航空薄壁件精密铣削加工变形的预测理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现减重和提高比强度的目的,航空工业中广泛采用了航空铝合金等材料制成的薄壁零件。从切削加工的角度看,航空薄壁零件壁厚薄、相对刚度低、外形协调要求高、加工工艺性差。在精密切削加工过程中,切削力作用下薄壁工件的局部弹性变形、残余应力不均匀分布引起的整体加工变形以及加工系统的振动现象是影响薄壁件加工质量和精度的三个突出问题。本文采用理论分析、力学建模、有限元模拟和实验验证等手段,对航空薄壁件精密铣削加工变形的预测理论和方法进行了深入、系统的研究。主要研究工作包括以下几方面:
     针对铝合金材料7050-T7451的高速铣削加工,基于大变形理论和虚功原理,建立了切削加工过程的三维热-弹塑性有限元模型。分析、研究了有限元网格模型、材料本构关系、刀-屑间摩擦模型、切屑分离标准以及热传导控制方程等涉及切削加工模拟的关键技术。利用该模型对铝合金材料的高速切削加工过程进行了有限元模拟,分析了高速切削加工过程中切屑的形成过程及其形貌,三维铣削力的变化情况,以及应力、应变、切削温度及已加工表面残余应力的分布规律。
     针对航空铝合金材料7050-T7451的周铣加工过程,进行了铣削力理论建模研究,在不同切削情况下分别采用“刚性法”和“柔性法”对各自情况下的铣削力进行了预测分析,并进行了铣削力实验及模型验证。随后,对铣削温度进行了预测分析及实验研究。搭建了适合测量铣削温度的实验系统,并通过正交实验及回归分析获得了铣削温度的经验公式模型。
     对薄壁件铣削加工过程中的振动及其稳定性进行了研究。基于薄壁件铣削加工动力学模型,利用有限元模态分析方法识别薄壁件动态特性参数,建立加工稳定性极限判定准则,并绘制了以机床主轴转速为横坐标,临界切削深度为纵坐标的稳定极限图,以指导选取主轴转速和切削深度等工艺参数,提高加工质量和加工效率。
     最后对薄壁件铣削加工整体变形及局部加工变形进行了研究。在研究了薄壁件铣削加工有限元模拟所涉及相关关键技术的基础上,建立了适合分析薄壁件整体加工变形的有限元模型及分析流程,并重点分析了加工过程中的应力场和温度场分布规律、加工后工件残余应力分布规律以及加工路径和切削载荷对残余应力的大小及其分布的影响。薄壁件局部加工变形预测的研究主要针对走刀方式和切削力这两个因素进行。结合铣削力预测的有关研究,建立了适合研究薄壁件局部加工变形误差的“刚性预测法”和“柔性预测法”流程。关于走刀方式主要研究了分层对称走刀和阶梯对称走刀对薄壁件局部加工变形的影响。
At present,airframes are widely made of monolithic thin-walled components for the sake of weight reducing and strength ratio improvement.However,due to factors such as cutting force induced flexible deflection,dynamic vibration and non-uniform residual stress distribution induced distortion,precision machining of these low-rigidity thin-walled parts has been providing a serious challenge for engineers.In this article,the models and methods for predicting the precision milling deformation errors are systematically invested by means of theoretic analysis,mechanics modeling,finite element simulation and experiments verification.
     Firstly,based on large deformation theory and virtual work principle,a three-dimensional(3-D) thermo-elastic-plastic coupled finite element analysis(FEA) model is constructed to investigate the high-speed milling(HSM) processes of 7050-T7451 aluminum alloy.Several key FEA techniques,such as finite element mesh model,material constitutive model,chip separation criteria,frictions on the tool-chip interface and 3-D heat conduction governing equations,are analyzed and implemented to improve the accuracy and efficiency of the FEA simulation.A HSM case is simulated with the 3-D FEA model.The detailed calculated results are presented and analyzed,including the chip's geometric shape and its evolution processes,the stress,strain,cutting forces, and temperature distributions in the workpiece,tool and chip,as well as the residual stresses distributions on the machined surface.
     Secondly,based on two typical cutting force predicting models,namely the rigid model and the flexible model,a numerical simulation procedure is developed to evaluate cutting forces under different cutting conditions.The precision and validity of the prediction models are verified by the milling force experimental measurements.Then,a semi-artificial thermocouple device is developed to explore the dynamic cutting temperature variation rules in high-speed milling of A17050-T7451 aluminum alloy.Also, a cutting temperature empirical formula is constructed by means of orthogonal experimental design and multivariate linear regression analyses.
