仪对ZnO/Cu多层薄膜的光学性质、电学性质等进行了研究和分析。对ZnO多层透明导电薄膜而言,金属层的溅射时间是一个很大的影响因素。多层透明导电薄膜的导电性能随金属溅射时间的增加而增强,然而,随着金属层溅射时间的增加多层薄膜的透光性将显著降低。这是因为ZnO和金属Cu的功函数相差比较大,金属与半导体接触时将发生载流子的流动。由于ZnO的功函数明显大于金属Cu的功函数,电子将从功函数小的Cu层跑到功函数大的半导体ZnO层中,导致半导体ZnO层载流子浓度增加,电阻率降低。电子在传输中要经过晶界,很容易受晶界的散射作用,由于Cu层溅射时间比较短,Cu层会很容易形成岛状结构,导致不连续的散射增加,使薄膜的迁移率降低。当Cu层沉积时间变长时,Cu层开始变连续岛状结构减小,大部分电流经过低阻的Cu层,薄膜的迁移率载流子浓度增加,电阻率降低。从薄膜的透射谱中发现,Cu层的引入降低了多层薄膜的透光率,这主要是因为随着Cu层溅射时间的增加,更多的电子参与了跃迁而吸收更多的光,使多层结构薄膜的透光率随溅射时间的增加而降低。随着多层结构薄膜载流子浓度的增加薄膜的光学带隙Eg下降。
     4本节我们在室温条件下利用直流磁控溅射和射频磁控溅射技术在玻璃衬底上制备了ZnO与Cu层相结合的ZnO/Cu/ZnO多层结构薄膜,通过改变ZnO层的溅射功率和金属Cu层的溅射时间等工艺参数,并采用紫外-可见-近红外(UV-Vis-NIR)分光光度计和霍尔测试仪对ZnO/Cu/ZnO多层薄膜的光学性质、电学性质等进行了研究和分析。当Cu层的溅射时间增加时薄膜的载流子浓度提高,霍尔迁移率先降低后随着时间的增加再上升,薄膜的电阻率降低。相同的Cu层不同ZnO溅射功率对薄膜的电学性质影响不大,对薄膜的透过率有比较大的影响。
     5以醋酸锌和Se粉为原料,以乙二胺为溶剂,利用溶剂热和固相合成法制备了Se掺氧化锌(ZnO:Se)纳米颗粒,并通过X射线衍射、扫描电镜、拉曼散射、紫外可见光吸收、表面光电压等手段对样品进行表征测试,并通过表面光电压谱来初步评估纳米颗粒的光电性能.所合成ZnO:Se的表面光电压谱显示出两个光电响应带,即在330-380nm之间能观察到一个明显的光电响应带,同时在380-395nm又出现了第二个新的相对较弱的光电响应带,直至500nm。在正偏压下,ZnO:Se纳米材料的电场诱导表面光电压谱的光电强度明显变弱。ZnO:Se纳米材料的电场诱导的表面光电谱显现了两个光电响应带在加正压时不同的变化,即与第二个光电响应带对比,正向偏压对第一个光电响应带的SPS强度有更加显著的减弱作用。引入Se杂质能级对上述现象进行了不同的解释。
ZnO is a II-VI group multifunctional material with wide direct band-gap and high transmitssion in therange of wavelengths (400nm-2μm). In addition, ZnO is an excellent material to prepare photoelectricdevices due to its advantages, such as low cost, low toxicity,rich resource, good thermal stability, and easyfabrication. On the other hand, zinc oxide based on naostructures including nanowires, nanotubes,nanobelts and nanorods have attracted increasing interest. ZnO nanostructures also exhibits a range ofremarkable potential applications in fuctional devices such as Field-Effect-Transistor, Schottky diode,UV-optical detector, Gas sensor and Nanogenerator, which have profound impacts in future development.
     ZnO/Cu and ZnO/Cu/ZnO multilayer transparent conductive thin film and ZnO: Se nanoparticleswere prepared based on ZnO with Cu and Se powders, and investigated the influence of with differentsputtering time of copper layers for the transparent conductive thin film and photoelectric properties ofZnO: Se nanoparticles by surface photovoltage spectroscopy. The significant results are listed as follows:
     1. ZnO ceramic targets were prepared with ZnO powder with the purity of99.99%, deionized water of18.2M and PVA as primary material and by calcining the precursor in air atmosphere at the righttemperature. The X-ray diffraction (XRD) pattern of the as-prepared ceramic targets had good crystallinityand exhibited a single phase of ZnO wurtzite structure, which was similar to ZnO powder. And nocharacteristic diffraction peak was observed according to the XRD pattern.
