人工微结构材料调控光的偏振和自旋霍尔效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏振是光的一个重要性质。一直以来,人们都希望能够完全地控制光的偏振态。调控光的偏振在本质上是调控光的电场分量在两个正交方向上的振幅和相位差。传统的控制偏振的方法包括各向异性介质(晶体)波片、手性材料、二色晶体和光栅等。人工微结构材料是一种电磁性质可以人为设计和调控的人工复合材料,由两种以上的物质按一定规则组合而成,具有亚波长的光学尺度,其电磁性质取决于结构组成方式而非构成其结构的物质本身。它往往具有自然物质所不存在的新特性或反常特性或超过常规材料的特性。通过合适地设计其结构单元,可以得到双折射率远大于常规各向异性材料的微结构材料;也可以通过局部地改变结构单元,从而得到想要的光束偏振和相位分布。
     调控光的偏振还会影响光的另一个基本性质——相干性,因而可以通过控制偏振来调控光的相干性。高的相干性是激光的一个显著特征,这一特征使激光广泛用于工业、军事、医学和科学研究等领域。而对于某些激光应用领域,如激光核聚变、激光显示和激光热处理等,高相干性却是有害的,甚至致命的。因此,这些领域对于非相干激光的需求非常迫切。另一方面,近几年来倍受关注的光自旋霍尔效应实际上也是一种偏振相关的效应。它类比于电子的自旋霍尔效应而来,其中光子的自旋对应于电子的自旋,折射率梯度扮演外场的角色。而光子的两个自旋态对应的即是左、右旋圆偏振。光自旋霍尔效应表现为自旋相关的分裂现象,即一个线偏振光的左、右旋圆偏振分量由于经历不同的几何相位(geometrical phase)而在空间上相互分开。因此,调控光自旋霍尔效应,本质上就是对光的偏振的调控。
     基于以上认识,本文提出用人工微结构材料来调控光的偏振和自旋霍尔效应,取得了几项创新性成果:
     (1)提出用不均匀各向异性微结构材料来产生非相干的激光辐照。在横向空间上,我们将大量对偏振具有不同的改变能力的微结构单元随机排列。从光的相干性的观点来看,光束通过这种结构后在远场焦面是非相干的。我们以偏振敏感的L型微结构材料为例,用计算机模拟仿真论证了其在降低散斑对比度和提高激光辐照均匀性等方面的应用潜力。与传统的偏振控制元件相比,基于微结构材料的偏振控制器件的结构尺寸可以控制在波长量级,并且其偏振性质具有很大的可调控空间。这使得它特别有潜力用于微纳光子器件和未来集成光路方面的应用。
     (2)首先研究了两种多层薄膜微结构中的折射光的自旋霍尔效应。它们分别具有对称和不对称的介质层排列,其菲涅尔系数可以通过调节结构参数而改变。我们发现,光束的自旋-轨道相互作用可随多层结构的光学参数的改变作周期性振荡(来源于法布里-珀罗(Fabry-Perot)共振),因而可以有效地增强、压缩甚至完全抑制自旋相关的横移,从而实现对光自旋霍尔效应的调控。同时,也可以反过来利用光自旋霍尔效应来表征纳米尺度的结构和折射率变化,为研究纳米结构中的物理特性提供一种灵敏的方式。其次,在此基础上,进一步提出用缺陷一维光子晶体的缺陷态来增强光自旋霍尔效应。在斜入射情形下,这种缺陷态具有偏振相关的透射峰。在透射峰附近自旋分裂的横移值可以达到空气-玻璃界面的数十倍,从而极大地增强光自旋霍尔效应。
     (3)研究了光在单层各向异性超常介质中的反常的自旋霍尔效应。这种反常表现在光束自旋分裂的不对称性。在前人的关于光自旋霍尔效应的研究中,左、右旋圆偏振光的自旋分裂是完全对称的,即它们分居于入射面的两侧(相反的分裂方向),并具有等振幅的横移。而我们发现,由于各向异性超常介质极大的各向异性而导致不对称的几何相,使自旋分裂产生明显的不对称性,即左、右旋圆偏振光可能出现相同方向的横移或是不相等的横移振幅。改变超常介质的结构参数和入射面与光轴的夹角,可以对这种不对称分裂进行调控。
     (4)提出一种具有特殊几何结构的、不均匀的各向异性微结构材料来调控光的自旋霍尔效应及自旋分裂。它能够改变光束的局部偏振态,并产生自旋相关的、空间变化的几何相,使线偏振光产生自旋分裂。有趣地是,在远场,这种分裂表现为多个独立的左、右旋圆偏振光斑(用Stokes参数的S3分量表示)的交替出现。光斑的个数取决于材料的几何结构,从而使不均匀的各向异性微结构材料有潜力用于调控光束自旋分裂和光子自旋态。实际上,不但材料的几何结构对几何相有贡献,我们还发现,入射的偏振态也会对几何相有贡献。现有的研究都局限在入射光为空间均匀的线偏振光的情形。我们考虑一般性的情况,以轴对称线偏振光为例,考虑空间不均匀的线偏振光(矢量光束的一种)的自旋分裂,均匀线偏振光只是其特殊形式。由于几何相来源于材料和入射偏振两方面的贡献,所以远场的自旋分裂图案也可通过改变入射偏振分布来予以调控。因此,不均匀线偏振光将成为调控光束自旋分裂和光子自旋态的一个新的自由度。
Polarization is an important property of light. It is always desirable to have full control of the polarization. In essence, manipulation of the polarization of light can be achieved by controlling the magnitude of its electric field components and their phase difference. Convention methods include anisotropic waveplates, polarizers, chiral media or gratings. Man-made microstructure is a kind of composite medium whose electromagnetic properties are depend on its structure rather than composition. It is composed of two or more kinds of media with its structure unit further less than a wavelength. It always has the properties further exceeded (or not possessed by) the conventional media, or has abnormal properties. One can obtain much larger anisotropy than convention anisotropic media via suitably tailoring the structure geometry of the man-made microstructure. Also, the desirable polarization or phase properties could be acquired by locally designing the structure units.