     Thirdly,based on the dynamic cutting force model,a method for obtaining the stability lobes is developed.The modal parameters are identified by the finite element modal analyzing.The predicted stability lobes are used to determine the optimal cutting conditions to suppress chatter phenomenon during the high speed milling process.
     Finally,the thin-walled workpiece distortion prediction model is systematically invested. Several key influencing factors,such as initial residual stress,cutting loads,fixture, cutting path and sequence are considered.The fields of the stress and temperature distribution rules during the thin-walled parts machining process,as well as the residual stress distribution laws,are detailed analyzed.The thin-walled workpiece local flexible deflection prediction research is mainly focused on two factors:cutting path and force. Based on two typical cutting force predicting models,a numerical simulation procedure is developed to evaluate the flexible deflections in both symmetry and step-symmetry milling process.
引文
[1]王道荫.迈向21世纪的航空制造技术.北京:航空工业出版社,1994.
    [2]路甬祥.团结奋斗 开拓创新 建设制造强国.机械工程学报,2003,19(1):1-9.
    [3]刘强,郇极.航空航天制造与现代数控技术及装备.中国制造业信息化,2005,3:64-66.
    [4]航空制造工程手册总编委会.航空制造工程手册.航空工业出版社,1995.
    [5]刘亚俊,夏伟.金属切削理论发展的历史回顾.力学与实践,2001,23(4):72-74.
    [6]Klamecki B E.Incipient chip for marion in metal cutting-a three dimension finite analysis.[Ph D dissertation].Urbana:University of Illinois at Urbana-Chanpaign,1973.
    [7]Lajczok M R A study of some aspects of metal cutting by the finite element method.[Ph D dissertation].NC State University 1980
    [8]Strenkowski J S,Carroll J T.A Finite Element Model of Orthogonal Metal Cutting.Tram.ASME.1985,107(11):347-354.
    [9]Lin,Z.C,Lin,S.Y.,A Couple finite element model of thermo-elastic large deformation for orthogonal cutting,Journal of Engineering Material and Technology,1992,114(2):218-226.
    [10]Shih,A.J.,Yang,H.T.Y.,Experimental and finite element predictions on the residual stresses due to orthogonal metal cutting,International Journal for Numerical Methods in Engineering,1993,36(8):1,487-1,507.
    [11]Marusich,T.D.,Ortiz,M.Modeling and simulation of high speed machining.International Journal of Numerical Methods In Engineering,1995,38(21):3,675-3,694.
    [12]Lin Zone-Ching,Lai Wan-Ling,Lin H Y,Liu C R.The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut.Journal of Materials Processing Technology,2000,97(3):200-210.
    [13]McDill J.M.J,Lindgren L.E,Reed R.C.,Oddy A.S.Continuous improvement in thermal-mechanical finite element analysis.Intemational Conference on Processing and Manufacturing of Advanced Materials,Lasvegas,USA,2000,4-8.
    [14]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究.航空学报,2004,25(3):317-320
    [15]黄志刚,柯映林,董辉跃.基于正交切削模拟的直齿圆柱铣刀前角优化.浙江大学学报(工学版),2005,39(6):780-784.
    [16]黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究.中国机械工程,2003,14(10):846-849
    [17]董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析.浙江大学学报,2006,40(5):759-762.
    [18]成群林,柯映林,董辉跃.航空铝合金高速铣削加工的有限元模拟.浙江大学学报(工学版),2006,40(1):113-117
    [19]杨勇,柯映林,董辉跃.高速切削有限元模拟技术研究.航空学报,2006,27(3):531-535.
    [20]吴红兵,刘刚,柯映林,董辉跃.钛合金的已加工表面残余应力的数值模拟.浙江大学学报,2007,41(8):1389-1393.
    [21]邓文君,夏伟,周照耀,等.正交切削高强耐磨铝青铜的有限元分析.机械工程学报,2004,40(3):71-75.
    [22]李亮.钛合金高速铣削机理及其工艺研究[博士学位论文].南京:南京航空航天大学,2004.
    [23]顾立志.金属切削过程仿真及其在切削参数优化中的应用研究[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [24]Martellotti M E.An analysis of the milling process,Journal of Engineering for Industry,1941,63:677-700.