     2. Sputtering was carried out at a working gas pressure of1.0Pa in pure argon gas (purity99.999%)and with a RF power of80W based on a oxide ceramic disk of ZnO targets. The glass was used as asubstrate material, with a target–substrate distance of65mm. The transmission properties of the ZnO films are also investigated to understand the influence of with different sputtering time of the ZnO films. Whenthe deposition time is5min, the optical transmittance of ZnO films is about90%over the visible range ofwavelengths. When the deposition time is from10min to15min, the average transmittance of the ZnOfilms drops from85%to70%. The decrease of the average transmittance in visible range can be ascribed toabsorption by the ZnO films, when the film thickness increases because of increasing sputtering time of theZnO films. The results indicate the sputtering time of the ZnO films plays an important role in determiningthe optical properties of the ZnO film.
     3. ZnO/Cu multilayers were prepared on glass substrates by RF magnetron sputtering of ZnO and DCmagnetron sputtering of Cu at room temperature based on a oxide ceramic disk of ZnO and metal Cutargets. We change the sputtering time of copper layer, and use UV-VIS spectrometer and Hall EffectMeasurement System to measure characteristics such as optical properties, electrical properties. Thesputtering time of metal layer plays an important role in determining the photoelectric property of the ZnOmultilayer structure films. As the sputtering time of copper layer increases, the electrical properties ofZnO/Cu multilayers films were improved greatly by introducing a Cu layer. However, the sputtering timeof Cu films affect the optical properties in the visible wavelength region such as reduced transmittance.When thin film layers of ZnO and Cu were deposited on glass substrates at room temperature, the Cu/ZnOcontacts were fabricated. With the work function difference being large, there is significant injection ofcarriers into the ZnO layer. This can be seen in the substantial increase in conductivity of the multilayerstructure and a small rise in carrier concentration even with short time for sputtering Cu film. However, atthis short time for sputtering Cu, the ZnO/Cu structure has lesser mobility than the ZnO film, because thecurrent passes through the amorphous ZnO layer with the Cu islands acting as discontinuous scatering sitesreducing the mobility further. As the sputtering time of copper layer increases further, the layer becomes near-continuous and the carrier concentration increases with increasing the sputtering time of Cu layer. Asignificant amount of current starts to pass through the low resistivity Cu layer. The mobility and the carrierconcentration increases further because the copper layer becomes continuous. The decrease in resistivity isa consequence of changes in carrier concentration and mobility. Multilayer films introduced a Cu layerfrom the transmission spectrum decline rapidly with sputtering time of the copper layer extending and showa decrease in the average transmittance since photons are strongly absorbed in terms of photon’s transitionsby the high density of charge carriers. The band gap Egof the multilayer structure films decreased withincreasing carrier concentration of the films.
     4. ZnO/Cu/ZnO multilayers were prepared on glass substrates by RF magnetron sputtering of ZnO andDC magnetron sputtering of Cu at room temperature based on a oxide ceramic disk of ZnO and metal Cutargets. We change the sputtering time of copper layer and the RF power of ZnO layer, and use UV-VISspectrometer and Hall Effect Measurement System to measure characteristics such as optical properties,electrical properties. The carrier concentration increases and the mobility shows a first decrease and thenincrease with increasing the sputtering time of copper layer. The decrease in resistivity is a consequence ofchanges in carrier concentration and mobility. As the same sputtering time of copper layer, the electricalproperties of ZnO/Cu/ZnO multilayers films are little correlated with the RF power of ZnO layer, however,the transmittance of the multilayer structure films are deeply correlated.
