球矢量波函数在各向异性介质电磁散射中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用球矢量波函数、Fourier变换和用各向同性介质球矢量波函数展开的本征矢量和场平面波因子乘积解析表达式来研究各向异性介质球结构电磁散射的解析解,主要对两种各向异性介质——各向异性单轴介质和等离子体介质球结构电磁散射开展相应的理论研究,并实现数值计算,具体如下:
     一、从各向异性单轴介质的无源麦克斯韦方程组出发,导出各向异性单轴介质电场矢量满足的微分方程,并引入Fourier变换来求解电场矢量微分方程,在电场的平面波谱表示式及未知角谱傅立叶展开的基础上,利用各向同性球矢量波函数展开的本征矢量与平面波因子乘积的解析表达式,我们可得到无源麦克斯韦方程组在各向异性单轴介质中电场矢量的解析表达式,在此基础上,通过谱域方法求出各向异性单轴介质的磁场表达式,该电磁场的解析表达式是由两组待定系数和对球矢量波函数的—重积分构成,利用电场、磁场在各向异性单轴介质球边界上切向连续的边界条件研究了均匀各向异性单轴介质球对平面波的电磁散射特性,数值计算的结果和各项同性介质球的Mie理论以及矩量法-共扼梯度-傅立叶变换(MOM-CG-FFT)所计算各向异性单轴介质球的数值结果进行了比较,两者符合地较好,可得出各向同性介质球电磁散射解析解是本文特例的结论。同时还给出了有损耗和电大尺寸的各向异性单轴介质球对平面波电磁散射的数值计算结果。
     二、在建立均匀各向异性单轴介质球矢量波函数理论的基础上,利用二阶线性偏微分方程的性质和第一、第二、第三和第四类球Bessel函数满足相同的微分方程和递推关系,我们分别研究了单轴介质球壳和单轴介质涂覆导体球对平面波的电磁散射特性,首先给出了各个区域的电磁场用球矢量波函数来表示的解析表达式,进而利用电磁场在边界上满足电磁场切向连续的边界条件和球谐函数的正交性,得出了各向异性单轴介质球结构中电磁场用球矢量波函数表示的系数所满足的矩阵方程。通过矩阵方程的求解和球Bessel函数的大宗量渐进表达式,我们给出了各向异性单轴介质球结构对平面波电磁散射的数值计算结果,并和其他的数值计算结果进行了比较,其结果正如我们所预料的一样,达到了预期的结果。同时还给出了电大尺寸备向异性单轴介质球结构对平面波电磁散射的数值计算结果。
     三、从各向异性等离子体介质的无源麦克斯韦方程组出发,导出各向异性等离子体介质的矢量电场方程,并引入傅立叶变换来求解该矢量场方程,在场的平面波谱表示式及未知角谱的傅立叶展开的基础上,利用本征波矢量与平面波因子乘积的各向同性介质球矢量波函数展开的解析表示式,我们可得到无源麦克斯韦方程组在各向异性等离子体介质的电磁场解析表示式。在此基础上,利用电磁场在各向异性等离子体球面上切向连续的边界条件,研究平面波入射情况下,均匀各向异性等离子体球的电磁散射特性,并对其进行了相应的数值计算,将本文数值计算的结果和MOM-CG-FFT所计算的结果进行了比较,两者符合的比较好。给出了谐振区各向异性等离子体球对平面波电磁散射的数值计算结果。
     四、在建立均匀各向异性等离子体介质球矢量波函数基础上,分别研究了两层、多层各向异性等离子体的电磁散射特性,和各向异性单轴介质的相似,利用第一、第二类各向异性等离子体介质的球矢量波函数满足相同微分方程和迭代关系,我们分别给出了两层和多层各向异性等离子体的各个区域电磁场用各向异性等离子体球矢量波函数的表示形式,近而利用边界上电磁场切向连续的边界条件,可分别求出两层和多层各向异性等离子体中电磁场用球矢量波函数展开的展开系数,进而给出了两层和多层各向异性等离子体球的雷达散射截面,并实现数值计算。
     五、在完成上述工作的基础上,我们还对各向异性单轴负折射介质球和球壳对平面波的电磁散射特性开展了数值计算,并和各向同性负折射介质球的数值计算结果进行了比较,验证了我们所得的理论结果不仅可计算自然界所存在的各向异性右手介质,而且也能计算目前国际上研究比较多的热点问题——负折射介质。
     在文章的最后,我们给出了进一步所需要做的工作。
From the source-free Maxwell equations, using the Fourier transform and plane wave factors expansion with spherical vector wave functions in three-dimensional isotropic medium, the analytical solution of electromagnetic fields in anisotropic medium in terms of spherical vector wave functions can be derived. With the spherical vector wave functions in isotropic medium, the solution to electromagnetic scattering by spherical uniaxial anisotropic medium and plasma anisotropic medium with spherical vector wave functions have been obtained in this paper. The results of this dissertation are as follows:
    First, using the source-free Maxwell's equations in uniaxial anisotropic media and making the Fourier transform of the field quantities, the electromagnetic fields in spectral domain in uniaxial anisotropic media are assumed to have the similar form to the plane wave expanded also in terms of the spherical vector wave functions. Applying the continuous boundary conditions of electromagnetic fields on the surface between the air region