    [25]Zheng L,Chiou Y S,Liang Y S.Three dimensional cutting force analysis in end milling,Int.J.Mech.Sci.1996,38(3):259-269.
    [26]Budak E,Altintas Y.Modeling and avoidance of static form errors in peripheral milling of plates,Int.J.Mach.Tools Manufact.1995,35(3):459-476.
    [27]Altintas Y,Spence A.End milling force algorithms for CAD systems,CIRP Ann.1991,40(1):31-34.
    [28]Wan M,Zhang W H,Tan G.Systematic simulation procedure of peripheral milling process of thin-walled workpiece,Journal of Materials Processing Technology,2008,197:122-131.
    [29]万敏,张卫红.薄壁件周铣铣削力建模与表面误差预测方法研究.航空学报,2005,26(5):598-603.
    [30]Wan M,Zhang W H.Efficient algorithms for calculations of static form errors in peripheral milling.Journal of Materials Processing Technology,2006,171:156-165.
    [31]Desai K A,Rao P V M.Effect of direction of parameterization on cutting forces and surface error in machining curved geometries,Int.J.Mach.Tools Manufact.2008,48:249-259.
    [32]Omar O E E K.An improved cutting force and surface topography prediction model in end milling,Int.J.Mach.Tools Manufact.2007,47:1263-1275.
    [33]Shirase K,Altintas Y.Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills.Int.J.Mach.Tools Manufact.1996,36(5):567-584.
    [34]Merdol S D,Altintas Y.Mechanics and dynamics of serrated cylindrical and tapered end mills.Journal of Manufacturing Science and Engineering,2004,126:317-326.
    [35]Altintas Y,Lee P.Mechanics and dynamics of ball end milling.Journal of Manufacturing Science and Engineering,1998,120:684-692.
    [36]Engin S,Altintas Y.Mechanics and dynamics of general milling cutters Part 1:helical end mills.Int.J.Mach.Tools Manufact.2001,41:2195-2212.
    [37]Gradisek J,Kalveram M,Weinert K.Mechanistic identification of specific force coefficients for a general end mill.Int.J.Mach.Tools Manufact.2004,44:401-414.
    [38]Jayaram S,Kapeor S G,Devor R E.Estimation of the specific cutting pressure for mechanistic cutting force models.International Journal of Machine Tools & Manufacture,2001,41:265-281.
    [39]Melkote S N,Endrcs W J.The importance of including size effect when modeling slot milling.Transactions of the ASME Journal of Manufacturing Science and Engineering,1998,120:68-75.
    [40]Kline W A,DeVor R E,Sharecf I A.The prediction of surface accuracy in end milling.Transactions of the ASME Journal of Enginecring for Industry,1982,104:272-278.
    [41]Suthcrland J W,DeVor R E.An improved method for cutting force and surface error prediction in flexible end milling systems.Transactions of the ASME Journal of Engineering for Industry,1986,108:269-279.
    [42]Liao C L,Tsal J S.Dynamic response analysis in end milling using prctwisted beam finite element.Transaction of the ASME Journal of Vibration and Acoustics,1995,117:1-10.
    [43]Tlusty J,NacNcil P.Dynamics of cutting force in end milling.Annals of the CIRP,1975,24:21-25.
    [44]Budak E,Altintas Y.Peripheral milling conditions for improved dimensional accuracy.International Journal of Machine Tools & Manufacturing,1994,34(7):907-918.
    [45]武凯,何宁,姜澄宇.立铣空间力学模型分析研究.南京航空航天大学学报,2002,34(6):553-556.
    [46]康永刚,王仲奇,吴建军,姜澄宇.立铣切削力分类研究及精确铣削力模型的建立.航空学报,2007,28(2):481-489.
    [47]Armorego EJA,Deshpande ND.Force prediction models and CAD/CAM software for helical tooth milling processes Ⅲ:End-milling and slot operations.International Journal of Product Research,1994,32(7):1715-1738.
    [48]Budak E,Altintas Y,Armorego EJA.Prediction of milling force coefficients from orthogonal cutting data.ASME Journal of Manufacture Science and Engineering,1996,118:216-224.
    [49]Li H Z,Zhang W B,Li X P.Modeling of cutting forces in helical end milling using a predictive machining theory.International Journal of Mechanical Science,2001,43:1711-1730.