     5. ZnO incorporated selenium nanoparticles have been synthesized by combining solvothermalprocess and solid phase recrystallization method based on Zinc acetate Dihydrate and selenium powder.The as-prepared samples were also characterized by the techniques such as XRD, SEM, Raman,UV-visible absorption spectroscopy, surface photovoltage spectroscopy (SPS) and electric-field inducedsurface photovoltage spectroscopy (EFISPS), and their Photoelectric properties was evaluated by the surface photovoltage spectroscopy. The SPS response shows two response peaks at approximately366nmand385nm, extending the SPS response toward500nm. The intensity of FISPS signal of ZnO:Senanoparticles decreases as the positive bias increases. The FISPS indicates that the intensity of SPS signalof the response peaks at approximately366nm decreases more remarkably than the response peak atapproximately385nm as the positive bias increases. Based on the SPS spectrum, we used the Se-inducedimpurity band model to analyze the photoelectric properties.
引文
[1]韩雪,夏慧,吴丽君.透明导电膜及靶材[J].电子元件与材料,1998,17:30-35.
    [2]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002.
    [3] L. Yanhong, W. Dejun, Z. Qidong, Y. Min, and Z. Qinglin. A study of quantum confinement propertiesof photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy [J]. J. Phys.Chem. B,2004,108:3202-3206.
    [4] M. Dutta and D. Basak. p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, andtransport mechanism [J]. Appl. Phys. Lett.,2008,92:212112-212112-3.
    [5] H. Cao, Y. G. Zhao, C. H. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang. Ultraviolet lasing inresonators formed by scattering in semiconductor polycrystalline films [J]. Appl. Phys. Lett.,1998,73:3656-3656-3.
    [6] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa. Ultravioletspontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J].Solid. State. Com.,1997,103:459-463.
    [7] X. D. Yang, J. W. Zhang, et al. Characterization of ZnO films grown on different substrates by L-MBEmethod. Fifth international conference on thin film physics and applications [C].
    [8]陈鸣.电子材料[M].北京:北京邮电大学出版社,2006.
    [9]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用[M].浙江:浙江大学出版社,2009.
    [10]高立,张建民.微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究[J].物理学报,2010,59:1263-1263-05.
    [11]陈航,邓宏,戴丽萍,陈金菊,韦敏.掺Cd对ZnO薄膜光学性能的影响[J].人工晶体学报,2008,37:213-217.
    [12] Silva R F, DarbelloZ, Maria E. Aluminium doped zinc oxide films: formation process and opticalproperties [J]. J. Non-Cryst. Solids.,1999,247:248-253.
    [13] Bayraktaroglu, Burhan, Leedy, Kevin Bedford, Robert.High temperature stability of postgrowthannealed transparent and conductive ZnO: Al films [J]. Appl. Phys. Lett.,2008,93:022104-022104-3.
    [14] V. Khranovskyy, U.Grossner, O.Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimova.Structural and morphological properties of ZnO:Ga thin films [J]. Thin Solid Films,2006,515:472-476.
    [15] Young Ran Park, Donggeun Jung, Ki-Chul Kim, Su Jeong Suh, Tae Seok Park and Young Sung Kim.Physical properties of transparent conducting indium doped zinc oxide thin films deposited by pulsedDC magnetron sputtering [J]. J. Electroceramics,2009,23:536-541.
    [16]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].科学出版社,2005.
    [17] SH Lee, SH Han, H S Jung, et al. Al-Doped ZnO Thin Film: A New Transparent Conducting Layer forZnO Nanowire-Based Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2010,114:7185-7189.
    [18] Xianwu Xiu, Zhiyong Pang, Maoshui Lv, Ying Dai, Lina Ye, Shenghao Han. Transparent conductingmolybdenum-doped zinco xide films deposited by RF magnetron sputtering [J]. Appl. Surf. Sci.,2007,253:3345-3348.
    [19] J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon. Thermally stable transparent conducting and highly infraredreflective Ga-doped ZnO thin films by metal organic chemical vapor deposition [J]. Opt. Mater.,2011,33:768-772.
    [20] S. Flickyngerova, J. Skriniarova, M. Netrvalova, et al. Surface modification of doped ZnO thin films[J]. Appl. Sur. Sci.,2010,256:5606–5609.
    [21] Y-Z Tsai, N-F Wang, C-L Tsai. Fluorine-doped ZnO transparent conducting thin films prepared byradio frequency magnetron sputtering [J]. Thin Solid Films,2010,518:4955-4959.