and uniaxial anisotropic sphere, the coefficients of scattered fields in free space and the transmitted fields in uniaxial anisotropic medium can be obtained analytically in the expansion form of spherical vector wave eigenfunctions. Numerical results for some special cases are obtained, and compared with those of the classical Mie theory and the Method of Moments (MoM) accelerated with the Conjugate-Gradient Fast-Fourier-Transform (CG-FFT) approach. We also present some new numerical results for the more general uniaxial dielectric material media.
    Second, based on the spherical vector wave function in uniaxial anisotropic medium (part one), and the first, second, third and fourth spherical Bessel functions satisfy the same differential equation and recursive formula. The scattering fields in terms of spherical vector wave function from a uniaxial anisotropic spherical shell and an anisotropic uniaxial-coated conducting sphere by a plane wave are derived. The electromagnetic fields in uniaxial anisotropic medium and free space can be expressed in terms of spherical vector wave functions in uniaxial anisotropic media and isotropic medium. Applying the boundary condition in the interface between the uniaxial anisotropic medium and free space, the surface of the conducting sphere, the expansion coefficients of electromagnetic fields in terms of spherical vector wave function in uniaxial anisotropic medium are obtained, and then the expansion coefficients of scattering fields and radar cross sections can be obtained. Numerical results between this method and Mie theory are in good agreement as we expect. Some new numerical results have been given in the end of this part.
    Third, an analytical solution of electromagnetic fields in homogeneous plasma anisotropic media is obtained in this part. In the source-free plasma anisotropic media, the source-free Maxwell's equations are utilized, where the expansion of plane wave factors is made in terms of the spherical vector wave functions in isotropic media, and the Fourier transformation is then applied. As a result, the field expressions in terms of spherical vector wave functions in plasma anisotropic medium represented using eigenfunctions are obtained in spectral domain. Applying boundary conditions on the spherical interface between air and plasma anisotropy, the electromagnetic fields of the plane wave scattered by a plasma anisotropic sphere are derived. Numerical results for the very general plasma dielectric material media are obtained and those in a special case are compared between the present method and the Method of Moments (MoM) speeded up with the Conjugate-Gradient
    Fast-Fourier-Transform (CG-FFT) approach. Some new numerical results have been given in later of this part.