    [50]Oxley PLB.Mechanics of Machining.Chichester:Ellie Horwood Limited,1989.
    [51]胡创国.薄壁件精密切削变形控制与误差补偿技术研究[博士学位论文].西安:西北工业大 学,2007.
    [52]Luo T,Lu W,Krishnamurthy K.A neural network approach for force and contour error control in multi-dimensional end milling operations.Journal of Material Processing Technology,1998,38:1343-1359.
    [53]Szecsi T.Cutting force modeling using artificial neural networks.Journal of Material Processing Technology,1999,92:344-349.
    [54]Budak E,Altintas Y.Flexible milling force model for improved surface error predictions.In:Proceedings of Engineering System Design and Analysis,Istanbul,Turkey,1992,47(1):89-94.
    [55]Ratchev S,Liu S,Huang W,Becker A.A.Milling error prediction and compensation in machining of low-rigidity parts.International Journal of Machine Tools & Manufacture,2004,44:1629-1641.
    [56]Ratchev S,Liu S,Huang W,Becker A.A.A flexible force model for end milling of low-rigidity parts.Journal of Materials Processing Technology,2004,153-154:134-138.
    [57]Ratchev S,Govender E,Nikov S.Force and deflection modeling in milling of low-rigidity complex parts.Journal of Materials Processing Technology,2003,143-144:796-801.
    [58]Ratchev S,Liu S,Huang W,Becker A.A.An advanced FEA based force induced error compesation strategy in milling.International Journal of Machine Tools & Manufacture,2006,46:542-551.
    [59]Tang Aijun,Liu Zhanqiang.Deformations of thin-walled plate due to static end milling force.Journal of Materials Processing Technology.(2008),doi:10.1016/j.jmatprotec.2007.12.089.
    [60]王志刚,何宁,武凯.薄壁零件加工变形分析及控制方案.中国机械工程,2002,13(2):114-117.
    [61]Wan M,Zhang W H.Efficient algorithms for calculations of static form errors in peripheral milling.Journal of Materials Processing Technology,2006,171:156-165.
    [62]Wan M,Zhang W H,Tan G,Qin G H.Systematic simulation procedure of peripheral milling process of thin-walled workpiece.Journal of Materials Processing Technology,2008,197:122-131.
    [63]Wan Min,Zhang Weihong,Qiu Kepeng,Gao Tong.Numerical prediction of static form errors in peripheral milling of thin-walled workpiece with irregular meshes.Journal of Manufacturing Science and Engineering,2005,127:13-22.
    [64]Wan M,Zhang W H,Tan G,Qin G H.An in-depth analysis of the synchronization between the measured and prediction cutting forces for developing instantaneous milling force model.International Journal of Machine Tools & Manufacture,2007,47:2018-2030.
    [65]武凯,何宁,廖文和等.薄壁腹板加工变形规律及其变形控制方案的研究.中国机械工程, 2004,15(8):670-674.
    [66]董辉跃,柯映林,杨慧香.博壁板高速铣削加工过程中的让刀误差预测.浙江大学学报,2006,40(4):634-637.
    [67]王运巧,梅中义,范玉青.薄壁弧形件装夹布局有限元优化.机械工程学报,2005,41(6):214-217.
    [68]Liu Shaogang,Zheng L,Zhang Z H.Optimal fixture design in peripheral milling of thin-walled workpiece.International Journal of Advanced Manufacture Technology,2005,doi:10.1007/s00170-004-2425-8.
    [69]Kline W A,DeVor R E,Lindberg J R.The prediction of cutting forces in end milling with application to cornering cuts.International Journal of Design Tools & Research 1982,22(1):7-22.
    [70]Ratchev S,Liu S,Becker A A.Error compensation strategy in milling flexible thin-walled parts.Journal of Materials Processing Technology,2005,162-163:673-681.
    [71]Cho M W,Seo T I,Kwon H D.Integration error compensation method using OMM system for profile milling operation.Journal of Materials Processing Technology,2003,136:88-99.
    [72]王志刚,何宁.航空薄壁零件加工变形的有限元分析.航空精密制造技术,2000,36(6):7-11.
    [73]郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法.航空学报,2001,22:424-428.
    [74]刘艳明,程涛,左力.机械加工中切削用量的K-L优化研究.华中理工大学学报,1996,5:50-52.
    [75]胡海岩.机械振动基础.北京:北京航空航天大学出版社,2005.