     The polarization will also affect another fundamental property of light, that is, coherence, so one can control the coherence of light by steering the polarization. High coherence is a striking property of lasers, which facilitate lasers to be widely applied in those fields requiring high coherent light sources. However, just as a coin has two sides, coherence is harmful to some laser application fields. High coherence usually results in unwanted speckle noise in laser display (or laser projection imaging or laser TV), thereby decreasing the imaging resolution. In laser fusion and laser heat processing, coherence makes the intensity distribution on the focal plane not uniform enough. In some spectroscopy experiments, a high coherence laser is also undesirable. Thus, in these applications, it is urgently needed to eliminate the laser coherence. On the other hand, as a hot topic in the recent years, the spin Hall effect light has attracted much attention. It is an analogy of the spin Hall effect in electronic system in which the spin photon corresponds to the spin electron and the refractive index gradient plays a role of external field. It manifests itself as the spin-dependent splitting of photon spin states. Therefore, in some way, manipulating the spin Hall effect of light is essentially control the polarization.
     Based on the above knowledge, we propose that man-made microstructures can be employed to manipulate the polarization and the spin Hall effect of light. Some creative work has done as in the follows.
     (i) We propose an inhomogeneous anisotropic microstructure for producing incoherent laser illumination. The structure can produce locally polarization change for the laser beam. In the far-field focal plane, the superposition beam is incoherent. Without loss of generality, we will exemplify our scheme numerically using a variation version of the typical L-shaped metamaterial, although the approach can be applied to an arbitrary metamaterial geometry offering enough number of free design parameters. The calculating results show that this structure can effectively suppress the speckle contrast and increase irradiation uniformity. The dimension of the structure can be confined to the order of a wavelength, which facilitates the metamaterial-base polarization control device to be potential applied in the future photonic integrated circuit.
     (ⅱ) We investigate the spin Hall effect of refractive light in two kinds of multi-layer films. The two films have symmetric and non-symmetric structure geometries, respectively, whose Fresnel coefficients can be tunable via changing the optical parameters of the films. We find that the spin-orbital interaction exhibits a sine-like oscillation in the range of negative-zero-positive valves due to the Fabry-perot resonance. Thus, we can significantly enhance or totally suppress the spin-dependent transverse shifts, and then the spin Hall effect of light. Further, we propose a one-dimensional photonic crystal with a defect layer to enhance the spin Hall effect of light. Under the condition of obliquely incidence, the defect modes have polarization-dependent transmission peaks (reflection valleys). Near the peaks, it is possible to acquire large ratio of the Fresnel coefficients, and thereby significantly enhancing the spin Hall effect of light to dozens of times of the ever observed values. At the same time, due to its close dependency on refractive index gradient, it is possible to develop the spin Hall effect as a precise metrology for investigating and describing the subwavelength variation of the structure geometries and refractive indices.
     (iii) We explore the unusual spin Hall effect of light in an anisotropic metamaterial. which manifests as non-symmetric spin-dependent splitting. In the previous researches, the observed splitting of left and right circular polarization components are all symmetric, that is, they reside on both sides of the incident plane with identical magnitudes. While we find that, due the non-symmetric geometrical phase induced by the strong anisotropy of the metamaterial. the non-symmetric splitting appears. It manifests as the same splitting direction and/or non-identical magnitudes. The asymmetry can be tunable via changing the optical parameters of the medium and the intersection angle between the incident plane and optics axis,
     (iv) Finally, we propose that the inhomogeneous anisotropic media with specified geometries can be used to manipulate the spin Hall effect of light. This medium can locally control the polarization of light, and apply a spin-dependent and space-variant geometrical phase to beam that passes through it. which cause the separation of the spin components of light. Interestingly, this spin-dependent splitting in the far field exhibits multi-lobe splitting patterns with alternatively left and right circular polarizations, described by the Stokes S3parameters. The lobe number depends upon the structure geometries of the media. So, this medium serves as a potential device to manipulate the spin-dependent splitting and photon spin states. Actually, the geometrical phase is not only associated with the medium properties, but also the incident polarization distribution. For different polarization angle of incident linear polarization, the splitting patterns will rotate. As far as we know, existing researches have concentrated their interests in the case of spatially homogeneous, linearly polarized incident light. We have investigated the case of axisymmetric linearly polarized light. Since the geometrical phase originates from the two kinds of contributions:medium property and polarization distribution, so the far-field splitting pattern can also be controlled by the incident polarization distribution. We believe that the incident polarization distribution servers as a new degree of freedom to manipulate the spin-dependent splitting of beam and photon spin states.