    Fourth, on the base of the analytical solution of electromagnetic fields in terms of spherical vector wave functions in source-free plasma anisotropic medium (part three), the first, second spherical vector wave functions in source-free plasma anisotropic medium satisfy the same Maxwell's equations, and the electromagnetic fields in plasma anisotropic spherical medium can be expressed as an addition of the first and the second spherical vector wave functions. Applying the continue boundary conditions of electromagnetic fields in the interface of plasma anisotropic spherical medium, the coefficients of electromagnetic fields in terms of spherical vector wave function can be derived in stratified plasma anisotropic medium. Two concentric plasma anisotropic spheres and multilayer anisotropic spheres have been discussed in detail. Some numerical results has been given, the theory and numerical results show that the present method can be degenerated to a single plasma anisotropic sphere when the two plasma anisotropic media nearly have the same parameter of medium.
    Fifth, we apply the formula of electromagnetic scattering of three-dimensional uniaxial anisotropic medium to the scattering of left-handed materials (LHMs), or negative index of refraction (NIR) materials uniaxial sphere and spherical shell, and some numerical results have been given in this part.
    In the end, some works which will be done are given.
引文
[1] W.C.Chow著,聂在平,柳清伙译,非均匀介质中的场和波,电子工业出版社,1992年
    [2] W. C. Chow, "Recurrence relations for three-dimensional scalar addition theorem," Journal of Electromagnetic waves and application, Vol.6, No.2, pp.133-142, 1992
    [3] Y. M. Wang, and W. C. Chow, "A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres", IEEE Trans. Antennas and Propagation, Vol. 41, No.12, 1633-1639, 1993
    [4] W. C. Chow, L. Gurel, Y. M. Wang, G. Otto, R. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave scattering solution," IEEE Trans. Microwave Theory and Technique, Vol.40, No.4, pp.716-723, 1992.
    [5] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering, Prentice Hall, Englewood Cliffs, NJ, 1991
    [6] H. Ling, R. C. Chou and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity." IEEE Trans. Antennas and Propagation, Vol. 37, No. 2, pp.194-205, 1989
    [7] G. J. James, Geometrical theory of diffraction for electromagnetic waves, IEE Press London and New York, 1976,
    [8] 汪茂光,几何绕射理论,西安电子科技大学出版社,1986年第一版
    [9] F. Obelleiro-Basteiro, J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. on Antennas and propagation, Vol. 43, No. 4, pp.356-361, 1995
    [10] A. Michaeli, "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagation., vol. 32, pp. 252-258, Mar. 1984.
    [11] A. Michaeli, "Elimination of infinities in equivalent edge currents, Part Ⅰ: Fringe current components," IEEE Trans. Antennas Propagation., Vol.34, pp. 912-918, July 1986.
    [12] R. F. Harrington, Fields computation by method of moment, IEEE Press, New York, 1993.
    [13] 李世智,电磁辐射与散射问题的矩量法,电子工业出版社,1985年3月
    [14] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Inc., Norwood, MA, 1995
    [15] K. S. Ktmz, and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Inc, 1993
    [16] 王长清,祝西里 编著,电磁场计算中的时域有限差分法,北京大学出版社,1994
    [17] 高本庆,时域有限差分法FDTD Method,国防工业出版社,1995
    [18] 葛德彪,阎玉波,电磁波时域有限差分方法,西安电子科技大学出版社,2002
    [19] 金建铭(美)著,王建国译,电磁场有限元方法,西安电子科技大学出版社,1998年1月
    [20] 曾余庚,刘京生,张雪阳 编,有限元和边界元法,西安电子科技大学出版社,1991年12月
    [21] 王树民,李明之,王长清,“GRE-FDTD混合法对二维矩形终端任意形状进气 道RCS的计算,”电子学报,Vol.28,No.6,pp.138-141,2000
    [22] R. Lee, T. T. Chia, "Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid ray=FDTD method," IEEE Trans. Antennas and Propagation, Vol. 41, No. 11, pp. 1560-1569, 1993
    [23] 何小祥,徐金平,顾长青,“电大尺寸复杂结构腔体电磁散射的IPO/FEM混合法研究,”电子与信息学报,Vol.25,No.2,pp.247-253,2003
    [24] 翟会清,复杂电磁系统中的混合及快速算法研究及其应用,博士论文,西安电子科技大学,2004年9月
    [25] G. Mie, "Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen", Ann. Phys. Vol.25, pp.377-455, 1908
    [26] H. C. van de Hulst, Light Scattering by Small Particles, Dover, New York, 1981.