    [22] Y. W. Heo, K. Ip, S. J. Park. Shallow donor formation in phosphorus-doped ZnO thin films [J]. Appl.Phys. A,2004,78:53-57.
    [23] Y.S. Rim, H.J. Kim, K.H. Kim. Characteristics of indium zinc oxide films deposited using the facingtargets sputtering method for OLEDs applications [J]. Thin Solid Films,2010,518:6223-6227.
    [24] CY Tsay, HC Cheng, YT Tung, WH Tuan, CK Lin. Effect of Sn-doped on microstructural and opticalproperties of ZnO thin films deposited by sol-gel method [J]. Thin Solid Films,2008,517:1032-1036.
    [25] D Wang, J Zhou, G Liu. Effect of Li-doped concentration on the structure, optical and electricalproperties of p-type ZnO thin films prepared by sol–gel method [J]. J. Alloys. Compd.,2009,481:802-805.
    [26] L. J. Mandalapu, F. X. Xiu, Z. Yang, et al. p-type behavior from Sb-doped ZnO heterojunctionphotodiodes [J]. Appl. Phys. Lett.,2006,88:112108-112108-3.
    [27] Y. R. Ryu, T. S. Lee, H. W. White. Properties of arsenic-doped p-type ZnO grown by hybrid beamdeposition [J]. Appl. Phys. Lett.,2003,83:87-87-3.
    [28] W Liu, F Xiu, et al. Na-Doped p-Type ZnO Microwires [J]. J AM Chem Soc,2010,132:2498-2499.
    [29] ML Tu, YK Sua, CY Ma. Nitrogen-doped p-type ZnO films prepared from nitrogen gasradiofrequency magnetron sputtering [J]. J. Appl. Phys.,2006,100:053705-05370-4.
    [30] J. Jiang, L.P. Zhu, J.R. Wang, et al. Effects of phosphorus doping source temperatures on fabricationand properties of p-type ZnO thin films [J]. Mater. Lett,2008,62:536-538.
    [31]叶志镇,吕建国,张银珠,何海平等.氧化锌半导体材料掺杂技术与应用[M].杭州:浙江大学出版社,2008.
    [32] Li Gong, Zhizhen Ye, Jianguo Lu, Liping Zhu, Jingyun Huang, Xiuquan Gu, Binghui Zhao. Highlytransparent conductive and near-infrared reflective ZnO:Al thin films [J]. Vacuum,2010,84:947-952.
    [33] S H Mohamed. Effects of Ag layer and ZnO top layer thicknesses on the physical properties ofZnO/Ag/ZnO multilayer system [J]. J. Phys. Chem. Solids.,2008,69:2378-2384.
    [34] D.R.Sahu, Jow-Lay Huang. High quality transparent conductive ZnO/Ag/ZnO multilayer filmsdeposited at romm temperature [J]. Thin Solid Films,2006,515:876-879.
    [35] JL Yan, XQ Sun. ZnO/Ag/ZnO multilayer films deposited at room temperature-art [J]. Internationalsymposium on photo electronic detection and imaging,2008,6624:62413-62413.
    [36]李俊,闫金良,杨春秀等. ZnO/Ag/ZnO多层膜的制备和性质研究[J].电子元件与材料,2007,26:52-54.
    [37] D.R.Sahu, Shin-Yuan Lin, Jow-Lay Huang. ZnO/Ag/ZnO multilayer films for the application of a verylow resistance transparent electrode [J]. Appl. Surf. Sci.,2006,252:7509-7514.
    [38] Sivaramakrishnan, K. Theodore, N. D. Moulder, J. F. Alford, T. L. The role of copper in ZnO/Cu/ZnOthin films for flexible electronics [J]. J. App. Phys.,2009,106:063510-063510-8.
    [39] D.R.Sahu, Jow-Lay Huang. Properties of ZnO/Cu/ZnO multilayer films deposited by simultaneousRF and DC magnetron sputtering at different substrate temperatures [J]. Microelectronic Journal,2007,38:299-303.
    [40] K.Sivaramaknshnan, T.L.Alford. Metallic conductivity and the role of copper in ZnO/Cu/ZnO thinfilms for flexible electroic [J]. Appl. Phys. Lett.,2009,96:201109-201109-3.
