基于人工免疫系统的产品设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品设计方法在产品开发中起着重要作用。生命现象蕴涵着无穷的奇妙和灵巧,可为包括产品设计在内的各种复杂问题的有效解决提供启迪和灵感。近年来,随着各种仿生计算技术的不断兴起和发展,基于各种仿生计算方法的产品设计方法不断涌现并取得了令人瞩目的成功。人工免疫系统(Artificial Immune System, AIS)是受生物免疫系统启发而产生的一种新兴仿生计算方法,它提供了一种强大的信息处理和问题求解范式,可为产品设计提供新的智能支持手段。为此,本文研究了基于人工免疫系统的产品设计方法,旨在探索产品设计的新思路和新方法。
     面向产品设计的三维空间,即产品设计层次(包括设计问题求解和产品演化机制两个层次)维、设计进程维和产品设计方法维,建立了基于AIS的产品设计框架,旨在为基于AIS进行产品设计提供框架指导。此外,基于AIS解决工程中各种实际问题所具有的共性特点和聚类特征,概括提出了工程免疫计算(Engineering Immune Computing, EIC)的概念,进而在设计问题求解层次构建了基于EIC的产品设计框架作为基于AIS的产品设计框架的一个子框架,以此指导产品设计中的设计问题求解。
     鉴于基于AIS的产品设计涉及的范围广泛,无法一一展开研究,因而本文在基于AIS的产品设计框架指导下,从一些有代表性的角度出发,开展了相关研究工作。
     首先,研究了基于EIC的产品功能规划方法。该方法为了克服现有公理设计在处理耦合设计方面存在的不足,通过功能辨识(基于分解操作或免疫聚类学习方法)、功能耦合程度度量(采用两两比较方法并基于三角模糊数进行度量)以及耦合功能规划(包括解耦和割裂两个操作,割裂实际上可以归结为优化问题,可采用枚举割裂或免疫割裂方法实现),为公理设计过程中出现的耦合设计问题提供功能规划的解决方案。此外,以冷凝器的功能规划为例,对所提方法进行了说明和验证。该部分研究工作探讨了EIC在产品设计中出现的聚类学习和优化两类典型设计问题求解中的应用,说明了EIC可为产品的上游概念设计阶段以及公理设计方法提供有力支持。
     其次,研究提出了一种面向装配规划问题求解的新方法——基于免疫优化的装配规划方法,不仅能够对产品的装配序列进行优化,还能够对装配操作的工艺进行优化,从而实现了产品装配过程的优化。通过引入多种免疫操作,基于免疫优化的装配规划方法能够较好地实现兼顾全局搜索和局部搜索的均衡搜索,还能够有效处理约束和利用装配的启发式经验知识为装配规划提供指导,从而获得较好的求解质量和较高的装配规划效率。此外,通过比较详细的实例研究,说明了所提方法对于求解装配规划问题的有效性和优越性。该部分研究工作探讨了EIC在产品设计中广泛存在的优化问题这类典型设计问题求解中的应用,同时说明了EIC可为产品的下游工艺设计阶段以及DFA方法提供有力支持。
     然后,研究了基于AIS的创新设计原理。从信息处理和计算的角度,对AIS所具有的优良特性进行了阐述,进而指出创新设计可以采用创新计算的途径来研究实现,由此分析提出了基于AIS的创新设计构想。此外,建立了一个以免疫创新设计方法(包括面向问题求解的免疫辅助创新设计方法和面向产品演化的免疫设计方法)为核心的基于AIS的创新设计框架,并对主要关键技术进行了讨论说明。该部分研究工作一方面借鉴生物免疫系统运行机制中所蕴涵的计算模式和创新模式,为创新设计提供了一条新颖途径;另一方面说明了AIS可从设计问题求解和产品演化机制两个不同层次为产品创新设计方法提供有力支持。
     此外,基于产品功能规划的研究成果,开发了基于EIC的产品功能规划原型系统,验证了所提方法的正确性和有效性。
Product design method plays an essential role in product development. Since the phenomenon of life implies infinite strangeness and dexterity, it can provide eligntenments and inspirations in efficient settlement of various complicated problems including product design. In recent years, as the rise and progress of diversified bionic computing techniques, product design methods based on various bionic computing techniques have come forth and acquired noticeable success. As a kind of emerging bionic computing technique that draws inspiration from the vertebrate immune system, Artificial Immune System (AIS) offers a powerful information processing and problem solving paradigm, hence it is natural to view AIS as a new means that provides intelligent supports for poduct design. In this paper, the product design method based on AIS is examined with the purpose to explore novel ideas and methods for product design.