    [76]Gradisek J,Kalveram M,Insperger T.On stability prediction for milling.International Journal of Machine Tools & Manufacture,2005,45:769-781.
    [77]Insperger T,Mann B P.Stability of up-milling and down-milling,part Ⅰ:alternative analytical methods.International Journal of Machine Tools & Manufacture,2003,43:25-34.
    [78]Insperger T,Mann B P.Stability of up-milling and down-milling,part Ⅱ:experimental verification.International Journal of Machine Tools & Manufacture,2003,43:35-40.
    [79]Suh C S,Khurjeak P P,Yang B.Characterization and identification of dynamic instability in milling operation.Mechanical systems and Signal Processing,2002,16(5):853-872.
    [80]Smith S,Winfough W R,Borchers H J.Power and stability limits in milling.Annals of the CIRP,2000,49(1):309-312.
    [81]Davies M A,Pratt J R,Dutterer B.Stability prediction for low radial immersion milling.Journal of Manufacturing Science and Engineering,2002,124(2):217-225.
    [82]刘晓胜.基于电流信号的铣削颤振识别技术研究.机械工程学报,2000,36(4):25-29.
    [83]Hahn,R S.On the theory of regeneration chatter in precision grinding operation.Tran.ASME.B.1954,76(1):593-597.
    [84]Altintas Y,Shamto E,Lee P,Budak E.Analytical precision of stability lobes in ball end milling.Trans,ASME,J Manuf.Science and Eng.,1999,121:586-592.
    [85]Arnold R N.The mechanism of tool vibration in cutting of steel.Proc.I.Mech.E.,1946:261-284.
    [86]Minis I,Yanushevsky,Tembo R,Hocken R.Analysis of linear and nonlinear chatter in milling.Annals of the CIRP,1990,39:459-462.
    [87]张向慧.非线性颤振对切削加工过程影响初探.机械工程师,2002,3:375-380.
    [88]Tobias S A,Fishwick W.A theory of regenerative chatter.Engineer,London,1958.
    [89]Tlusty J,Polacek M.The stability of machine tools against self excited vibrations in machining.Int Res Prod Eng,1963,465-474.
    [90]Merritt H E.Theory of self-excited machine tool chatter.ASME J Eng Ind,1965,87:447-454.
    [91]Sddhar R,Hohn R E,Long G W.A stability algorithm for the general milling process.ASME J Eng Ind,1968,330-334.
    [92]Baradie E I.Statistical analysis of the dynamic cutting coefficient and machine tool stability.Journal of Engineering for Industry,1993,115:205-215.
    [93]Altintas Y,Budak E.Analysis prediction of stability lobes in milling.Annals CIRP,1995,44(1):357-362.
    [94]Budak E,Altintas Y.Analytical prediction of chatter stability in milling—part Ⅰ:general formulation.Journal of Dynamic Systems,Measurement,and Control,1998,120:22-30.
    [95]Budak E,Altintas Y.Analytical prediction of chatter stability in milling—part Ⅱ:application of the general formulation to common milling systems.Journal of Dynamic Systems,Measurement,and Control,1998,120:31-36.
    [96]Week M.Handbook of Machine Tools,vol.2,Wiley,1984.
    [97]Seguy,S,Dessein G,Amaud L.Surface roughness variation of thin wall milling,related to modal interactions.International Journal of Machine Tools & Manufacture,2008,48:261-274.
    [98]Ismail F,Ziaei R.Monitoring machining chatter using acoustic intensity.World Automation Congress Conference,Maui,Hawaii,USA,2000.
    [99]Merdol S D,Altintas Y.Multi frequency solution of chatter stability for low immersion milling,Journal of Manufacturing Science and Engineering,2004,126:459-466
    [100]Thevenot V,Amaud L,Dessein G.Integration of dynamic behavior variations in the stability lobes method:3D lobes construction and application to thin-wailed structure milling.Int J Adv Manuf Technol,2006,27:638-644.
    [101]Destefani J D.Spindles key to high-speed machining.Manufacturing Engineering,1997,119(4):5-10.
    [102]Jayaram S.Analytical Stability analysis of variable spindle speed machining.Transaction of the ASME.Journal of the Manufacturing Science and Engineering,2000,122-132.
    [103]吴雅.机床切削系统的颤振及其控制.北京:科学出版社,1993.