引文
[1]Born M and Wolf E. Principles of Optics. Seventh Edition, Cambridge University Press, Cambridge,1999
    [2]Yariv A and Yeh P. Photonics:Optical Electronics in Modern Communications. Oxford University Press, New York,2007
    [3]廖廷彪.偏振光学.科学出版社,北京,2003
    [4]谢敬晖.物理光学教程.北京理工大学出版社,北京,2005
    [5]Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science,2004,305(5685):788-792
    [6]Shalaev V M. Optical negative-index metamaterials. Nature Photonics,2007,1: 41-48
    [7]Engheta N, Alu A, Ziolkowski R W, and Erentok A. Metamaterials:Physics and Engineering Explorations. IEEE Press, John Wiley & Sons. Inc.,2006
    [8]Rogacheva A V, Fedotov V A, Schwanecke A S, and Zheludev N I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Physical Review Letters,2006,97(17):177401
    [9]Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, and Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters,2007,99(6):063908
    [10]Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, and Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B,2007,76(7):073101
    [11]Chin J Y, Lu M, and Cui T J. Metamaterial polarizers by electric-field-coupled resonators. Applied Physics Letters,2008,(93(25):251903
    [12]Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, and Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science,2009,325:1513-1515.
    [13]Wu C, Li H, Yu X, Li F, and Chen H. Metallic helix array as a broadband wave plate. Physical Review Letters,2011,107(17):177401
    [14]郑建洲,于清旭,关寿华.强激光的靶面均匀辐照和光束匀滑技术.中央民族大学学报(自然科学版),2008,17(1):29-36
    [15]刘波.光束匀滑技术在ICF激光驱动系统中的应用研究:[四川大学硕士学位论文].成都,四川大学,2006
    [16]Mandel L and Wolf E. Optical coherence and quantum optics. Cambridge University Press,1995
    [17]Deng X, Liang X. Chen Z, Yu W, and Ma R. Uniform illumination of large targets using a lens array. Applied Optics,1986,25(3):377-381
    [18]Laboratory for Laser Energetics. Phase conversion using distributed polarization rotation. Laboratory for Laser Energetics,1990, Rev.45,1 NTIS Document No. DOE/DP40200-149
    [19]Tsubakimoto K, Nakatsuka M, Nakano H, Kanabe T, Jitsuno T, and Nakai S. Suppression of interference speckles produced by a random phase plate, using a polarization control plate. Optics Communications,1992,91:9-12
    [20]Rothenberg J E. Polarization beam smoothing for inertial confinement fusion. Journal of Applied Physics,2000,87(8):3654-3662
    [21]Munro D H, Dixit S N, Langdon A B, and Murray J R. Polarization smoothing in a convergent beam. Applied Optics,2004,43(36):6639-6647
    [22]Onoda M, Murakami S, and Nagaosa N, Hall effect of light, Physical Review Letters,2004,93(8):083901
    [23]Bliokh K Y and Bliokh. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Physical Review Letters,2006,96(7):073903
    [24]Bliokh K Y and Bliokh. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. Physical Review E,2006,75(6):066609
    [25]Hosten O and Kwiat P. Observation of the spin Hall effect of light via weak measurements. Science,2008,319 (5864):787-790
    [26]Bliokh K Y, Niv A, Kleiner V, and Hasman E. Geometrodynamics of spinning light. Nature Photonics,2008,2:748-753
    [27]Rytov S M. On transition from wave to geometrical optics. Dokl. Akad. Nauk SSSR,1938,18:263
    [28]Chiao R Y and Wu Y S. Manifestations of Berry's topological phase for the photon. Physical Review Letters,1986,57(8):933-936
    [29]Berry M V. Interpreting the anholonomy of coiled light. Nature,1987,326:277
    [30]Pancharatnam S. Generalized theory of interference and its applications. Proceeding of Indian Academy of Sciences A,1956,44:247
    [31]Berry M V. The adiabatic phase and Pancharatnam's phase for polarized light. Journal of Modern Optics,1987,34(11):1401-1407
    [32]Bhandari R and Samuel J. Observation of topological phase by use of a laser interferometer. Physical Review Letters,1988,60(13):1211-1213
    [33]罗海陆,文双春.光自旋霍尔效应及其研究进展.物理,2012,41(6):367-373
    [34]秦毅,李焱,肖云峰,杨宏,龚旗煌.光自旋霍尔效应及面内光自旋分离.物理,2012,41(6):374-381