    [41] D.R.Sahu, Jow-Lay Huang. Dependence of film thickness on the electronic and optical properties ofZnO-Cu-ZnO multilayers [J]. Appl. Surf. Sci.,2006,25:915-918.
    [42] Sanjeev Kumar, Vinay Gupta, K Sreenivas. Synthesis of photoconducting ZnO nano-needles using anunbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure [J]. Nanotech,2005,16:1167-1171.
    [43] Tadatsugu Minami,Toshihiro Miyata. Present status and future prospects for development of non-orreduced-indium transparent conducting oxide thin films [J]. Thin Solid Films,2008,517:1474-1477.
    [44]姜辛,孙超,洪瑞江等.透明导电氧化物薄膜[M].高等教育出版社,2008.
    [1]李健,赛喜雅勒图,郝丽娟.掺Nd纳米ZnO薄膜特性研究[J].真空科学与技术学报,2003(3):212-215.
    [2] M. Chen, Z. L. Pei, X. Wang. Properties of ZnO: Al films on polyester produced by dc magnetronreactive sputtering [J]. Solid State Com,2003,126:281-284.
    [3] G. Kiriakidis, M. Suchea, S. Christoulakis. Structural characterization of ZnO thin films deposited by dcmagnetron sputtering [J]. Thin Solid Films,2007,515:8577-8581.
    [4] N. Ekem, S. Korkmaz, S. Pat, M.Z. Balbag. Some physical properties of ZnO thin films prepared by RFsputtering technique [J]. International. J. Hydrogen. Energy.,2009,34:5218-5222.
    [5] X.Q. Wei, Z. Zhang, Y.X. Yu, B.Y. Man. Comparative study on structural and optical properties of ZnOthin films prepared by PLD using ZnO powder target and ceramic target [J]. Optics&LaserTechnology,2009,41:530-534.
    [6] Wang Zhao-yang, Hu Li-zhong, Zhao Jie, Sun Jie, Wang Zhi-jun. Effect of the variation of temperatureon the structural and optical properties of ZnO thin films prepared on Si (111) substrates using PLD[J]. Vacuum,2005,78:53-57.
    [7] S. Venkatachalam, Y. Iida, Yoshinori Kanno. Preparation and characterization of Al doped ZnO thinfilms by PLD [J]. Superlatt. Microstruct.,2008,44:127-135.
    [8] K. Haga, M. Kamidaira, Y. Kashiwaba. ZnO thin films prepared by remote plasma-enhanced CVDmethod [J]. J. Cryst. Gr.,2000,214-215:77-80.
    [9] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe. High-quality ZnO films prepared on Si wafers bylow-pressure MOCVD [J]. Thin Solid Films,2003,433:131-134.
    [10] R. Ayouchi, F. Martin. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon[J]. J. Cryst. Gr.,2003,247:497-504.
    [11] Young-Sung Kim, Weon-Pil Tai. Electrical and optical properties of Al-doped ZnO thin films bysol–gel process [J]. Appl. Surf. Sci.,2007,253:4911-4916.
    [12] Davood Raoufi, Taha Raoufi. The effect of heat treatment on the physical properties of sol–gel derivedZnO thin films [J]. Appl. Surf. Sci.,2009,255:5812-5817.
    [13] M Jung, J Lee, S Park,et al. Investigation of the annealing effects on the structural and opticalproperties of sputtered ZnO thin films [J]. J. Cryst. Gr.,2005,283(3-4):384-389.
    [14] D Kim, T Shimomura, S Wakaiki,et al. Photoluminescence properties of high-quality ZnO thin filmsprepared by an RF-magnetron sputtering method [J]. Physica. B,2006,376-377:741-744.
    [15] G Kiriakidis, M Suchea, S Christoulakis, et al. Structural characterization of ZnO thin films depositedby dc magnetron sputtering [J]. Thin Solid Film,2007,515(24):8577-8581.
    [16]马黎君.射频反应溅射制备SnO2薄膜机理研究[J].北京建筑工程学院学报,2003,19(1):72-76.
    [17] D.Song. Effects of rf power on surface-morphological, structural and electrical properties ofaluminium-doped zinc oxide films by magnetron sputtering [J]. Appl. Surf. Sci.,2008,254:4171-4178.