    [27] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941
    [28] J. A. Kong, Theory of Electromagnetic wave, Wiley, New York, 1986
    [29] 谢益溪,J·拉菲涅特,J·P·蒙,M·西尔万,靳慧群,编著,电磁传播——超短波·微波·毫米波,电子工业出版社,1990年10月
    [30] 熊皓,主编 无线电手册,电子工业出版社,1998年
    [31] 符果行,编著 工程电磁理论方法,人民邮电出版社,1991年
    [32] 江长荫,“均匀圆球对平面波的散射,”电波科学学报,Vol.11,No.3,pp.65-88,1996
    [33] I. K. Ludlow, and J. Everitt, "Inverse Mie problem," J. Opt. Soc. Am. A, Vol.12, No. 12, 2229-2235, 2000
    [34] B. Stout, C. Andraud, S. Stout, and J. Lafait, "Absorption in multiple-scattering systems of coated spheres,"J. Opt. Soc. Am. A, Vol.20, No.6, pp.1050-1059, 2003
    [35] I. W. Sudiarta, and P. Chylek, "Mie-scattering formalism for spherical particles embedded in an absorbing medium," J. Opt. Soc. Am. A, Vol.18, No.6, 1275-1278, 2001.
    [36] N. A. Logan, "Survey of some early studies of the scattering of a plane wave by a sphere," Proc IEEE, Vol.53, No.10, pp.773-785, 1965
    [37] A. L. Aden, and M. Kerker, "Scattering of electromagnetic wave from concentric sphere," J. Appl. Phys., Vol.22, 1242-1246, 1951
    [38] J. H. Richmond, "Scattering by a Ferrite-coated Conducting Sphere," IEEE Trans. Antennas and Propagation, Vol.35, No. 1, pp.73-79, 1987.
    [39] O. B. Toon, and T. P, Ackerman, "Algorithms for the calculation of scattering by stratified sphere", Appl. Opt., Vol. 20, 3657-3660, 1981
    [40] Z. S. Wu, and Y. P. Wang, "Electromagnetic scattering for multilayered sphere: Recursive algorithms," Radio Science, Vol. 26, no. 6, pp. 1393-1401, 1991
    [41] Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouestbet, and G. Grehan, "Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres," Applied optics, Vol. 36, No.21, pp.5187-5198, 1997.
    [42] K.C.Yeh,and C.H.Liu著,王椿年,尹元昭译,电离层波理论,科学出版社,1983年,第一版
    [43] J. R. Wait. Electromagnetic wave in stratified media. London: Pergamon press, 1962
    [44] W. Y. Pan, "Surface-wave propagation along the boundary between sea water and one-dimensionally anisotropie rock," J. Appl. Phys., Vol. 58, pp. 3963-3974, 1985
    [45] K. Li, Y. L. Lu and M. H. Li, "Approximate formulas for lateral electromagnetic pulses from a horizontal electric dipole on the surface of one-dimensionally anisotropic medium," IEEE Trans. Antennas and Propagation, Vol. 53, No. 3, pp933-937, 2005