    [35]尹树百.薄膜光学:理论与实践.科学出版社,北京,1987
    [36]林永昌,卢维强.光学薄膜原理.国防工业出版社,北京,1990
    [37]Bomzon Z, Kleiner V, and Hasman E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters,2001,26(18):1424-1426
    [38]Bomzon Z, Biener G, Kleiner V, and Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters,2002,27(13):1141-1143
    [39]Marrucci L, Manzo C, and Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters,2006, 96 (16):163905
    [40]Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391: 667-669
    [41]Gordon R, Brolo A G, McKinnon A, Rajora Leathem A B, and Kavanagh K L Strong polarization in the optical transmission through elliptical nanohole arrays. Physical Review Letters,2004,92(3):037401
    [42]Elliott J, Smolyaninov I I, Zheludev N I, and Zayats A V. Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film. Optics Letters,2009,29(12):1414-1416
    [43]Li T, Liu H, Wang S M, Yin X G, Wan F M, Zhu S N, and Zhang X. Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations. Applied Physics Letters,2008,93(2):021110
    [44]Beruete M, Navarro-Cia M, Sorolla M, and Campillo I. Polarization selection with stacked hole array metamaterial. Journal of Applied Physics,2008,103(5): 053102
    [45]Khoo E H, Li E P, and Crozier K B. Plasmonic wave plate based on subwavelength nanoslits. Optics Letters,2011,36(13):2498-2500
    [46]Papakostas A, Potts A, Bagnall D M, Prosvirnin S L, Coles H J, and Zheludev N I. Optical Manifestations of planar chirality. Physical Review Letters,2003, 90(10):107404.
    [47]Pors A. Nielsen M G, Valle G D, Willatzen M, Albrektsen O, and Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters,2011.36(9):1626-1628
    [48]Zhao Y and Alu A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Physical Review B,2011,84(3):205428
    [49]Raab R E and Lange O L D. Multipole theory in electromagnetism. Clarendon, Oxford,2005
    [50]Petschulat J, Chipouline A, Tunnermann A, Pertsch T, Menzel C, Rockstuhl C, Paul T, and Lederer F. Simple and versatile analytical approach for planar metamaterials. Physical Review B,2010,82(7):075102
    [51]Liu N, Liu H, Zhu S N, and Giessen H. Stereometamateril. Nature Photonics, 2009,3:157
    [52]Liu H, Cao J X, Zhu S N, Liu N, Ameling R, and Giessen H. Lagrange model for the optical properties of stereometamaterils. Physical Review B,2010, 81(24):241403
    [53]Kato Y K, Myers R C, Gossard A C, Awschalom D D. Observation of the Spin Hall Effect in Semiconductors. Science,2004,306(5703):1910-1913
    [54]Awschalom D D and Flatte M E. Challenges for semiconductor spintronics. Nature Physics,2007,3:153-159
    [55]Wolf S A, Awschalom D D, Ruzicka B A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, and Treger D M. Spintronics:A spin-based electronics vision for the future. Science,2001,294(5546):1488-1495
    [56]Wunderlich J, Kaestner B, Sinova J, and Jungwirth T. Experimental Observation of the spin Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Physical Review Letters,2005,94:047204
    [57]Chappert C, Fert A, and Dau F N V. The emergence of spin electronics in data storage. Nature Physics,2007,6:813-823
    [58]Bigot J Y, Vomir M, and Beaurepaire E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Physics,2009,5:515-520
    [59]鲁楠,刘之景.自旋电子学的最新研究进展.纳米器件与技术.2009,47(1):10-13
    [60]Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators. Physics Today,2010,63:63
    [61]Bliokh K Y. Geometrodynamics of polarized light:Berry phase and spin Hall effect in a gradient-index medium. Journal of Optics A:Pure and Applied Optics,2009,11:094009
    [62]Fedorov F I. On the polarization ofelectromagnetic waves. Dokl. Akad. Nauk SSSR,1955,105:465
    [63]Imbert C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Physical Review D, 1972,5(4):787-796
    [64]Aharonov Y and Vaidman L. Properties of a quantum system during the time interval between two measurements. Physical Review A,1990,41(1):11-20
    [65]Kavokin A, Malpuech G, and Glazov M. Optical spin Hall effect. Physical Review Letters,2005,95 (13):136601
