果蝇复眼病变诊断系统中光学图像的处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,提高医学药品的开发速度是研究人员追求的目标。果蝇作为一种优秀的实验动物模型材料,被广泛应用于生物医学与新药研制。通过观察果蝇复眼在施药前后的变化,分析动物活体对药品的适应性。目前这些观察、判断的工作都是由人工完成,工作量大,诊断速度慢,准确率较低。本文研究果蝇复眼病变诊断系统中光学图像的处理,该项工作是光学图像采集技术、数字图像技术以及嵌入式计算机技术应用于医学显微图像领域,尤其是诸如果蝇一类细小生物样本方面的新尝试,并且是一个值得研究和开发商用产品的新方向。
     本文在果蝇复眼病变诊断研究方面取得了较有成效的进展,设计实现了基于嵌入式Linux系统的果蝇复眼病变智能检测系统的软件部分。针对果蝇复眼目标与背景的分割问题,提出一种基于色度、色饱和度和亮度(HSI)彩色空间的分割算法。该算法将果蝇复眼RGB图像中R分量代替B分量成RGR图像,并映射到HSI空间在饱和度S分量上分割果蝇复眼;并比较和分析了快速模糊C均值聚类(FFCM)灰度分割法和最大类间方差(OTSU)阈值化分割法在果蝇复眼目标提取上的性能,处理结果表明OTSU法分割果蝇复眼轮廓的优势最为明显。针对OTSU法计算量大,执行效率低的缺点,提出采用鲁棒性和并行性的遗传算法进行优化,并利用改进的遗传算法(IGA)快速的非线性搜索求解最优分割阈值,阐述了改进遗传算法和优化求解的过程,并给出优化实验结果。同时,归纳果蝇复眼的A、B两类病变,利用面积的特征和亮度的特征对复眼病变进行诊断。基于嵌入式Linux系统建立软件开发环境,设计包括基于光学图像采集技术的果蝇复眼显微图像的采集、果蝇复眼的病变诊断、诊断信息的管理以及批量图像的智能诊断等功能模块。最后以QT软件为平台,设计了系统的图形用户界面。
     测试结果表明,系统检测精度可达95%以上,响应时间<0.1s,处理时间<3s/张,具有友好的人机交互界面,与人工方式相比优势明显,为高效地检测果蝇一类药品检测实验对象提出行之有效的新方法。
To speed up the development of biomedicine has been the goal of the scientific researchers for many years. Drosophila, as a kind of excellent material of experimental animal models, is used extensively in the research of biomedicine and pharmacy. In medical studies, they are usually treated with reagents of interest and the changes in their organs, particularly their compound eyes, are then collected and analyzed. At present, these series of examine processes are still done manually, which makes the research very laborious and inefficient and sometimes affects the accuracy of the results. This paper studies on the optical image processing in the system of drosophila's compound eyes lesion diagnosis. It is a novel attempt to make use of the technologies of optical image capturing, digital image processing and embedded computer to study the kind of medical micro-image domain such as drosophila and mini-type samples. This work will be worth researching and developing merchandise.
     It has made some effective improvements in the following two main aspects: the algorithm of drosophila's compound eyes lesion and its application. In that, the design of the software part of the intelligent diagnosis system of drosophila's compound eyes lesion is realized based on embedded Linux system. Here, a novel algorithm is presented for extracting the region of drosophila's compound eyes based on HSI color space. In the algorithm, the color images of drosophila's compound eyes are resolved into three monochrome components (R, G and B), followed by replacing B with R. After mapping from RGB to HSI, the target regions are accurately extracted using OTSU. Two preparing algorithms for the target detection of the drosophila's compound eyes are proposed, which are Fast Fuzzy C-Means (FFCM) clustering algorithm for monochrome image segmentation and maximum class variance (OTSU) thresholding algorithm. After comparing their performance in practice, the results indicate that OTSU thresholding algorithm is better than the other for extracting drosophila's compound eyes on the saturation space. Since of the massive compute of the OTSU thresholding algorithm, improved Genetic Algorithm (IGA), which is robustness, parallelizable and novel, is used to search the best threshold for segmentation. The paper expatiates on IGA principle, its experiment realization and result. In this paper, it uses the characters of area and intensity to diagnose the two different pathological forms, defined as A and B. The environment of software development is established on embedded Linux system, and then the functions are realized, which are the drosophila's compound eyes micro-image collection based on optical image capturing, the multi-format image compression and storage, the compound eyes pathological diagnosis, the diagnosis pictorial information management and the large batch of compound eyes images of intelligent diagnostic, are contained. Finally, based on the QT software as the platform, GUI for automatic detection of pathological changes of drosophila's compound eye is designed.