    [46] K. Li, Y. L. Lu, "Electromagnetic field generated by a horizontal electric dipole near the surface of a planar perfect conductor coated with a uniaxial layer," IEEE Trans. Antennas and Propagation, Vol.53, No. 10, pp.3191-3200, 2005
    [47] J. J. Laurin, G. A. Morin, and K.G. Balmain, "Sheath wave propagation in a magnetoplasma", Radio Science, Vol.24, No.3, pp.289-300, 1989
    [48] AD-A250710, 1992
    [49] AD-A285496, 1996
    [50] 赵汉章,吴是静,董乃涵,“不均匀等离子鞘套中的电波传播”,地球物理学报,Vol.26,No.1,pp.9-15,1983
    [51] 赵汉章,吴是静,董乃涵,“不均匀等离子鞘套中的电波传播(Ⅱ)”,地球物理学报,Vol.28,No.2,PP.117-125,1985
    [52] 冯林,电磁波在等离子体鞘套中的传播,成都电讯工程学院硕士论文,1986年1月
    [53] 汤显清,电磁波入射到非均匀等离子体鞘套上的反射与透射,成都电讯工程学院硕士论文,1987年1月
    [54] 杨华,时家明,凌永顺,“电磁波在磁化等离子体上的反射特性研究,”电波科学学报,Vol.16,No.2,pp.196-199,2001
    [55] 莫锦军,刘少斌,袁乃昌,“非均匀等离子体覆盖目标隐身研究,”,电波科学学报,Vol.17,No.1,pp.69-73,2002
    [56] 刘少斌,莫锦军,袁乃昌,“电磁波在不均匀磁化等离子体中的吸收,”,电子学报,Vol.31,No.3,pp.372-375,2003
    [57] J. R. Wait, "Some boundary value problems involving plasma media, "J. of Research, NBS, vol. 65B, pp. 137-150, 1961
    [58] H. C. Chen and D. K. Cheng, "Scattering of electromagnetic waves by an anisotropic plasma-coated conducting cylinder," IEEE Trans. Antennas and Propagation, Vol.12, No. 3, pp. 348-353, 1964
    [59] W. G. Swarner, L. Peters, Jr., "Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders", IEEE Trans. Antennas and Propagation, Vol. 11, pp.558-569, 1963
    [60] Y. L. Geng(耿友林), X. B. Wu, and L. W. Li, "Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Science, Vol.38, No.6, 1104/1-12, 2003
    [61] Y. L. Geng, X. B. Wu, and L. W. Li, "Characterization of electromagnetic scattering by a plasma anisotropic spherical shell," IEEE Antennas and Wireless Propagation Letters, vol. 3, no. 6, pp. 100-103, June 2004
    [62] 耿友林,吴信宝,官伯然,“两同心各向异性等离子体球电磁散射的解析解”,微波学报,Vol.20,No.4,pp.1-6,2004
    [63] 耿友林,吴信宝,官伯然,“多层各向异性等离子体球电磁散射的解析解”,电子与信息学报,Vol.27,No.6,pp.987-990,2005
    [64] Y. L. Gong, X. B. Wu, L. W.-Li, and B. R.-Guan, "Electromagnetic scattering by an imhomogoneous plasma anisotropie sphere of multilayers," IEEE Trans. Antennas and Propagations, Vol.53, No. 12, pp.3982-3989, 2005,
    [65] Y. L. Gong, X. B. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," J. of Electromagnetic waves and Application, Vol. 18, No. 2, 161-179, 2004
    [66] 耿友林,吴信宝,官伯然,“导体球涂覆各向异性铁氧体介质电磁散射的解析解,”电子与信息学报,(接受发表)
    [67] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soy. Phys. Uspeki, Vol.10, No.4, pp.509-514, 1968.