    [66]Leyder C, Romanelli M, Karr J P, Glacobino E, Liew T C H, Glazov M M, Kavokin A V, Malpuech G, and Bramati A. Observation of the optical spin Hall effect. Nature Physics,2007,3:628-631
    [67]Maragkou M, Richards C E, Ostatnicky T, Grundy A J D, Zajac J, Hugues M, Langbein W, and Lagoudakis P G. Optical analogue of the spin Hall effect in a photonic cavity. Optics Letters,36(7):1095-1097
    [68]Haefner D, Sukhov S, and Dogariu. Spin Hall effect of light in spherical geometry. Physical Review Letters,2009,102(12):123903
    [69]Menard J M, Mattacchione A E, Betz M, and Driel H M V. Imaging the spin Hall effect of light inside semiconductors via absorption. Optics Letters,2009, 34(15):2312-2314
    [70]Qin Y, Li Y, He H, and Gong Q. Measurement of spin Hall effect of reflected light. Optics Letters,2009,34(17):2551-2553
    [71]Menard J M, Mattacchione A E, Driel H M V, Hautmann C, and Betz M. Ultrafast optical imaging of the spin Hall effect of light in semiconductors. Physical Review B,2010,82 (4):045303
    [72]Luo H, Wen S, Shu W, Tang Z, Zou Y, and Fan D. Spin Hall effect of a light beam in left-handed materials. Physical Review A,2009,80(4):043810
    [73]Luo H, Zhou X, Shu W, Wen S, and Fan D. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Physical Review A,2011, 84 (4):043806
    [74]Novotny L and Hecht B. Principles of nano-optics. Cambridge University, Cambridge, England,2006
    [75]Chiao R Y, Kwait P G, and Steinberg A M. Analogies between electron and photon tunneling:a proposed experiment to measure photon tunneling times. Physica B:Condensed Matter,1991,175:257-262
    [76]Steinberg A M and Chiao R Y. Tunneling delay times in one and two dimensions. Physical Review A,1994,49(5):3283-3295
    [77]Steinberg A M and Kwait P G. Measurement of the single-photon tunneling time. Physical Review Letters,1993,71(5):708-711
    [78]Balcou P and Dutriaux L. Dual Optical Tunneling Times in Frustrated Total Internal Reflection. Physical Review Letters,1997,78(5):851-854
    [79]Carey J J, Zawadzka J, Jaroszynski D A, and Wynne K. Noncausal time response in frustrated total internal reflection. Physical Review Letters,2000, 84(7):1431-1434
    [80]Winful H G. Nature of "Superluminal" barrier tunneling. Physical Review Letters,2003,90(2):023901
    [81]Player M A. Angular momentum balance and transverse shifts on reflection of light. Journal of Physics A:Mathematical and General,1987,20(12):3667
    [82]Fedoseyev V G. Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves. Journal of Physics A: Mathematical and General,1988,21(9):2045
    [83]Fedoseyev V G. Conservation laws and angular transverse shifts of the reflected and transmitted light beams. Optics Communications,2009,282(7): 1247-1251
    [84]Luo H, Wen S, Shu W, and Fan D. Spin Hall effect of light in photon tunneling. Physical Review A,2010,82(4):043825
    [85]Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp.,1968,10 (4):509-514
    [86]Mackay T G and Lakhtakia A. Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials. Physical Review B,2009,79:235121
    [87]Seddon N, Bearpark T. Observation of the inverse Doppler effect. Science, 2003,302(5650):1537-1540
    [88]Reed E J, Soljacic M, and Joannopoulos J D. Reversed doppler effect in photonic crystals. Physical Review Letters,2003,91(13):133901
    [89]Duan Z, Wu B, Xi S, Chen H, and Chen M. Research progress in reversed Cherenkov radiation in double-negative metamaterials. Progress In Electromagnetics Research,2009,90:75-87
    [90]Wang H and Zhang X. Unusual spin Hall effect of a light beam in chiral metamaterial. Physical Review A,2011,83(5):053820
    [91]Wang H and Zhang X. Goos-Hanchen and Imbert-Fedorov shifts of an electromagnetic wave packet by a moving object. Journal of the Optical Society of America B,2012,29(6):1218-1225
    [92]Pendry J B, Martin-Moreno L, and Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science,2004,305 (5685):847-848.