     Aiming at providing an overall direction for carrying out product design based on AIS, a framework of product design based on AIS is established against the three-dimensional product design space, which consists of the dimension of hierarchies of product design composed of the hierarchy of design problem solving and that of product evolutive mechanism, the dimension of design process and the dimension of product design methods. In addition, according to the analysis of the common and clustering features of using AIS to solve engineering practical problems, the concept of engineering immune computing (EIC) is abstracted and generalized, and at the hierarchy of design problem solving, a framework of product design based on EIC is established as a sub-framework of the framework of product design based on AIS to direct design problems solving in product design.
     Because product design based on AIS covers a broad scope, it is impossible to carry out investigation for its each aspect. Thus in this paper, some representative aspects from the framework of product design based on AIS are selected as breakthrough points to be studied in detail.
     Firstly, a method of product function planning based on EIC is investigated to overcome the limitation that existing Axiomatic Design theory cannot deal with coupled design. The aim of the method is to offer function planning solutions for coupled design problems that appear in the procedure in design with Axiomatic Design, which is actualized by function identification based on the partition operation or immune clustering learning, measurement of the coupling strengths of coupled functions using the pair wise comparison technique based on triangular fuzzy number, and coupled function planning including the decoupling and the tearing operations. In reality the tearing operation can be considered as an optimization problem and can be achieved by the enumeration method or immune tearing method. In addition, the function planning of a condenser is taken as an example to illuminate and validate the proposed method. This part of study of the paper explores the application of EIC in solving two typical design problems, namely clustering learning and optimization, and shows that EIC can provide convincing supports for the conceptual design in the upriver phase of product design and the product design method of Axiomatic Design.
     Secondly, a novel approach called immune optimization approach (IOA) is studied and presented to solve the assembly planning problem. IOA not only can optimize the assembly sequences of products, but also can optimize the process of assembly operations. Therefore IOA optimizes the assembly procedures of products in reality. By introduction of manifold immune operations, IOA achieves both global and local searches, i.e. balanced search is achieved. Besides IOA also can deal with constraints efficiently, and can use heuristic experiences and knowledge on assembly to give guidance to assembly planning. For the above reasons, IOA can obtain good assembly sequences with satisfying efficiency. To demonstrate the validity and advantages of assembly planning using IOA, detailed case study is presented. This part of study of the paper explores the application of EIC in solving optimization problem, a widely existing design problem in product design, and shows that EIC can provide convincing supports for the process design in the downriver phase of product design and the product design method of DFA.
     Thirdly, the principle of creative design based on AIS is investigated. From the point of view of information processing and computation, the main excellent characteristics held by AIS are expounded. Then it is pointed out that creative design can be achieved by the avenue of creative computation, and the idea of conducting creative design based on AIS is analyzed and presented. Furthermore a framework of creative design based on AIS is established with immune creative design methods, involving the immunity aided creative design method for problem solving and the immune design method for product evolution serve as the kernel. The key techniques of implementing creative design based on AIS are also discussed. This part of study of the paper on the one hand offers a novel avenue to creative design by borrowing the computational and the creative patterns from the operational mechanism of the vertebrate immune system. One the other hand it shows that AIS can provide convincing supports for the product design method of creative design both from the design problem solving hierarchy and the product evolutive mechanism one.
     Finally, based on the research fruit of product function planning, a prototype system of product function planning based on EIC is developed to validate the correctness and the validity of the proposed method.
引文
[1]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势.机械工程学报,2006,42(1):1~4
    [2]谢友柏.现代设计理论和方法的研究.机械工程学报,2004,40(4):1~9
    [3] Eppinger S. D., Ulrich K. T. Product design and development. New York: McGraw-Hill, 2000.
    [4]路甬祥.工程设计的发展趋势和未来.机械工程学报,1997,33(1):1~8
    [5]闻邦春,周知承,韩清凯等.现代机械产品设计在新产品开发中的重要作用.机械工程学报,2003,39(10):43~52
    [6]肖人彬,陶振武,刘勇.智能设计原理与技术.北京:科学出版社,2006.