     The text results show that the detection precision of this system has been achieved over 95%, the response time below 0.1s, the processing time below 3s/sheet and a friendly interacting interface. Compared with manual inspection, the intelligent diagnosis system supplies a new effective and better method to test the drug reaction of the subject (such as drosophila) participated the experiment.
引文
[1]蒋先刚.医学显微图像管理系统研究[J].计算机应用,2001,21(6):37-38.
    [2]尧德中,李永杰,周山宏.生物医学中的信息技术[J]。电子科技大学学报社科版,2001,3(2):3-4.
    [3]陈跃,杨建茹。图像分析系统及其在生物医学中的应用[J].齐鲁医学检验,2003,14(4):1-3.
    [4]万永奇,谢维.生命科学与人类疾病研究的重要模型-果蝇[J]。生命科学,2006,18(5):425-429.
    [5]暴学祥,李伟红,李霞,等。黑腹果蝇视觉系统显微结构的研究[J].东北示范大学报自然科学版,2004,36(1):71-77。
    [6]王明福,佟艳丰,薛万琦.蝇类资源及其利用前景展望[J].资源科学,2004,26(5):153-159.
    [7]Martin Wasser,Zalina Bte,Osman,William Chia.EAST and Chromator control the destruction and remodeling of muscles during Drosophila metamorphosis[J].Developmental Biology,2007,307(2):380-393.
    [8]PeiLing Chert,Thomas R C.The Cadhedn Flamingo Mediates Level Dependent Interactions that Guide Photoreceptor Target Choice in Drosophila[J].Neuron,2008,58(1):26-33.
    [9]张国忠,王晓明,何鸿强.视觉在生物系统中的应用[J].制造业自动化,2004,26(7):89-92.
    [10]赵藻蕃.仪器分析[M]。北京:高等教育出版社,1997:20-38。
    [11]容观澳。计算机图象处理[M].北京:清华大学出版社,2000:12-60。
    [12]夏得深。现代图像处理技术与应用(第二版)[M]。南京:东南大学出版社,2001:15-40
    [13]Rafael C G,Richard E W.Digital Image Processing,Second Edition[M].Beijing:Publish House of Electronics Industry,2003:200-480.
    [14]Wesley E,Snyder Hairong Qi.Machcine Vision(第一版)[M].北京:机械工业出版社,2005:5-13.
    [15]Sonka M,Hlavac V,Boyle R.Image processing.Analysis and Machine Vision:PWS Publishing,1999:16-46.
    [16]周新伦,柳建,刘华志.数字图象处理[M].北京:国防工业出版社,1987:32-60.
    [17]景晓军.图像处理技术及其应用[M].北京:国防工业出版社,2005:10-95.
    [18]贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社,2001:15-38.
    [19]左建中,张新荣,李乃华.将数学形态学应用于检测芯片机器视觉的研究[J]。制造业自动化,2004,26(5):1-3。
    [20]王卓,包杰.嵌入式Linux系统及其应用前景[J].单片机与嵌入式系统应用,2004,(3):5-8.
    [21]Pao-Ann Hsiung,Shang-Wei Lin.Automatic synthesis and verification of real-time embedded software for mobile and ubiquitous systems[J].Computer Languages,Systems and Structures,2008,34(4):153-169.