    [93]Garcia de Abajo F J. Light scattering by particle and hole arrays. Reviews of Modern Physics,2007,79 (4):1267-1290
    [94]Beruete M, Sorolla M, Campillo I, Dolado J S, Martin-Moreno L, Bravo-Abad J, and Garcia-Vidal F J. Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates. IEEE Trans. Antennas and Propagation,2005,53(6):1897-1903
    [95]Beruete M, Sorolla M, and Campillo I. Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays. Optics Express,2006,14 (12):5445-5455
    [96]Gorodetski Y, Niv A, Kleiner V, and Hasman E. Observation of the spin-based plasmonic effect in nanoscale structures. Physical Review Letters,2008,101 (4):043903
    [97]Gorodetski Y, Shitrit N, Bretner I, Kleiner V, and Hasman E. Obvservation of optical spin symmetry breaking in nanoapertures. Nano Letters,2009,9(8): 3016-3019
    [98]Bliokh K Y, Gorodetski Y, Kleiner V and Hasman E, Coriolis effect in optics: Unified geometric phase and spin Hall effect. Physical Review Letters,2008, 101 (3):030404
    [99]Shitrit N, Bretner I, Gorodetski Y, Kleiner V, and Hasman E. Optical spin Hall effect in plasmonic chains. Nano Letters,2011,11:2038-2042
    [100]Dyakonov M I amd Perel V I. Current induced spin orientation of electrons in semiconductors. Physics Letters A,1971,35:459-460
    [101]Wunderlich J, Kaestne B, Sinova J, and Jungwirth T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Physical Review Letters,2005,94(4):047204
    [102]John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters,1987,58(23):2486-2489
    [103]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters,1987,58(20):2059-2062
    [104]M. Notomi. Theory of light propagation in strongly modulated photonic crystals:refraction-like behavior in the vicinity of the photonic band gap. Physical Review B,2000,62(16):10696-10705
    [105]B. Gralak, S. Enoch, and G. Tayeb. Anomalous refractive properties of photonic crystals. Journal of Optical Society of America A,2000,17(6): 1012-1020
    [106]Pendry J B, Holden A J, Stewart W J, and Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters,1996,76(25): 4773-4776
    [107]Pendry J B, Holden A J, Robbins D J, and Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and techniques,1999,47(11):2075-2084
    [108]Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, and Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters,2000,84(18):4184-4187
    [109]Smith D R, Kroll N. Negative Refractive index in left-handed materials. Physical Review Letters,2000,85(14):2933-2936
    [110]Shelby R A, Smith D R, and Schultz S. Experimental verification of a negative index of refraction. Science,2001,292(5514):77-79
    [111]Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000,85(18):3966-3969
    [112]Pendry J B, Schurig D, and Smith D R. Controlling electromagnetic fields. Science,2006,312(5781):1780-1782
    [113]Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, and Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science,2006,314(5801):977-980
    [114]Cai W, Chettiar U K, Kildishev A V, Shalaev V M. Optical cloaking with metamaterials. Nature Photonics,2007,1:224-227
    [115]Valentine J, Li J. Zentgraf T, Bartal G, and Zhang X. An optical cloak made of dielectrics. Nature Materials,2009,8:568
    [116]Li J and Pendry J B. Hiding under the carpet:a new strategy for cloaking. Physical Review Letters,2008,101(20):203901
    [117]Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, and Averitt R D. Active terahertz metamaterial devices. Nature,2006,444:597-600
    [118]Zhang S, Park Y S, Li J, Lu X, Zhang W, and Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters,2009,102(2):023901
    [119]Dolling G, Wegener M, Soukoulis C M, Linden S. Negative index meta-material at 780 nm wavelength. Optics Letters,2007,32(11):53-55
    [120]Shalaev V and Cai W. Optical metamaterials:fundamentals and applications. Springer, New York,2009
    [121]Soukoulis C M. Linden S, Wegener M. Negative refractive index at optical wavelengths. Science.2007,315(5808):47-49
    [122]Silveirinhal M, and Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Physical Review B, 2007,75(7):075119
    [123]Zhang F, Houzet G, Lheurette E, Lippens D, Chaubet M, and Zhao X. Negative-zero-positive metamaterial with omega-type metal inclusions. Journal of Applied Physics,2008,103(8):084312
    [124]Cheng Q. Liu R, Huang D, Cui T J, and Smith D J. Circuit verification of tunneling effect in zero permittivity medium. Applied Physics Letters,2007, 91(23):234105
    [125]Shen J T, Catrysse P B, and Fan S. Mechanism for designing metallic meta-materials with a high index of refraction. Physical Review Letters,2005,94(19): 197401
    [126]Joannopoulos J D, Meade R D, and Winn J N. Photonic crystals:molding the flow of light. Second edition, Princeton University Press,2007
    [127]Yablonovitch E and Gmitter T J. Photonic band structure:The face-centered-cubic case. Physical Review Letters,1989,63(18):1950-1953
    [128]Kitson S C, Barnes W L, and Sambles J R. Full photonic band gap for surface modes in the visible. Physical Review Letters,1996,77(13):2670-2673
    [129]Li J, Zhou L, Chan C T, and Pang S. Photonic band gap from a stack of positive and negative index materials. Physical Review Letters,2003,90(8):083901
    [130]Jiang H, Chen H, Li H, Zhang Y, Zhu S. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Applied Physics Letters,2003,83(26):5386