    [7] Swif K. G., Allen A. J. Product variability risks and robust design. Journal of Engineering Manufacture, 1994, 208(1): 9~19
    [8]殷国富,干静,胡晓兵等.面向信息时代的机械产品现代设计理论与方法研究进展.四川大学学报,2006,38(5):38~47
    [9]马安鹏,韩晓建,邓家褆.产品设计技术及其发展趋势.航空制造技术,2000,(4):13~20
    [10]丁永生,任立红.人工免疫系统:理论和应用.模式识别与人工智能,2000,13(1):52~59
    [11] De Castro L. N., Timmis J. Artificial Immune System: A New Computational Intelligence Approach. Berlin: Spinger-Verlag, 2002.
    [12]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望.计算机学报,2002,25(12):1281~1293
    [13]黄席樾,张著洪,何传江等.现代智能算法理论及应用.北京:科学出版社,2005.
    [14] Forrest S., Hofmeyr S. A., Somayaji A. Computer immunology. Communications of the ACM, 1997, 40(10): 88~96
    [15] Dasgupta D., Attoh-Okine N. Immunity based systems: A survey. In: Procedings of the IEEE International Conference on Systems, Man, and Cybernetics. Orlando, Florida, 1997: 369~374
    [16]焦李成,杜海峰.人工免疫系统进展与展望.电子学报,2003,31(10):1540~1548
    [17] Chun J. S., Kim M. K., Jung H. K., et al. Shape optimization of electromagneticdevices using immune algorithm. IEEE Transaction on Magnetics, 1997, 33(2): 1876~1879
    [18] Chun J. S., Lim J. P., Jung H. K. Optimal design of synchronous motor with parameter correction using immune algorithm. IEEE Transaction on Energy Conversion, 1999, 14(3): 610~615
    [19] Huang S. J. An immune-based optimization method to capacitor placement in a radial distribution system. IEEE Transactions on Power Delivery, 2000, 15(2): 744~749
    [20]李广强,滕弘飞,霍军周.并行混合免疫算法及其在布局设计中的应用.机械工程学报,2003,39(6):79~85
    [21]肖人彬.基于免疫计算的机构轨迹综合.计算机辅助设计与图形学学报,2004,16(6):812~818
    [22] Liu Yong, Xiao Renbin. Optimal synthesis of mechanisms for path generation using refined numerical representation based model and AIS based searching method. ASME Journal of Mechanical Design. 2005, 127(4): 688~691
    [23] Xiao Renbin, Zhenwu Tao, Liu Yong. Isomorphism identification of kinematic chains using novel evolutionary approaches. ASME Journal of Computing and Information Science in Engineering, 2005, 5(1): 18~24
    [24]师汉民.论仿生制造.中国机械工程,1998,9(1):51~54
    [25] Nachugall W. Bionik: Grundlagen und Beispiel Fuel Ingenieure and Naturwissenschafuer. Berlin: Springer-Verlag, 1998.
    [26]冯培恩,陈泳,张帅等.基于产品基因的概念设计.机械工程学报,2002,38(10): 1~6
    [27]陆金桂,胡于进,刘金等.基于人工神经网络的机械设计领域知识表达方法研究.机械工程学报,1995,31(6):21~25
    [28]战仁军,张优云.基于神经网络的摩擦学设计知识获取与转换.自然科学进展,1996,6(4):484~490
    [29]冯禺,马玉林,蔡鹤皋.基于人工神经网络技术的产品可装配性评价.计算机集成制造系统,2000,6(4):36~40
    [30]张向军,桂长林.智能设计中的基因模型.机械工程学报,2001,37(2):8~11
    [31] Pham, D. T., Yang Y. A genetic algorithm based preliminary design system. Journal of Automobile Engineers. 1993,207(2):127~133
    [32] Rosenman M. A. An exploration into evolutionary models for non-routine design.Artificial Intelligence in Engineering, 1997, 11: 287~293
    [33]滕弘飞,曾威,梁大伟等.演化设计方法及其应用.机械工程学报,2004,40(1): 1~6
    [34]唐文艳,顾元宪.遗传算法在结构优化中的研究进展.力学进展,2002,32(1):26~40
    [35]王晓明,刘震宇,郭东明.基于均匀化理论的微小型柔性结构拓扑优化的灵敏度分析.中国机械工程,1999,10(11):1264~1267
    [36] Gero J. S. Learning and reusing information in space layout planning problems using genetic engineering. Artificial Intelligence in Engineering, 1997, 11: 329~334
    [37]陈泳,冯培恩,潘双夏等.基于共生进化原理的功能结构设计.机械工程学报, 2005,41(6):19~24
    [38]钱志勤,滕弘飞.复杂布局设计问题的算法.中国机械工程,2002,13(8):696~699
    [39]查建中,唐晓君,陆一平.布局及布置设计问题求解的自动化的理论与方法综述.计算机辅助设计与图形学学报,2002,14(8):705~712
    [40] Bentley P. J. Generic Evolutionary Design of Solid Objects Using a Genetic Algorithm: [Ph. D. Thesis]. 1996.
