电磁装置场路耦合法分析与温度场计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压器直流偏磁现象对变压器的正常运行会产生不利的影响,诸如励磁电流畸变、高次谐波成分及其相应损耗的增加、铁心高度饱和引起的漏磁通的增加,以及由此引发的局部过热、绝缘损害、系统电压下降等一系列问题。目前对变压器中直流偏磁现象的机理研究和定量分析尚处于初步阶段,在变压器的设计过程中也没有完全考虑直流偏磁效应。隔爆电机的实际运行也是一个较为复杂的物理过程,工作时不可避免地要产生损耗,这些损耗最终绝大部分变成热量,引起电机各部分温度的升高,从而关系到电机的运行寿命和可靠性。随着电磁场理论知识的不断完善、传热学知识的不断成熟以及计算机技术的不断发展,采用方便快捷的方法准确的计算这些电磁装置的电磁场和温度场也势在必行。
     本文首先根据变压器直流偏磁的原理,利用双爱波斯坦方圈装置对在不同工作点、不同偏置水平条件下的铁心磁滞回线进行了深入的实验研究,测量了铁磁材料在实际偏磁时的交直流共同作用时的磁滞回线和损耗曲线。考虑铁磁材料的饱和特性,分别运用电路的方法和场路耦合法对变压器直流偏磁情况下的励磁电流进行了仿真计算,将两种仿真结果进行比较,得出了场路耦合模型的结果更具有工程实际意义。并以磁场计算结果为基础,通过编程计算变压器的空载损耗。
     利用场路耦合法对隔爆电机的电磁分布情况、电磁转矩和电流进行了仿真,以电压源为载荷,计算了三相隔爆异步电动机的运行性能,并且所得结果与设计结果相符,进一步验证了此方法的正确性,同时也得出了场路耦合法的普遍性和实用性。
     最后将传热学知识和有限元法与电机的实际性能结合起来,确定了电机内导热体的等效导热系数和各散热面的表面散热系数,用有限元分析软件对三相隔爆异步电动机进行了温度场分析,全面了解了电机内部各点的温度分布情况。这对于全面认识电机内部的温升情况,检验设计的电机的温升性能具有一定的指导意义。
The DC bias magnetization phenomena is harmful to the characteristics of the transformers on line. It causes the distortion of magnetizing current and the increasing of harmonics leakage magnetic flux and corresponding losses, which in turn result in a series of problems such as the local overheating, insulation damage and system voltage drop. However, the mechanism analysis and the analysis in quantities are still in initial stage as well as the effect of DC bias magnetization has not fully considered in the process of the transformer design. The actual operation of the flameproof motor is also a very complex physical process. The losses are produced inevitably by the motor on operation. The majority of these losses will cause overheating eventually which will increase the temperature. The temperature rise in flameproof induction motor may be harmful for the insulation which directly determines the operation life of the motor and the reliability. With the improvement of electromagnetic theory, the mature of heat transfer knowledge and the development of computer technology, using the fast and convenient method to calculate the electromagnetic and temperature fields accurately in these electromagnetic devices is also imperatively.
     Based on the principle of DC bias magnetization, this paper uses the pairs of Epstein square coil equipment to further study the core hysteresis loop under the conditions of different operating point and different levels of bias. The hysteresis loop and iron loss curve of the ferromagnetic material under DC bias and AC combined action in actual DC bias are obtained. Taking the saturation characteristics of ferromagnetic materials into account, this paper use the circuit method and the field-circuit coupled method to simulate and calculate the magnetizing current of transformer in the conditions of the DC bias magnetization respectively. The field-circuit coupled model is more practical significance in engineering by comparing the two kinds of simulation results. Then, the loss curve is input to the transformer circuit-field coupled model. Based on the magnetic field calculations, the core loss is calculated and analyzed by programming.
     Then, the electromagnetic distribution, electromagnetic torque and current of three-phase flameproof induction motor are simulated by using the field-circuit coupled method. As a result, the operation performance of the flameproof motor is calculated. The results are consistent with the design. It is further to validate the correctness of field-circuit coupled method as well as the universality and practicality.
     This paper combines the knowledge of heat transfer and the finite element method with the actual performance of the motor. The equivalent coefficient of heat conductivity and the coefficient of heat convection in the motor are determined. The 3-D temperature of the flameproof induction motor is calculated by using the finite element method. It can be accurately understanding of the transient temperature distribution of the motor through the calculation of the temperature field in this motor. It is a powerful analytical tool in guiding the design of motor.
引文
[1] IEEE PES Transmission and Distribution Ctte, Geomagnetic Disturbances and Power System Effects Working Group, USA. Geomagnetic disturbance effects on power systems [J].IEEE Transactions on Power Delivery, 1993, 8(3):1206-1216.
    [2]姚缨英.大型电力变压器直流偏磁现象的研究[D].沈阳:沈阳工业大学,2000.
    [3] J.N.Towle F.S.Prabhakara and J.Z.Ponder,”Geomagnetic Effects Modelling for the PJM Interconnection System Part I-Earth Surface Potentials Computation”,IEEE Trans. On power system,Vol.7,1992,No.3,pp.949-953.