    [131]Silvestre E, Depine R A, Martinez-Ricci M L, and Monsoriu J A. Role of dispersion on zero-average-index bandgaps. Journal of Optical Society of America B,2009,26(4):581-586
    [132]Wu L, He S, and Shen L. Band structure for a one-dimensional photonic crystal containing left-handed materials. Physical Review B,2003,67(6):235103
    [133]Dios-Leyva M D and Gonzalez-Vasquez O E. Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials. Physical Review B,2008,77(12):125102
    [134]Jiang H, Chen H, Li H, Zhang Y, Zi J, Zhu S. Properties of one-dimensional photonic crystals containing single-negative materials. Physical Review E, 2004,69(5):066607
    [135]Ha Y K, Yang Y C, Kim J E, Park H Y, Kee C S, Lim H, and Lee J C. Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Applied Physics Letters,2001. 79(1):15-17
    [136]Ozaki R, Matsui T, Ozaki M, Yoshin K. Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Applied Physics Letters,2003,82(21):3563-3595
    [137]G Biener, A Niv, V Kleiner, E Hasman. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters.2002,27(21): 1875-1877
    [138]Hasman E. Bomzon Z, Niv A, Biener G, and Kleiner V. Polarization beam splitter and optical switchs based on space-variant computer-generated subwavelength qusi-periodic structures. Optics Communications,2002,209: 45-54
    [139]A Niv, G Biener, V Kleiner, and Hasman E. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings. Optics Letters.2003,28(7):510-512
    [140]A Niv, G Biener, V Kleiner, and Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express,2006,14(10):4208-4220
    [141]Marrucci L, Manzo C, and Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain:Switchable helical mode generation. Applied Physics Letters,2006,88(22):221102
    [142]Hasman E, Gorodetski Y, Shitrit N, Bretner I, Niv A, and Kleiner V. Spinoptics: Spin symmetry breaking in plasmonic nanostructures. Proceeding of SPIE, 2009,7394:73941W
    [143]Niv A, Gorodetski Y, Kleiner V, and Hasman E. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures. Optics Letters,2008,33(24):2910-2912
    [144]A Niv, G Biener, V Kleiner, and Hasman E. Spiral phase elements obtained by use of discrete space-variant subwavelength gratings. Optics Communications, 2005,251:306-314
    [145]Bomzon Z, V Kleiner, and Hasman E. Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Applied Physics Letters,2001,79(11):1587-1589
    [146]Gorodetski Y, Biener G, Niv A, Kleiner V, and Hasman E. Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. Optics Letters.2005.30(17):2245-2247
    [147]Stalder M and Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters,1996, 21(23):1948-1950
    [148]Stalder M and Schadt M. Polarization converters based on liquid crystal devices. Molecular Crystals and Liquid Crystals,1996,282(1):343-353
    [149]Ren H, Lin Y H, Wu S T. Linear to axial or radial polarization conversion using a liquid crystal gel. Applied Physics Letters,2006,89(5):051114
    [150]Marrucci L. Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals. Molecular Crystals and Liquid Crystals,2008,488(1):148-162
    [151]Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, and Sciarrino F. Spin-to-orbital conversion of angular momentum of light and its classical and quantum applications. Journal of Optics A:Pure and Applied Optics,2011,13:064001
    [152]Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L, and Santamato E. Tunable liquid crystal q-plates with arbitrary topological charge. Optics Express,2011,19 (5):4085-4090
    [153]Karimi E, Piccirillo B, Nagali E, Marrucci L, and Santamato E. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Applied Physics Letters,2009,94(23):231124
    [154]Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L, and Santamato E. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Applied Physics Letters,2010,97 (24):241104
    [155]Goodman J W. Introduction to Fourier Optics. Third Edition, Roberts & Company, Englewood,2005
    [156]Lax M, Louisell W H, and McKnight W. From Maxwell to paraxial wave optics. Physical Review A,1975,11(4):1365-1370
    [157]Jackson J D. Classical Electrodynamics. Wiley, New York,1999
    [158]Yeh P. Optical waves in layered media. Wiley, New York,1999
    [159]Helseth L E. Roles of polarization, phase and amplitude in solid immersion lens system. Optics Communications,2001,191:161-172
    [160]Courtial J, Robertson D A, Dholakia K, Allen L and Padgett M J. Rotational frequency shift of a light beam. Physical Review Letters,1998,81(22): 4828-4830
    [161]Hafizi B, Esarey E and Sprangle P. Laser-driven acceleration with Bessel beams. Physical Review E 1997,55(3):3539-3545
    [162]Kuga T. Torii Y. Shiokawa N. Hirano T, Shimizu Y and Sasada H. Novel optical trap of atoms with a doughnut beam. Physical Review Letters,1997. 78(25):4713-4716
    [163]Sato S, Harada Y and Waseda Y. Optical trapping of microscopic metal particles. Optics Letters,1994,19(22):1807-1809
    [164]Niziev V G and Nesterov A V. Influence of beam polarization on laser cutting efficiency. Journal of Physics D:Applied Physics,1999,32(13):1455-1461
    [165]Zhan Q. Cylindrical vector beams:from mathematical concepts to applications. Advances in Optics and Photonics,2009,1:1-57