    [41] Charles P. W. Touched by nature. Science (U.S. News & World Report). 1998, 27(6): 43~45
    [42] Lipson H., Jordan B. P. Automatic design and manufacture of robotic lifeforms. Nature, 2000, 8(4): 974~978
    [43] Mitchell T., Jiao J. X. Case-based evolutionary design for mass customization. Computer & Industrial engineering, 1997, 33: 319~323.
    [44]李夏,戴汝为.突现(emergence)——系统研究的新观念.控制与决策,1999,14(2):97~102
    [45] Goss S., Aron S., Deneubourg J. L., et al. Self-organized shortcuts in the argentine ant. Naturwissenchaften, 1999, 76: 579~581
    [46] Abd-El-Barr M., Sait S. M., Sarif B. A. B., et al. A modified ant colony algorithm for evolutionary design of digital circuits. In: the 2003 Congress on Evolutionary Computation. IEEE Press, 2003. 708~715
    [47] Xiao Renbin, Tao Zhenwu. Reengineering and optimizing the complex design process based on structural modeling method and ant algorithm. In: Proceedings of the 11thInternational Conference on Industrial Engineering and Engineering Management. 2005. 89~94
    [48] Xiao Renbin, Tao Zhenwu, Zou Hongfu. Multi-objective particle swarm optimization algorithm and its application to optimal design of tolerances. In: Kang Lishan et al. (Eds.) Progress in Intelligent Computation and Its Application. China University of geosciences Press, 2005. 736~742
    [49]陈义保.基于蚁群系统、灰理论和特征变量的机械优化设计理论和方法的研究:[博士学位论文]。武汉:华中科技大学,2003.
    [50] Sun Zhiguo, Teng Hongfei. Optimal layout design of a satellite module. Engineering Optimization, 2003, 35(5): 513~529.
    [51] Camp C. V., Bichon B. J. Design of space trusses using ant colony optimization. Journal of Structural Engineering, 2004, 130(5): 741~751.
    [52] Tao Zhenwu, Xiao Renbin. Co-evolutionary design of discrete structures based on the ant colony optimization. Progress in Natural Science, 2007, 17(9): 80~92
    [53] De Castro L. N., Von Zuben F. J. Artificial immune system: Part I: basic theory and application. School of Electrical and Computer Engineering, State University of Campinas, Campinas-SR, Brazil, Technical Report RT-DCA 01, 1999
    [54] Timmis J., Neal M., Hunt J. An artificial immune system for data analysis. BioSystems, 2000, 55: 143~150
    [55] De Castro L. N. Immune, swarm, and evolutionary algorithms. In: Proceedings of the International Conference on Neural Information Processing. 2002. 1464~1473
    [56] Timmis J., Knight T. Artificial immunes system: using the immune system as inspiration for data mining. In: Abbass H. A., Sarker R. A., Newton C. S. (Eds.) Data Mining: A Heuristic Approach. Hershey: Idea Publishing Group, 2001. 209~230
    [57] Farmer J. D., Packard N. H., Perelson A. S. The immune system, adaptation, and machine learning. Physica 22D, 1986, 187~204
    [58] Dasgupta D. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999.
    [59]焦李成,杜海峰,刘芳等.免疫优化计算、学习与识别.北京:科学出版社,2006.
    [60] Sathyanath S., Sahin F. AISIMAM– An artificial immune system based intelligent multi agent model and its application to a mine detection problem. In: Proceedings of 1st International Conference on Artificial Immune Systems. 2002.