    [104]Min W,Renyuan F.Improvement of machining stability using a tunable-stiffness boring bar containing an electroheololgical fluid.Smart Material and Structure,1999,8:511-514.
    [105]费仁元,王民.切削颤振在线监控的研究现状及发展.中国机械工程,2001,9:1075-1079.
    [106]林胜.HSM在航空制造业中的应用.航空制造技术,2003,3:25-29.
    [107]姜金三.超高速加工在航空制造中的应用.CAD/CAM与制造业信息化:101-103.
    [108]成群林.航空整体结构件切削加工过程的数值模拟与实验研究[博士学位论文].杭州:浙江大学,2006.
    [109]Wang S P,Padmanaban S.A new approach for FEM simulation of NC machining processes.Materials Processing and Design:Modeling,Simulation and Application,NUMIFORM,2004.
    [110]MSC.software Corporation.Theory and user information,MSC.Marc Version,2005.
    [111]Jitender K R,Paul X.Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components.International Journal of Machine Tools&Manufacture,2008,doi:10.1016/j.ijmachtools.2007.11.004.
    [112]王秋成.航空铝合金残余应力消除及评估技术研究[博士学位论文].杭州:浙江大学,2003.
    [113]黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究.中国机械工程,2004,15(11):991-995.
    [114]黄志刚,柯映林,董辉跃.框类整体结构件铣削加工顺序的有限元模型.浙江大学学报(工学版),2005,39(3):368-372.
    [115]黄志刚.航空整体结构件铣削加工变形的有限元模拟理论及方法研究[博士学位论文].杭州:浙江大学,2003.
    [116]Wang Z J,Chen W Y,Zhang Y D,et al.Study on the machining distortion of thin-walled part caused by redistribution of residual stress.Chinese Journal of Aeronautics,2005,18(2):175-179.
    [117]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[博士学位论文].杭州:浙江大学,2003.
    [118]王运巧,梅中义,范玉青.航空薄壁结构件数控加工变形控制研究.现代制造工程,2005,1:31-33.
    [119]梅中义,王运巧,范玉青.飞机结构件数控加工变形控制研究与仿真.航空学报,2005,26(2):234-239.
    [120]董辉跃,柯映林.铣削加工中薄壁件装夹方案优选的有限元模拟.浙江大学学报,2004, 38(1):17-21.
    [121]董辉跃.航空整体结构件加工过程的数值仿真[博士学位论文].杭州:浙江大学,2004.
    [122]董辉跃,柯映林,吴群,许德.基于残余应力分布的框类零件装夹方案优选的有限元模拟.航空学报,2003,24(4):382-384.
    [123]郭魂,左敦稳,王树宏,等.拉伸装夹对航空框类零件加工变形影响的有限元分析.南京航空航天大学学报,2005,37:72-76.
    [124]杨勇,钛合金航空整体结构件铣削加工变形的预测理论及方法研究[博士学位论文].杭州:浙江大学,2007.
    [125]成群林,柯映林,董辉跃,毕运波,黄志刚.航空整体结构件铣削加工变形预测研究.浙江大学学报,2007,41(5):799-803.
    [126]吴红兵.航空框类整体结构件铣削加工变形的数值模拟与实验研究[博士学位论文].杭州:浙江大学,2008.
    [127]景想云.一种难加工材料的斜角切削过程的数值模拟.湖北汽车工业学院学报,2008,22(2):19-24.
    [128]Yang X P,Liu C R.A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method,International Journal of Material Science.2002,44:703-723.
    [129]Shi G Q,Deng X M,Shet C.A finite element study of friction in orthogonal metal cutting.Finite Elements in Analysis and Design.2002,38:863-883.
    [130]Tugrul O,Taylan A.Process simulation using finite element method-prediction of cutting forces,tool stresses and temperatures in high-speed flat end milling,International Journal of Machine Tools & Manufacture.2000,40:713-738.
    [131]Shatla M,Kerk C,Altan T.Process modeling in machining,part 2:validation and applications of the determined flow stress data,International Journal of Machine Tools and Manufacture.2001,41(11):1659-1680.
    [132]Zone C.L,Yeou Y.L.A study of oblique cutting for different low cutting speeds,Journal of Materials Processing Technology.2001,115:313-325.
    [133]Hibbit K.Sorenson,Inc.,2007,ABAQUS/Explicit User's Manual,ver.6.7,Providence,RI.