    [22]Joachim Henkel.Selective revealing in open innovation processes:The case of embedded Linux[J].Research Policy,2006,35(7):953-969.
    [23]杨静,吴乃陵。嵌入式操作系统应用研究[J].电子器件,2005,28(1):204-206.
    [24]沈可。使用嵌入式Linux操作系统进行软件开发的特点及优势[J].电脑开发与应用,2001,14(7):13-15。
    [25]Xiaorui Wang,Yingrning Chen,Chenyang Lu,et al.A robust distributed real-time embedded middleware with end-to-end utilization control[J].Journal of Systems and Software,2007,80(7):938-950.
    [26]周立功。ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005:6-84.
    [27]田泽。嵌入式系统开发与应用教程[M].北京:北京航空航天大学出版社,2005:4-91.
    [28]王田苗.嵌入式系统设计与实例开发(第二版)[M].北京:清华大学出版社,2003:7-80.
    [29]郭玉东,王非非.Linux操作系统结构分析[M].西安:西安电子科技大学出版社。2002:3-82.
    [30]陈颉,陈启祥.数字图像的边缘检测[J].湖北工业大学学报,2006,21(4):108-111
    [31]Li Guojin,Wang Guorong,Zhong Jiguang.A genetic algorithm on welding seam image segmentation[J].Fifth world congress on intelligent control and automation,2004,10(3):2176-2178.
    [32]Eric H,Fang K,Yang S M.An error separation technique for measuring straightness motion error of a linear slide[J].Measurement science and technology,2000,10(11):1515-1521.
    [33]El-Faki M S,Zhang N,Peterson D E.Factors affecting color based weed detection[J].Transactions of the ASAE,2000,43(4):1001-1009.
    [34]翟红芳,卢焕章,张申涛.中值滤波和边缘检测技术在复杂背景图像分割中的应用[J].图形图像,2006,(9):92-94。
    [35]Xu Xiaoyin,Miller E L.Adaptive two-pass median filter to remove impulsive noise image processing[J].Proceedings of the first international conference on machine learning and cybernetics,2002,32(1):808-811.
    [36]Cheng H D,Jiang X H,Sun Y.Color image segmentation:advances and prospects[J].Pattern Recognition,2001,34(12):2259-2281.
    [37]Lin Y,Tian J.A survey on medical image segmentation methods[J].Pattern Recognition and Artificial Intelligence,2002,15(2):192-204.
    [38]D.Gomez,J.Montero,J.Yanez,C.Poidomani.A graph coloring approach for image segmentation[J].Omega,2007,35(2):173-183.
    [39]Wang X W,Shen L S,Wei B C,et al.The focus segmentation of color ophthalmologic image based on modified K-means clustering and mathematical morphology[J].Chinese Journal of Biomedical Engineering,2002,21(5):443-448.
    [40]Kurugollu F,Sankur B,Harnmnei A E.Color image segmentation using histogram multithresholding and fusion[J].Image and Vision Computing,2001,19(13):915-928.
    [41]Didier Zugaj,Vincent Lattuati.A new approach of color images segmentation based on fusing region and edge segmentations outputs[J].Pattern Recognition,1998,31(2):105-113.
    [42]Shiji A,Hamada N.Color image segmentation method using watershed algorithm and contour information[A].In:Proceeding of 1999 IEEE International Conference on Image Processing[C].Kobe,Japan,1999,(12):305-309.
    [43]王泽兵,杨朝晖.彩色图像分割技术研究[J]。数字电视与数字视频,2005,(4):20-24.
    [44]吕庆文,陈武凡。基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301.
    [45]吴薇.基于最大模糊熵原理的多阈值图像分割新算法[J].系统工程与电子技术,2005,27(2):357-360.
    [46]杜晓晨,刘建平。改进的模糊阈值分割方法[J].光电工程,2005,32(10):51-55
    [47]常发亮,刘静,乔谊正.基于遗传算法的彩色图像二维熵多阈值自适应分割[J].控制与决策,2005,20(6):674-677。
    [48]种劲松,周孝宽,王宏琦.基于遗传算法的最佳熵阈值图像分割法[J].北京航空航天大学学报,1999,25(6):747-750。
    [49]张玲,郭磊民,何伟.一种基于最大类间方差和区域生长的图像分割法[J]。信息与电子工程,2005,3(02):91-93.