    [61] Dasgupta D. Artificial neural network and artificial immune systems: similarities and differences. In: Procedings of the IEEE International Conference on Systems, Man, and Cybernetics. Orlando, Florida, 1997. 873~878
    [62] Endoh S., Toma N., Yamada K. Immune algorithm for n-TSP. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. 1998.
    [63] Mori K., Tsukiyama M., Fukuda T. Adaptive scheduling system inspired by immune system. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. 1998. 3833~3837
    [64] D'haeseleer P., Forrest S., Helman P. An immunological approach to change detection algorithms: analysis and implications. In: Proceedings of IEEE Symposium on Security and Privacy. 1996. 110~119
    [65] Forrest S., Hofmeyr S. A. Immunology as information processing. In: Segel and Cohen (Eds.) Design Principles for the Immune System and Other Distributed Autonomous Systems. USA: Oxford University Press, 2000.
    [66] De Castro L. N., Von Zuben F. J. Clonal selection algorithm with engineering applications. In: Proceedings of GECCO’00. 2000. 36~37
    [67] Ishiguro A., Shirai Y., Kondo T., et al. Immunoid: an architecture for behavior arbitration based on the immune networks. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 1996. 1730~1738
    [68] Tang Z., Yamaguchi T., Tashima K., et al. Multiple-valued immune network model and its simulations. In: Proceedings of 27th International Symposium on Multiple-Valued Logic, Antigonish. 1997. 519~524
    [69] De Castro L. N., Von Zuben F. J. aiNet: An artificial immune network for data analysis. In: Sarker R. A., Newton C. S. (Eds.) Data Mining: a Heuristic Approach. Hershey: Idea Publishing Group, 2001.
    [70] De Castro L. N., Fernando J. An evolutionary immune network for data clustering. In: Proceedings of the IEEE SBRN. 2000. 84~89
    [71] Ishida Y. Fully distributed diagnosis by PDP learning algorithm towards immune network PDP model. In: Proceedings of International Joint Conference on Neural Networks. 1990. 777~782
    [72]罗文坚,曹先彬,王煦法.用一种免疫遗传算法求解频率分配问题.电子学报,2003,31(6):915~917
    [73]王磊,潘进,焦李成.免疫规划.计算机学报,2000,23(8):806~812
    [74]王磊,肖人彬.基于免疫记忆的人工免疫算法模型及其应用.模式识别与人工智能,2002,15(4):385~391
    [75]左兴权,李士勇.一种新的免疫优化算法及其性能分析.系统仿真学报,2003,15(11):1607~1609
    [76] Hunt J. E., Cooke D. E. Learning using an artificial immune system. Journal of Network and Computer Applications, Special Issue on Intelligent Systems: Design and Application, 1996, 19: 189~212
    [77] Cooke D. Hunt J. Recognising promoter sequences using an Artificial Immune System. In: Proceedings of Intelligent Systems in Molecular Biology. AAAI Press, 1995. 89~97
    [78] Carter J. H. The immune system as a model for pattern recognition and classification. Journal of the American Medical Informatics Association, 2000, 7(3): 28~41
    [79] Timmis J., Neal M. A resource limited artificial immune system for data analysis. Knowledge Based Systems, 2001, 14(3-4): 121~130
    [80] Watkins A., Boggess L. A new classifier based on resource limited artificial immune systems. In : Proceedings of Congress on Evolutionary Computation. 2002. 1546~1551
    [81]刘静,钟伟才,刘芳等.免疫进化聚类算法.电子学报,2001,29(12A):1868~1872
    [82]余建军,孙树林,郑峰.基于动态评价免疫算法的车间作业调度研究.机械工程学报,2005,41(3):25~30
    [83]李蓓智,杨建国,丁惠敏.基于生物免疫机理的智能调度系统建模与仿真.计算机集成制造系统,2002,8(6):446~450
    [84] Khoo L. P., Alisantoso D. Line balancing of PCB assembly line using immune algorithms. Engineering with Computers, 2003, 19(2-3): 92~100
    [85] Suh N. P. The Principles of Design. New York: Oxford University Press, 1990.
    [86] Suh N. P. Axiomatic Design: Advances and Applications. New York: Oxford University Press, 2001.