    [4]郭满生,程志光.大型电力变压器直流偏磁研究综述[J].电气制造,2006(3).
    [5]辜承林,陈乔夫,熊永前编著.电机学(第二版)[M].话中科技大学出版社,2005:121-124.
    [6]刘广军.防爆电机现状及发展趋势[J].煤炭技术, 2006.
    [7]何钢.防爆变频调速电机车在隧道施工环境中使用的适应性[J].电气防爆,2004.
    [8]刘安邦.防爆电机产品发展趋势[J].电气防爆, 2000(2).
    [9]王云生,李梅兰,李瑞.我国防爆电机行业的现状与展望[J].电气技术, 2006.
    [10]汤蕴璆编著.电机内的电磁场(第二版)[M].科学出版社, 1998: 1~14, 274-279.
    [11] S. J. Salon, J. P. Peng. Three dimensional eddy currents using a four component finite element formulation[J]. IEEE Trans Mag, September 1984; 20(5): 1992-1994.
    [12]龚曙光,谢桂兰编著. ANSYS操作命令与参数化编程[M].机械工业出版社, 2003
    [13]薛向党,郭晖等,”在地磁感应电流作用时分析和计算电力变压器特性的新方法-时域和频域法”,电工技术学报,2000年4月,Vol.15,No.2,pp.1-5.
    [14] V.D.Albertson,Chartman,B.Bczoki,”Geomagnetic Disturbance Effects on Power Systems”, IEEE Trans. On power Delivery,Vol.8,No.3, 1993,pp.1206-1216.
    [15] A.P.Sakis Meliopoulos et al,“Comparison of SS-GIC and MHD-EMP-GIC Effects on Power Systems”,IEEE Trans. on Power Delivery, Vol.9, No.1, January 1994, pp.194-205.
    [16] A.P.Sakis Meliopoulos,“Effects of DC Ground Electrode on Converter Transformers”, IEEE Trans. on Power Delivery, Vol.9, No.1, January 1994, pp.194-205
    [17] A.E.Emanuel-SM et al,“Direct Current Generation in Single-Phase Residential Systems”, IEEE Trans. on Power Apparatus and Systems, Vol.103, No.8, August 1984, pp.2051-2057
    [18] D.H.Boteler,“Geomagnetically Induced Currents: Present Knowledge and Future Research”, IEEE Trans.on Power Delivery, Vol.9, No.1, January 1994, pp.50-58.
    [19] Hock-Chuan Tay and Glenn W. Swift, "On the Problem of Transformer overheating Due to Geomagnetically Induced Currents", IEEE Trans. on PAS, Vol.104, No.1, 1985, pp.212- 219.
    [20] P.Picher, L.Bolduc, V.O.Pham,“Study of the Acceptable DC Current Limit in Core-From Power Transformers”, IEEE Trans. on Power Delivery, Vol.12, No.1, 1997, pp257-263
    [21] Shu Lu, Yilu Liu,“FEM Analysis of DC Saturation To Assess Transformer Susceptibility To Geomagnetically Induced Currents”, IEEE Trans. on Power Delivery, Vol.8, No.3, 1993, pp1367-1376
    [22]陈丕章,严烈通,姚若平.电机电磁场理论与计算[M].科学出版社, 1986:106-107.
    [23]章明涛,萧如鸿.电机电磁场[M].机械工业出版社, 1988: 426-442.
    [24] V. Ostovic. Three Dimensional Eddy Current Computation in Conductors of Electric Machines[J]. IEEE Industru Applications Society, 2001(2): 737-744.
    [25] F. N. Isaac, A. A. Arkadan, A. El-Antably. Magnetic Field and Core Loss Evaluation of ALA-Rotor Synchronous Reluctance Machines Taking into Account Material Anisotropy[J]. IEEE Transactions on Magnetics,1998,34(5): 3507-3514.
    [26]李开成,马志云.一种精确计算异步电机电感参数的通用方法[J].电工技术学报, 1996, 11(1): 21-23.
    [27]梁得亮,陈世坤.用时步有限元法分析实心转子异步电机的瞬态特性[J].中小型电机, 1995, 22(5): 3-6.
    [28]严登俊,刘瑞芳,胡敏强等.鼠笼异步电机启动性能的时步有限元计算[J].电机与控制学报, 2003, 7(3): 177-181, 190.
    [29]陈世坤主编.电机设计[M].北京:机械出版社,2000:13-16.
    [30]谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析[M].机械工业出版社, 2001.
    [31]刘允松,励庆孚,杨树正.异步电机起动与堵转过程中转子笼三维温度场的计算[J].中小型电机, 1998, 25(5): 5-9.
    [32] M. Anxo Prieto Alonso, X. M. Lopeza Femandez, Manuel Perez Donsion. Harmonic Effects on Rise of a Squirrel Cage Induction Motor[J]. ICEM 2000.Espoo Finland. August 2000. Helsinki University of Technology: 144-147.