    [68] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters, Vol.76, pp.4773-4776, 1996
    [69] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, Vol.85, pp.3966-3969, 2000
    [70] H. Mosallaei, and Y. Rahmat-Samii, "Composite materials with negative permittivity and permeability properties: concept, analysis, and characterization," IEEE AP Int. Sym., Vol.4, pp.378-381, 2001
    [71] R. A. Shelby, D. R. Smith, and S. Schutz, "Experimental verification of a negative index of refraction," Science, Vol.292, 77-79, 2001
    [72] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol.78, pp.489-491, 2001
    [73] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Sehultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity, " Physical Review Letters, Vol.84, pp.4184-4187, 2000
    [74] R. W. Ziolkowski, and N. Engheta (Eds.), Special Issue on Metamaterials, IEEE Trans. Antennas and Propagation, Vol.51, No. 10, 2003
    [75] T. J. Cui, Z. C. Hao, X. X. Yin, W. Hong, and J. A. Kong, "Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials," Physical Letters A, Vol.323, pp.484-494, 2004
    [76] L. B. Hu, and Z. F. Lin, "Imaging properties of uniaxially anisotropic negative refractive index materials," Physics Letters A, Vol.313, pp.316-324, 2003
    [77] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. lIvonen, "BW media--media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol.31, No.2, pp. 129-133, 2001
    [78] H. B. Liu, and S. T. Chui, "Characteristics of electromagnetic wave propagation in uniaxially anisotropie left-handed materials," Physical Review B, Vol.66, pp. 085108/1-7, 2002
    [79] C. Monzon, D. W. Forester, and L. N. Medgyesi-Mitschang, "Scattering properties of an impedance-matched, ideal, homogeneous, causal 'left-handed' sphere", J. Opt. Soc. Am. A, Vol.21, No.12, pp.2311-2319, 2004
    [80] 陈红胜,皇甫江涛,冉立新,章献民,陈抗生,孔金瓯,“高斯波束在异向介质棱镜中的折射,”浙江大学学报(工学版),Vol.38,No.12,pp.1669-1672,2004
    [81] 隋强,李廉林,李芳,“负介电常数和负磁导率微波煤质的实验,”中国科学(G 辑),Vol.33,No.5,pp.416-427,2003
    [82] S. He, Z. C., Ruan, "A completely open cavity realized with photonic crystal wedges," Journal of Zhejiang University of Science, Vol.6A, 355-357, 2005
    [83] Z. C. Ruan, M. Qiu, S. S. Xiao; S. He and L. Thylen, "Coupling between plane waves and Bloch waves in photonic crystals with negative refraction," Physical Review B, Vol.71, No.4, pp. 045111/1-7, 2005
    [84] J. Lu; S. He, "Numerical study of a Gaussian beam propagating in media with negative permittivity and permeability by using a bidirectional beam propagation method," Micro. Opt. Tech. Lett., Vol.37, No.4, pp.292-296, 2003
    [85] Y. L. Geng, Sailing He, "Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material," Journal of Zhejiang University Science A, Vol.7, No.1, pp.99-104, 2006
    [86] Y. L. Geng, L. W. Li, and Sailing He, "An analytical solution to scattering of a plane wave by a spherical shell of uniaxial anisotropic Left-Handed Material," (Abstract), International workshop on meta-materials and negative refraction, p.34, August 27-29, Hangzhou, China, 2005
    [87] A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. on Microwave Theory Technology, Vol.23, pp.623-630, 1975.
    [88] A. Taflove and K. R. Umashankar, "Radar cross section of general three-dimensional scatterers," IEEE Trans. Electromagnetic Compatibility. EMC-25, pp. 433-440. 1983.
    [89] A. Taflove, "Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Wave Motion, Vol. 10, pp.542-582, 1988
    [90] John Schneider, and Scot Hudson, "The finite-diference time-domain method applied to anisotropic material," IEEE Trans. on Antennas and Propagation, Vol. 41. No. 7, pp. 994-999, 1993.
    [91] B. Wei, and D. B. Ge, "Scatering by a two-dimensional cavity filled with auisotropic medium," Waves in random media, Vol. 13. No.4, pp.223-240, 2003
    [92] 魏兵,葛德彪,“导电平板上任意缝隙填充各向异性介质时TM波散射和传输特性分析,”计算物理,Vol.20,No.5,pp.223-228,2003
    [93] 郑宏兴,葛德彪,“广义传播矩阵法分析分层各向异性材料对电磁彼的反射与透射,”物理学报,Vol.49,No.9,pp.1702-1706,2000
    [94] 郑宏兴,葛德彪,张成,“金属表面各向异性涂层的反射,”西安电子科技大学学报,Vol.27,No.5,pp.589-592,2000
    [95] 汤炜,目标与背景电磁散射特性的FDTD方法研究,博士论文,西安电科技大学,2005年1月
    [96] 王秉中,计算电磁学,科学出版社,2002年10月
    [97] 盛新庆,计算电磁学概论,科学出版社,2004年1月
    [98] Graglia R. D., P. L. E. Uslenghi, and R. S. Zich, "Moment method with isoparametric elements for three-dimensional anisotropic scatterers," Proc. of IEEE, Vol.77, No. 5, pp. 750-760, 1989.