    [87] Do S. H., Park G. J. Application of design axioms for glass bulb design and software development for design automation. ASME Journal of Mechanical Design, 2001, 123(3): 322~329
    [88] Lee K. D., Suh N. P., Oh J. H. Axiomatic design of machine control System. Annals of the CIRP, 2001, 50(1): 109~114
    [89] Helander M. G., Li L. Axiomatic design in ergonomics and an extension of the information axiom. Journal of Engineering Design, 2002, 13(4): 321~340
    [90]陈小川,冯辛安.基于公理化设计理论的DFC成本估算软件框架.计算机集成制造系统,2001,10(7):69~72
    [91]江屏,檀润华,张瑞红等.公理设计下的闸阀结构分析.计算机集成制造系统,2003,9(3):239~242
    [92]邓家褆,韩晓建,曾硝.产品概念设计——理论、方法与技术.北京:机械工业出版社,2002.
    [93] Kim Y. S., Cohran D. S. Reviewing TRIZ from the perspective of axiomatic design. Journal of Engineering Design, 2000, 11(1): 79~94
    [94] Johnnesson H. L. On the nature and consequences of functional couplings in axiomatic machine design. In: Proceedings of the 1996 DETC, ASME Design Engineering Technical Conference and Computers in Engineering Conference. 1996. 96-DETC/DTM-1528
    [95] Johnnesson H. L., Soderberg R. Structure and matrix models for tolerance analysis from configuration to detail design. Research in Engineering Design, 2000, 12(2): 112~125
    [96] Su J. C., Chen S. J., Lin L. A structured approach to measuring functional dependency and sequencing of coupled tasks in engineering design. Computers & Industrial Engineering, 2003, 45(1): 195~214
    [97] Kang Y. J. The method for uncoupling design by contradiction matrix of triz, and case study. In: Proceedings of the 2004 ICAD, the Third International Conference on Axiomatic Design. 2004. ICAD-2004-11
    [98] Maher M. L., Poon J., Boulanger S. Formalising design exploration as co-evolution: a combined gene approach. In: Gero J. S., Sudweeks F. (Eds.) Advances in Formal Design Methods for CAD. London: Chapman and Hall, 1996.
    [99] Steward D. V. The design structure system: a method for managing the design of complex systems. IEEE Transactions on Engineering Management, 1981, 28(3): 71~74
    [100] Browning T. R. Applying the design structure matrix to system decomposition andintegration problems: A review and new directions. IEEE Transactions on Engineering Management, 2001, 48(3): 292~306
    [101]董明,查建中,郭伟.并行工程中的任务组织.系统工程理论与实践,1996,16(8):69~78
    [102]金基恒.布尔矩阵理论及其应用.北京:知识出版社,1987.
    [103] Burnet F. M. Clonal Selection and After. In: Bell G. I., Perelson A. S., Pimbley G. H. (Eds.) Theoretical Immunology. Marcek Dekker Inc., 1978. 63~85
    [104]许树柏.实用决策方法——层次分析法原理.天津:天津大学出版社,1988.
    [105]徐泽水.三角模糊数互补判断矩阵的一种排序方法.模糊系统与数学,2002,16 (1): 47~50
    [106]朱松岭,周平,韩毅等.基于模糊层次分析法的风险量化研究.计算机集成制造系统,2004,10(8):980~984
    [107]肖四汉,樊治平,王梦光. Fuzzy判断矩阵的一致性研究.系统工程学报,2001,16(2): 142~145
    [108]樊治平,姜艳萍.模糊判断矩阵排序方法研究的综述.系统工程,2001,19(5): 12~18
    [109]朱聘冠.换热器原理及计算.北京:清华大学出版社,1987.
    [110]郑贤德.制冷原理与装置.北京:机械工业出版社,2001.