    [134]Usui E,Shirakashi T.Mechanics of metal machining-from “descriptive” to “predictive” theory,on the art of cutting metals:A tribute to F.W.Taylor,PED 7.The winner annual meeting of the American Society of Mechanical Engineers,Ed.Kops,L.,Ramalingam,S.,1982.
    [135]Komvopoulos F K,Erpenbeck S A.Modeling of orthogonal metal cutting.Journal of Engineering for Industry,1991,113(3):253-267.
    [136]Shih A J.Finite element simulation of orthogonal metal cutting.Transactions of the ASME, Journal of Engineering for Industry,1995,117:84-93.
    [137]Iwata K,Osakada A,Terasaka Y.Process modeling of orthogonal cutting by rigid-plastic finite element method.Journal of Engineering Material and Technology,1984,106(1):132-138.
    [138]Lin Z.C.,Lin S.Y.A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting.ASME J.Eng.Mater.Tech.,1992,114:218-226.
    [139]Komanduri R,Brown R.On the mechanics of chip segmentation in machining.J.of Eng.for Ind.,Trans.ASME,1981(103):33-51.
    [140]杨荣福,董申.金属切削原理[M].北京:机械工业出版社,1988.
    [141]Yun W S.Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling,Int.J.Mach.Tools Manufact.2001,41:463-478.
    [142]Bayoumi A E,Yuccsan G,Kendall L A.An analytic mechanistic cutting force model for milling operations:a theory and methodology,Journal of Engineering for Industry,1994,116:324-330.
    [143]Shaw M.C.Metal Cutting Priciples.Oxford:Clarendon Press,1984.
    [144]臼井英治.切削磨削加工学.北京:机械工业出版社,1982.
    [145]侯镇冰,何绍杰,李恕先.固体热传导.上海:上海科学技术出版社,1984.
    [146]阎海鹏.高速铣削铝合金切削温度的研究[硕士学位论文].南京:南京理工大学,2004.
    [147]刘献礼,陈波,孟安等.PCBN刀具切削温度的测量与控制.中国高校切削与先进制造技术研究会第六届年会论文集,北京:机械工业出版社,1999,105-109.
    [148]顾立志,袁哲俊.正交切削中切屑温度分布的研究.机械工程学报,2000,36(3):82-86.
    [149]陈明,袁人炜,薛秉源等.铝合金高速铣削中切削温度动态变化规律的试验研究.工具技术,2000,34(5):7-10.
    [150]Leshock C E,Shin Y C.Investigation on cutting temperature in turning by a tool-work thermocouple techniquc.Transactions of the ASME,Journal of Manufacturing Science and Engineering,1997,119(11):502-508.
    [151]华南工学院,甘肃工业大学主编.金属切削原理及刀具设计(上册),上海:上海科学技术出版社,1979.
    [152]Stepheuson D A.Tool-work thermocouple temperature measurements-theory and implementation issues.Trans.ASME,J.Eng.Ind.1993,115:432-437.
    [153]Lefebvre A,Vieville P,Lipinski P,Lescalier C.Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method.Int.J.Math.Tools Manufact.2006,46:1716-1726.
    [154]周泽华.金属切削原理.上海:上海科学技术出版社,1993.
    [155]王学仁.应用回归分析.重庆:重庆大学出版社,1991.
    [156]唐委校.高速切削稳定性及其动态优化研究[博士学位论文].济南:山东大学,2005.
    [157]傅志方.振动模态分析与参数辨识.北京:机械工业出版社,1990.
    [158]王斌.汽车驱动桥桥壳结构强度与模态有限元法分析[硕士学位论文].合肥:合肥工业大学,2007.
    [159]Tobias S A.Machine tool vibration.Blackie and Sons,Ltd.1965.
    [160]Budak E.Analytical models for high performance milling.Part Ⅱ:Process dynamics and stability.Journal of machine Tools & Manufacture,2006,46:1489-1499.
    [161]李亮,查文伟.薄壁零件高速铣削的振动问题分析.盐城工学院学报,2006,19(2):9-13.
    [162]Bravo U,Altuzarra.Stability limits of milling considering the flexibility of the workpiece and the machine.Journal of machine Tools & Manufacture,2005,45:1669-1680.
    [163]Sims N D,Mann B,Huyanan S.Analytical prediction of chatter stability for variable pitch and variable helix milling tools.Journal of Sound and Vibration(2008),doi:10.1016/j.jsv.2008.03.045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700