    [99] 朱秀芹,耿友林,吴信宝,“三维各向异性介质目标电磁散射的MOM-CG-FFT方法,”电波科学学报,Vol.17,No.3,pp.209-215,2002
    [100] 朱秀芹,耿友林,吴信宝,“三维磁各向异性介质目标电磁散射的MOM-CG-FFT方法,”微波学报,Vol.18,No.3,pp.7-13,2002
    [101] V. V. Varadan, A. Lakhtakia, and V. K. Varadran,"Scattering by three-dimensional anisotropic scatterers," IEEE Trans. Antennas and Propagation, vol. AP-37, pp. 800-802, 1989.
    [102] B. Beker, K. R. Umashankar, and A. Taflove. Numerical analysis and validation of the combined electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects, IEEE Trans. on Antennas and Propagation, Vol.37, No.12, pp.1573-1581, 1989.
    [103] B. Baker, K. R. Umashankar, and A. Taflove, "Electromagnetic scattering by arbitrarily shaped two-dimensional perfectly conducting objects coated with homogeneous anisotropic materials," Electromagnetics, No. 10, 387-406, 1990
    [104] B. Beker, Analysis of electromagnetic scattering by arbitrarily shaped anisotropic objects using combined field surface integral equation formulation, Ph.D. dissertation, Univ. of Ill., Chicago, 1988.
    [105] K.-L.Wong, and H.-T. Chen, "Electromagnetic scattering by a uniaxially anisotropic sphere," IEE Proc. Microwave, Antennas, and Propagation, Vol. 139, no. 4, pp. 314-318, August, 1992
    [106] R.-J. Tarento, K.-H. Bennemann, P. Joyes, and J. Van de Walle, "Mie scattering of magnetic spheres," Physical Review E, Vol.69,026606/1-5, 2004
    [107] Y. L. Geng, X. B. Wu, L. W. Li, and B. R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Physical Review E, Vol.70, 0566609/1-8, 2004
    [108] Y. L. Geng, X. B. Wu, and B. R. Guan, "Electromagnetic scattering of a plane wave by an uniaxial anisotropic spherical shell", Progress In Electromagnetic Research Symposium (Piers), pp. 105, August 28-31, 2004, Nanjing, China
    [109] ——"Electromagnetic scattering from an anisotropic uniaxial-coated conducting sphere," Piers, pp.403-407, August 22-26, Hangzhou, Zhejiang, China, 2005
    [110] 耿友林,吴信宝,官伯然,“电磁波与单轴各向异性介质相互作用的研究,”全国微波会议,pp.34-37,11月8-11日,2003,上海
    [111] J. C. Monzon, "Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: application to seatering by a sphere," IEEE Trans. on Antennas Propagation, Vol. 37, pp.728-735; 1989
    [112] R. D. Graglia and P. L. E. Uslenghi, "Electromagnetic seatering fort anisotropic materials, Part 1: General theory," IEEE Trans. Antennas and Propagation, Vol. 32, No.8, pp.867-869,1984.
    [113] R. D. Graglia and P L. E. Uslenghi. "Electromagnetic scattering form anisotropic materials, Part 11: Computer and numerical results in two dimensions," IEEE Trans. Antennas and Propagation, Vol.35, No.2, pp.225-232, 1987.