    [111]张林鍹,童秉枢,王春河等.一种实用的综合集成DFA系统的研究.清华大学学报(自然科学版),1998,38(11):69~72
    [112] De Lit P., Latinne P., Rekiek B., et al. Assembly planning with an ordering genetic algorithm. International Journal of Production Research, 2001, 39(16): 3623~3640
    [113] Baldwin D., Abell T. E., Lui M. C., et al. An integrated computer aid for generating and evaluating assembly sequences for mechanical products. IEEE Transactions on Robotics and Automation, 1991, 7(1): 78~94
    [114] Homem de Mello L. S., Sanderson A. C. A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Transactions on Robotics and Automation, 1991, 7(2): 228~240
    [115] Bonneville F., Perrard C., Henrioud J. M. A genetic algorithm to generate and evaluate assembly plans. In: Proceedings of IEEE Symposium on Emerging Technology and Factory Automation. 1995. 231~239
    [116] Lazzerini B., Marcelloni F. A genetic algorithm for generating optimal assembly plans.Artificial Intelligence in Engineering, 2000, 14(4): 319~329
    [117] Guan Q., Liu J. H., Zhong Y. F. A concurrent hierarchical evolution approach to assembly process planning. International Journal of Production Research, 2002, 40(14): 3357~3374
    [118] Chen S. F., Liu Y. An adaptive genetic assembly sequence planner. International Journal of Computer Integrated Manufacturing, 2001, 14(5): 489~500
    [119] Smith G. C., Smith S. S-F. An enhanced genetic algorithm for automated assembly planning. Robotics and Computer Integrated Manufacturing, 2002, 18(5-6): 355~364
    [120] Hong D. S., Cho H. S. A neural-network-based computational scheme for generating optimized robotic assembly sequence. Engineering Applications of Artificial Intelligence, 1995, 8(2): 129~145
    [121] Hong D. S., Cho H. S. Generation of robotic assembly sequences using a simulated annealing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1999. 2: 1247~1252
    [122] Failli F., Dini G. Ant colony systems in assembly planning: a new approach to sequence detection and optimization. In: Proceedings of 2nd CIRP International Seminar on Intelligent Computation in Manufacturing Engineering. 2000. 227~232
    [123] Jayaram S., Connacher H., Lyons K. Virtual assembly using Virtual Reality Techniques. Computer Aided Design, 1997, 29(8): 575~584
    [124]张烨,宁汝新,刘检华.面向虚拟装配的装配序列规划技术研究.计算机集成制造系统,2006,12(1):90~94
    [125] Michalewicz Z., Fogel D. B. How to Solve It: Modern Heuristics. Berlin: Springer-Verlag, 2000.
    [126] Dini G., Santochi M. Automated sequencing and subassembly detection in assembly planning. Annals of the CIRP, 1992, 41(1): 1~4
    [127] Boothroyd G., Dewhurst P., Knight W. Product Design for Manufacture and Assembly. New York: Marcel Dekker, 1994.
    [128] Qian L., Gero J. S. Function-behavior-structure paths and their role in analogy-based design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1996, 10(4): 289~312
    [129]孙守迁,包恩伟,潘云鹤.基于组合原理的概念创新设计.计算机辅助设计与图形学学报,1999,11(3):262~265
    [130]陈建国,潘云鹤.基于分解综合的创造设计的研究.计算机辅助设计与图形学学报,2000,12(7):548~553
    [131] Bowonder B. Design Technology trends and competitiveness. Microelectronics Monitor, 1995, 20(2): 1~7
    [132] Yang B., Datseris P., Datta U., et al. An integrated system for design of mechanism by an expert system - Domes: Theory. Transaction of ASME Journal of Mechanical Design, 1990, 112(4): 488~493
    [133] Yang B., Datseris P., Datta U., et al. An integrated system for design of mechanism by an expert system - Domes: Applications. Transaction of ASME Journal of Mechanical Design, 1991, 113(1): 25~31
    [134]舒宜强.面向对象的方案设计专家系统的理论方法、开发工具及工程应用[博士学位论文].武汉:华中理工大学, 1992
    [135]毛权,秦敬,周济,余俊. DEST2.0:一个基于实例原型的设计支持工具,计算机研究与发展, 1995, 32(3): 25~30
    [136]檀润华.创新设计——TRIZ:发明问题解决理论.北京:机械工业出版社,2002.
    [137]孙玉帅,李彦,赵武.面向创新设计的WEB科学效应库系统研究.计算机集成制造系统,2006,12(12):1946~1951
    [138]冯毅雄,谭建荣,张树有等.集成环境下创新产品进化设计技术研究.计算机集成制造系统,2006,12(1):1~8
    [139] Jerne N. K. Towards a network theory of the immune system. Annual Immunology, 1974, 125C: 373~389
    [140] http://www.ztc.edu.cn/news/html/tools/2006-4/28/144610965.html
    [141] Gero J. S. Computational models of innovative and creative design processes. Technological Forecasting and Social Change, 2000, 64: 183~196
    [142]文贵华.创新计算的旋转动力学理论.北京:国防工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700