    [18]刘恩科,朱秉升,罗晋生.半导体物理学[M].电子工业出版社,2003.
    [19] R.E. Marottia, D. N. Guerraa, C. Bellob, G. Machadoa, and E. A. Dalchielea. Bandgap energy tuningof electrochemically grown ZnO thin films by thickness and electrodeposition potential [J]. Sol.Energy Mater. Sol. Cells.,2004,82:85-104.
    [1]王峰,张志勇,闫军锋等. ZnO-SnO2透明导电报名的制备及性能研究[J].光子学报,2009,38:3121-3125.
    [2] A. vander Drift. Philips Res.Rep.1967,22:626.
    [3] HK Yadav, K Sreenivas, and V Gupta. Enhanced response from metal/ZnO bilayer ultravioletphotodetector [J]. Appl. Phys. Lett.,2007,90:172113-172113-3.
    [4] V Dose, W Altmann, A Ooldmann, U Kolac, and J Rogozik. Image-potential states observed by inversephotoemission [J]. Phys. Rev. Lett.,1984,52:1919-1921.
    [5] D.R.Sahu, S.Y Lin, and J.L.Huang. ZnO/Ag/ZnO multilayer films for the application of a very lowresistance transparent electrode [J]. Appl. Surf. Sci.,2006,252(20):7509-7514.
    [6] H.Ehrenreich and H.R.Philipp. Optical properties of Ag and Cu [J]. Phys. Rev.,1962,128:1622-1629.
    [7] R.E. Marottia, D. N. Guerraa, C. Bellob, G. Machadoa, and E. A. Dalchielea. Bandgap energy tuning ofelectrochemically grown ZnO thin films by thickness and electrodeposition potential [J]. Sol. Energy.Mater. Sol. Cells.,2004,82:85-104.
    [8] H.J.Kim and Y.R.Park. Large and abrupt optical band gap variation in In-doped ZnO [J]. Appl. Phys.Lett.,2001,78:475-476.
    [9] H.Han, J.W.Mayer and T.L.Alford. Band gap shift in the indium-tin-oxide films on polyethylenenapthalate after thermal annealing in air [J]. J. Appl. Phys.,2006,100:083715-083715-6.
    [1] S.H.Mohamed. Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/ZnO multilayer system [J]. J. Phys. Chem. Solids.,2008,69:2378-2384.
    [2] D.R.Sahu, Jow-Lay Huang. High quality transparent conductive ZnO/Ag/ZnO multilayer filmsdeposited at romm temperature [J]. Thin Solid Films,2006,515:876-879.
    [3] Yan JL, Sun XQ. ZnO/Ag/ZnO multilayer films deposited at room temperature-art [J]. Internationalsymposium on photoelectronic detection and imaging,2008,6624:62413-62413.
    [4]李俊,闫金良,杨春秀. ZnO/Ag/ZnO多层膜的制备和性质研究[J].电子元件与材料,2007,26:52-54.
    [5] D.R.Sahu, Shin-Yuan Lin, Jow-Lay Huang. ZnO/Ag/ZnO multilayer films for the application of a verylow resistance transparent electrode [J]. Appl. Surf. Sci.,2006,252:7509-7514.
    [6] John C.C.Fan. Sputtered films for wavelength-selective application [J]. Thin Solid Films,1981,80:125-136.
    [7] G.Lefttheriotis. Deposition and optical properties of optimized ZnS/Ag/ZnS thin films for energy savingapplications [J]. Thin Solid Films,1997,306:92-99.
    [8] Lon Dima, etc. Influence of the silver layer on the optical properties of the TiO2/Ag/TiO2multilayer [J].Thin Solid Films,1991,200:11-18.
    [9] R.E. Marottia, D. N. Guerraa, C. Bellob, G. Machadoa, and E. A. Dalchielea. Bandgap energy tuning ofelectrochemically grown ZnO thin films by thickness and electrodeposition potential [J]. Sol. EnergyMater. Sol. Cells.,2004,82:85-104.
    [1] Choopun S, Vispute R D, Noch W, et al. Oxygen pressure-tuned epitaxy and optoelectronic propertiesof laser-deposited ZnO films on sapphire [J]. Appl. Phys. Lett.,1999,75(25):3947-3949.