    [166]Oron R, Blit S, Davidson N, and Friesem A A. The formation of laser beams with pure azimuthal or radial polarization. Applied Physics Letters,2000, 77(21):3322-3324
    [167]Bashkansky M, Park D and Fatemi F K. Azimuthally and radially polarized light with a nematic SLM. Optics Express,2009,18(1):212-217
    [168]Levy U, Tsai C H, Pang L, and Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Optics Letters,2004,19(15): 1718-1720
    [169]Deng D and Guo Q. Analytical vectorial structure of radially polarized light beams. Optics Letters,2007,32(18):2711-2713
    [170]Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, and Yamanakam C. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Physical Review Letters,1984, 53(11):1057-1060
    [171]Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A. Wegner P J. and Powell H T. Random phase plates for beam smoothing on Nova laser. Applied Optics,1993,32(14):2543-2554
    [172]Dainty J C, ed. Laser Speckle and Related Phenomena.2nd edition, Springer, Berlin,1984
    [173]Goodman J W. Speckle Phenomena in Optics. Ben Roberts,2006
    [174]Menzel C, Rockstuhl C, and Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Physical Review A,2010,82(5): 053811
    [175]Tavlove A. Computational Electrodynamics:The Finite-difference time-domain method. Artech House, Norwood, Mass.,1995
    [176]Ordal M A, Long L L, Bell R J, Bell S E, Bell R R. Alexander R W, and Ward C A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd. Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics,1983.22(97):1099-1119
    [177]Li C F and Wang Q. Prediction of simultaneously large and opposite generalized Goos-Hanchen shifts for TE and TM light beams in an asymmetric double-prism configuration. Physical Review E,2004,69(5):055601
    [178]Liu X B, Cao Z Q, Zhu P F, Shen Q S, and Liu X M. Large positive and negative lateral optical beam shift in prism-waveguide coupling system Physical Review E,2006,73(5):056617
    [179]Fainman Y, Shamir J. Polarization of nonplanar wave fronts. Applied Optics, 1984,23(18):3188-3195
    [180]Li Q and Vernon R J. Theoretical and experimental investigation of Gaussian beam transmission and reflection by a dielectric slab at 110 GHz. IEEE Transactions on Antennas and Propagation,2006,54(11):3449-3457
    [181]Aiello A, Merano M, Woerdman J P. Brewster cross polarization. Optics Letters,2009,34(8):1207
    [182]Gosselin P, Berard A, and Mohrbach H. Spin Hall effect of photons in a static gravitational field. Physical Review D,2007,75 (8):084035
    [183]Dartora C A, Cabrera G G, Nobrega K Z, Montagner V F, Matielli M H K, de Campos F K R, and Filho H T S. Lagrangian-Hamiltonian formulation of paraxial optics and applications:Study of gauge symmetries and the optical spin Hall effect. Physical Review A,2011,83 (1):012110
    [184]Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system. Physical Review B,2006,74(8):115116
    [185]lwanaga M. Ultracompact waveplates:approach from metamaterials. Applied Physics Letters,2008,92(15):153102
    [186]Hsu S Y, Lee K Y, Lin E H, Lee M C, Wei P K. Giant birefringence induced by plasmonic nanoslit arrays. Applied Physics Letters,2009,95(15):013105
    [187]Yeh P. Optics of anisotropic layered media:a new 4×4 matrxi algebra. Surface Science,1986,96:41-53
    [188]Hao J M and Zhuo L. Electromagnetic wave scatterings by anisotropic metamaterials:Generalized 4×4 transfer-matrix method. Physical Review B, 2008,77(9):094201
    [189]Dooghin A V, Kundikova N D, Liberman V S, and Zel' dovich B Y. Optical Magnus effect. Physical Review A,1992,45 (11):8204-8208
    [190]Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, and Gong Q. Spin Hall effect of reflected light at the air-uniaxial crystal interface. Optices Express,2010, 18(16):16832-16839
    [191]Kang M, Chen J, Li S, Gu B, Li Y, and Wang H. Optical spin-dependent angular shift in structured metamaterial. Optics Letters.2011,36(9):3942-3944
    [192]Qin Y, Li Y, Feng X, Xiao Y, Yang H, and Gong Q. Observation of the in-plane spin separation of light. Optics Express,2011,19(10):9636-9645
    [193]Zhou X, Xiao Z, Luo H, and Wen S. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Physical Review A, 2012,85(4):043809
    [194]Zhou X, Luo H, and Wen S. Weak measurements of a large spin angular splitting of light beam on reflection at the Brewster angle. Optics Express,2012, 20(14):16003-16009
    [195]Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L, and Santamato E. Tunable liquid crystal q-plates with arbitrary topological charge. Optics Express,2011,19 (5):4085-4090
    [196]Karimi E, Piccirillo B, Nagali E, Marrucci L, and Santamato E. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Applied Physics Letters,2009,94(23):231124
    [197]Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L, and Santamato E. Photon spin- to -orbital angular momentum conversion via an electrically tunable q-plate. Applied Physics Letters,2010,97 (24):241104
    [198]Nersisyan S, Tabiryan N, Steeves D M, and Kimball B R. Fabrication of liquid crystal polymer axial waveplates for uv-ir wavelength. Optics Express,2009, 17(14):11926-11934
    [199]Kang M, Chen J, Gu B, Li Y, Vuong L T, and Wang H. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin- to -orbital angular momentum. Physical Review A,2012,85 (3):035801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700