    [50]阳波。基于最大类间方差遗传算法的图像分割算法[J]。湖南师范大学自然科学学报,2003,26(1):32-38。
    [51]郭海涛.利用二维属性直方图的Otsu自动阈值分割方法[J].光电子激光,2005,6(6):739-743.
    [52]付忠良。一些新的图像阈值选取方法[J]。计算机应用,2000,20(10):13-15.
    [53]郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图像图形学报,2005,10(04):484-488.
    [54]周礼平,高新波.图像分割的快速模糊 C-均值聚类算法[J]。计算机工程与应用,2002,(8):68-71.
    [55]林开颜,徐立鸿,吴军辉。快速模糊C均值聚类彩色图像分割方法[J].中国图象图形学报,2004,9(2):159-164.
    [56]Li Ma,R.C.Staunton.A modified fuzzy C-means image segmentation algorithm for use with unever illumination patterns[J].Pattern Regconition,2007,40(11):3005-3011.
    [57]徐月芳.基于遗传模糊C-均值聚类算法的图像分割[J].西北工业大学学报,2002,20(4):549-554.
    [58]Hong Tang,Tao Fang,Pei-Jun Du.Intra-dimensional feature diagnosticity in the Fuzzy Feature Contrast Model[J].Image and Vision Computing,2008,26(6):751-760.
    [59]王小平.遗传算法-理论、应用与软件实现(第一版)[M].西安:西安交通大学出版社.2002:11-74.
    [60]常青。基于遗传算法的图像阈值选取[J].计算机工程与应用,2002,(22):35-37。
    [61]Veysel Aslantas.A singular-value decomposition-based image watermarking using genetic algorithm[J].AEU-International Journal of Electronics and Communications,2008,62(5):386-394.
    [62]Michael Laszlo,Sumitra Mukherjee.A genetic algorithm that exchanges neighboring centers for k-means clustering[J].Pattern Recognition Letters, 2007,28(16):2359-2366.
    [63]Aryanezhad M B,Mohammad Hemati.A new genetic algorithm for solving non convex nonlinear programming problems[J].Applied Mathematics and Computation,2008,199(1):186-194.
    [64]Vedat T,Ayse T D.An improved genetic algorithm with initial population strategy and self-adaptive member grouping[J].Computers and Structures,2008,86(11-12):1204-1218.
    [65]雷德明。自调整遗传算法[J].系统工程与电子技术,1999,21(11):70-71.
    [66]李海民,吴成柯。自适应变异遗传算法及其性能分析[J].电子学报,1999,27(1):85-87.
    [67]史奎凡,陈月辉。提高遗传算法的收敛速度的方法[J].信息与控制,1998,33(6):671-673.
    [68]Matthew N,叶小虎.Linux高级编程(第一版)[M].北京:机械工业出版,2002:4-78.
    [69]Alessandro Rubiei,Jonathan Corbet.Linux设备驱动程序(第二版)[M]。北京:中国电力出版社,2002:10-102.
    [70]Rafael C G,Richard E W,Steven L E.Digital Image Processing Using MATLAB[M].Beijing:Publish House of Electronics Industry,2005:35-200.
    [71]Wesley E,Snyder Hairong Qi.Machcine Vision(第一版)[M].北京:机械工业出版社,2005:25-61.
    [72]David J K.Visual C++技术内幕[M].北京:清华大学出版社(第四版),2003:10-390.
    [73]何斌,马天予,王运坚.Visual C++数字图像处理(第二版)[M].北京:人民邮电出版社,2002:20-471。
    [74]胡小锋,赵辉.Visual C++/MATLAB图像处理与识别实用案例精选(第一版)[M].北京:人民邮电出版社,2004:12-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700