    [33] Cannistra, G. Labini, M. Sylos. Finite Element Analysis of the Thermal Field in the Rotor during Motor Start-up[J]. Numerical Heat Transfer, part A: Applications, 1996, 29(5): 525-539.
    [34] S. Mezani, R. Kechroud. Finite Element Thermal Modeling of an Induction Motor [J]. Electric Power Components and Systems, 2001, 29(9): 821-834.
    [35] E. Gurevich, P. Oshurkov. Determination of Rotor Winding Temperation of the Turbo Generator with the Brushless Excitation System[J]. ICEM 2000. Espoo Finland. August 2000. Helsinki University of Technology: 156-160.
    [36] A. Di Gerlando, R. Perini. Analytical Evaluation of the Stator Winding Temperature Field of Water-cooled Induction Motors for Pumping Drives[J]. ICEM 2000 Espoo Finland. August 2000. Helsinki University of Technology: 130-134.
    [37]李伟力,侯云鹏,周封等.汽轮发电机径切两向空冷系统转子温度场的计算方法[J].中国电机工程学报, 2000, (8): 74-78.
    [38]李伟力,周封,侯云鹏等.大型水轮发电机转子温度场的有限元计算及相关因素分析[J].中国电机工程学报, 2002, 22(10): 85-90.
    [39]杜炎森,黄学良,胡敏强.同步电机温度场数值计算与分析[J].微电机, 1997, 30(4): 3-7.
    [40]龚晓锋,刘长红,饶方权等.特种异步电机转子温度场的计算[J].大电机技术, 2004(5): 13-16.
    [41]黄东洙,沈稼丰,侯云鹏.高压防爆电机定子三维温度场的计算与分析[J].防爆电机, 2002(4): 11-13, 19.
    [42] K. Preis, O. Biro, R. Dyczij-Edlinger, K. R. Richter. Application of FEM to Coupled Electric, Thermal and Mechanical Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316~3319.
    [43] K. preis , I. Bardi , O. Biro, C. Magele . Numerical Analysis of 3D Magnetostatic Field[J]. IEEE Transactions on Magnetics, 1991, 27(5): 3798-3803.
    [44] P. K. Vong, Elec. Eng, D. Rodger. Coupled Electromagnetic-thermal Modeling of Electrical Machines[J]. IEEE Transactions on Magnetics, 2003, 39(31): 1614-1617.
    [45] Kay Hameyer, Johan Driesen, Herbert De Gersem. The Classification of Coupled Field Problems[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1618-1621.
    [46]杜炎森,黄学良.大型汽轮发电机端部三维温度场研究[J].中国电机工程学报, 1996, 16(2): 95-101.
    [47] Dengjun Yan, Minqiang Hu. The Finite Element Method of Computing Exact Inductance in Squirrel Cage Induction Motor[J], ICEM 2000, 2000: 5-8
    [48] Li Weili, Ding Shuye, Jin Huiyong, Xiong Bin. Numerical Calculation of Coupled Fields of Large Salient Synchronous Generator[J]. Compumag, 2005(2):1242-1246.
    [49]李伟力,付敏,周封等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报. 2000, (5): 14-17.
    [50]胡之光主编.电机电磁场的分析与计算[M].北京:机械出版社,1986.
    [51] Andrej Stermecki, Igor Ticar. FEM Based Design of an Induction Motor's Part Winding to Reduce the Starting Current. The 15th Conference on the Computation of Electromagnetic Fileds,2005, Shenyang,CHINA.
    [52]黄国治,傅丰礼主编.Y2系列三相异步电动机设计手册[M].北京:机械工业出版社,2004,1.
    [53] Mohammed O A, Liu S, Ganu S C. Computation of Transient Magneto-mechanical Problems in Electrical Machines. Southeast Con 2002, Proceedings IEEE:187-191.
    [54] Fu W N, Ho S L,Li H L.An effective method to reduce the computing time of nonlinear time-stepping finite-element magnetic field computation[J]. EEE Transactions on Magnetics, 2002,8(2): 441-444.
    [55]严登俊,刘瑞芳,胡敏强.处理电磁场有限元运动问题的新方法[J].中国电机工程学报,2003, 23(8):163-167.
    [56] Yves Bertin, Etienne Videcoq. Thermal behavior of an electrical motor through a reduced model[ J ]. IEEE Transactions on energy conversion. 2000, 15 (20): 129-134.
    [57]杨世铭,陶文铨编著.传热学[M].北京:高等教育出版社, 2002.
    [58] Xypteras J, Hatziathanassiou V. Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect[J]. IEEE Transactions on Energy Conversion, 1999. 14(4): 996-1003.
    [59] Aldo Boglietti, Andrea Cavagnino, Mario Lazzari, etal. A simplified thermal model for variable-speed self-cooled induction motor[J]. IEEE Transactions on Industry Applications, 2003, 39(4): 945-952.
    [60]魏永田,孟大伟,温嘉斌编著.电机内热交换[M].北京:中国工业出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700