    [2] Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. AdvMater,2004,16(1):87-90.
    [3] R. Ghosh and D. Basak. Composition dependent ultraviolet photoresponse in MgxZn1-xO thin films [J].J. Appl. Phys.,2007,101:113111-113111-6.
    [4] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. Extremely Transparent andConductive ZnO: Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition(photo-MOCVD) Using AlCl3(6H2O) as New Doping Material [J]. J. Appl. Phys.,1997,36: L1078-L1081.
    [5] Zeng Y J, Ye Z Z, Xiu W Z, et al. Study on the Hall-effect and photoluminescence of N-doped p-typeZnO thin films [J]. Mater. Lett.,2007,61:41-44.
    [6] Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping andthermal activation of the dopant [J]. Appl. Phys. Lett.,2003,83:63-63-3.
    [7] Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films [J]. J. Cryst. Growth.,2000,216:330-334.
    [8] O ZGUR U, ALIVOV Y I, LIU C, et al. A Comprehensive Review of ZnO Materials and Devices [J]. J.Appl. Phys.,2005,98:041301-041301-103.
    [9]文军. La掺杂氧化锌纳米颗粒的室温拉曼特性[J].河北师范大学学报:自然科学版,2009,34(5):541-543.
    [10] Yongchun Lu, Yanhong Lin, Dejun Wang, Lingling Wang, Tengfeng Xie, and Tengfei Jiang. A HighPerformance Cobalt-Doped ZnO Visible Light Photocatalyst and Its Photogenerated Charge TransferProperties [J]. Nano. Res. In. china.,2011,4(11):1144-1152.
    [11]周杰,苏达根,钟明峰.纳米氧化锌的溶剂热法合成及其光学性能[J].化工新型材料,2008,36(03):50-52.
    [12] R.E. Marottia, D. N. Guerraa, C. Bellob, G. Machadoa, and E. A. Dalchielea. Bandgap energy tuningof electrochemically grown ZnO thin films by thickness and electrodeposition potential [J]. Sol.Energy. Mater. Sol. Cells.,2004,82:85-104.
    [13]魏凌.溶胶-凝胶法制备ZnO:V和ZnO:Co薄膜及性能研究[D].河南大学,2007年.
    [14] K. A. Vanaja, U. Mananda, M. Bhatta, R. S. A jimsha, Sjayalekshmi and M. K. Jayaraj. p-AgCoO2/n-ZnO heterojunction diode grown by rf magnetron sputtering [J]. Bull. Mater. Sci.,2008,31:753-758.
    [15] Luwei Sun, Haiping He, Chao Liu, and Zhizhen Ye. Highly efficient orange emission in ZnO:Senanorods [J]. J. Appl. Phys.,2010,108:124313-124313-4.
    [16] Q. Fu, D. Lee, A. V. Nurmikko, L. A. Kolodziejski, and R. L. Gunshor. Isoelectronic δ doping in aZnSe superlattice: Tellurium as an efficient hole trap [J]. Phys. Rev. B.,1989,39:3173-3177.
    [17] M. J. Seong, H. Alawadhi, I. Miotkowski, A. K. Ramdas, and S. Miotkowska. Role ofelectronegativity in semiconductors: Isoelectronic S, Se, and O in ZnTe [J]. Phys. Rev. B.,2000,62:1866-1872.
    [18] G. Chen, I. Miotkowski, S. Rodriguez, and A. K. Ramdas. Control of defect structure in compoundsemiconductors with stoichiometry: Oxygen in CdTe [J]. Phys. Rev. B.,2007,75:125204-125204-10.
    [19]张昕彤,庄家骐,徐金杰,谢腾峰,王德军,白玉白,李铁津,姚建年.量子尺寸氧化锌颗粒的表面光电压谱研究[J].高等学校化学学报,1999,20(12):1945-1947.
    [20] Zhiming Wu,Yong Zhang, Jinjian Zheng, Xiangan Lin,Xiaohang Chen,Binwang Huang,HuiqiongWang,Kai Huang, Shuping Li and Junyong Kang. An all-inorganic type-II heterojunction array withnearly full solar spectral response based on ZnO/ZnSe core/shell nanowires [J]. J. Mater. Chem.,2011,21:6020-6026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700