    [114] C. M. Rappaport, and B. J. Mccartin, "FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes," IEEE Trans. Antennas and Propagation, Vol.39. No. 3, pp.345-349, 1991
    [115] Frank Olyslager, "Time-harmonic two-and three-dimensional Green's dyanics for general uniaxial bianisotropie media," IEEE Trans. on Antennas and Propagation, Vol.43. No. 4, pp.430-434, 1995
    [116] Papadakis S. N., N. K. Uzunoglu and C. N. Capsalis, "Seatteing of a plane wave by a general anisotropic dielectric ellipsoid," J. Opt. Soc. Am. A, vol. 7, no. 6, pp.991-997,1990
    [117] 赵惠玲,高阶各向异性阻抗边界条件的研究,西北工业大学博士学位论文,2002年10月
    [118] W. Ren, "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Review E, Vol.47, pp. 664-673, 1993.
    [119] 王志良,任伟,电磁散射理论,四川科技出版社,1994年1月
    [120] X. B. Wu and W. Ren, "Scattering of a Gaussian beam by an anisotropic material coated conducting circular cylinder," Radio Science, Vol.30, No.2, pp. 403-411, 1995.
    [121] ——, "Axial slot antennas on an anisotropic dielectric-coated circular cylinder, " IEE Proc. Pt. H, Microwave Antennas and Propagation vol. 141, pp. 527-530, 1994
    [122] ——, "Wave-function solution of plane-wave scattering by an anisotropic circular cylinder," Microwave and Optical Techn. Lett.,vol.8 No.1,pp39-42, Jan. 1995
    [123] W. Ren, X. B. Wu, "An alternative wave function theory in anisotopic media: Spline approximation," Physical Review E, Vol.49, pp3528-3530, 1994.
    [124] X. B. Wu, and K. Yasumoto, "Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder: An analytical solution," Journal of Applied Physics, vol.82, no.1, pp.1996-2003, 1997
    [125] ——, "Cylindrical vector-wave-function representations of fields in a biaxial-medium," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, pp. 1407-1429, 1997.
    [126] X. B. Wu, "Electromagnetic scattering from an anisotropically-coated impedance cylinder," IEE Pro. Microwaves, Antennas, and Propagation, vol.142, no.2, pp.163-167, 1995.
    [127] X. B. Wu, and K. Yasumoto, and W. Ren, "Two-dimensional electromagnetic scattering by an anisotropic multilayer circular cylinder," Symposium on Electromagnetic Theory of IEE of Japan, EMT-96-37, Kumamoto, Japan, Oct. 8-11, 1996.
    [128] W. Ren, "Bi-isotropic layered mixture", Chapter 6, pp. 103-116, PIER9, Massachusetts, Dec., 1994
    [129] D. Cheng, Y. Q. Jin and W. Ren, "Green dyadics in gyroelectric chiral medium by cylindrical vector wave functions," International Journal of Applied Electromagnetics and Mechanics, vol.7, No.3, pp 213-226, Nov. 1996
    [130] D. Cheng, Y. Zhao and G Lin, "Field representations in uniaxial bianisotropic medium by cylindrical vector wave functions", Electronics letters, Vol.30, No.4, pp.288-289, 1994
    [131] D. Cheng, "Field representation in gyroelectric chrial media by cylindrical vector wavefunctions," J. Phys. D: Appl. Phys., Vol.28, pp.246-251, 1995
    [132] D. Sarkar, Vector basic function solution of Maxwell's equations, Ph.D. Dissertation, Rice University, Houston, Texas, Sept., 1996
    [133] 现代工程数学手册编委会,现代工程数学手册,华中工学院出版社,第1卷,1985年第一版
    [134] D. Sarkar, and N. J. Halas, "General vector basis function solution of Maxwell's equations," Physical Review E, 56, 1102-1112, 1997.
    [135] 王竹溪,郭敦仁,特殊函数概论,科学出版社,1965年第一版
    [136] M. Abramowitz, and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1972.
    [137] S. J. Zhang, and J. M. Jin, Computation of Special Functions, John Wiley, 1996.
    [138] 徐士良编著,FORTRAN常用算法程序集,清华大学出版社,1995年
    [139] T.K. Sarkar, E. Arvas, S. M. Rao, "Application of FFT and Conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas and Propagation, Vol.34, No.5, pp.635-640, 1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700